74,990 research outputs found

    Reliability analysis of distribution network

    Get PDF
    The knowledge of the reliability of distribution networks and systems is important consideration in the system planning and operations for development and improvements of power distribution systems. To achieve the target as minimum interruptions as possible to customers, utilities must strive to improve the reliability but at the same time reduce cost. It is a known fact that most of customer interruptions are caused by the failure in distribution system. However, valid data are not easy to collect and the reliability performance statistic not easy to obtain. There is always uncertainty associated with the distribution network reliability. For evaluation and analysis of reliability, it is necessary to have data on the number and range of the examined piece of equipment. It’s important to have database for failure rates, repair time and unavailability for each component in distribution network. These studies present the analysis of distribution networks and systems by using analytical methods in SESB’s distribution substations and network systems. These studies use analytical methods to determine the reliability indices and effect of distribution substation configuration and network to the reliability indices performance. Then the result obtained will be compare with the actual data from SESB to determine the area of improvement required for mutual benefit and also for improvement in the future studies

    Equilibrium in a Distribution Network

    Get PDF
    A network consisting of suppliers, agents, and distributors is considered. The flow of orders and deliveries between the different elements are determined. We attempt to develop a numerical description of the supply and demand structure for the deliveries of commodities in the network. We suppose that orders and deliveries be met with conditions of uncertain overhead expenses. In certain situations, the orders and deliveries do not match for a given supply and demand structure. In such cases, individual participants in the network are assumed to act rationally with the object of maximizing their profit.

    Equilibrium in a Distribution Network

    Get PDF
    A network consisting of suppliers, agents, and distributors is considered. The flow of orders and deliveries between the different elements are determined. A monotonic game for the customers in the network is described.suppliers, distributors, game, monotonic, network

    Distribution Network Configuration Considering Inventory Cost

    Get PDF
    Inter-city distribution network structure is considered as one of which determine the quantity of economic activities in each city. In the field of operations research, several types of optimal facility location problem and algorithms for them have been proposed. Such problems typically minimize the logistic cost with given inter-city transportation cost and facility location cost. But, when we take inventory to coop with fluctuating demands into account, facility size becomes different for each location reflecting the level of uncertainty of demand there. As observed in many developed countries, customers require more variety of commercial goods, and we must prepare more number of commercial goods. Moreover, life length of each product becomes shorter. Without highly organized management, large inventory for many products yield large risk of depreciation of commercial value as well as large cost for floor space for stocking. Considering those, inventory cost should be explicitly considered in distribution network configuration problem. There is an essential trade off between inventory cost and transportation cost: when you set smaller number of distribution center having thicker demands there, relative stock size to coop with fluctuations become small and then, we need less inventory cost. But such concentrated location pattern results longer transportation to the customers and larger transportation cost. Nozick and Turnquist(2001) formulated a two-echelon distribution network formation problem considering inventory cost at plant and distribution centers. They used optimal inventory assignment considering the expected penalty of distribution center stock-out and plant stock-out. Stock-out was considered as the situation when Poisson distributed demand exceeded stock size, and the mean demand there was given by optimal facility location model. Inventory size of distribution center alters the location cost of distribution center, therefore optimal facility location problem was refreshed and solved again. The paper proposed iterative algorithm to get optimal inventory locations. Our paper expands their model in two ways; first we admit the difference of unit location cost for distribution centers by geographical locations, and secondly, we consider different uncertainties for customer orders by departing from simple Poisson distribution. The first alternation gives new explanation for the following situations: highly dense metropolitan regions have relatively larger number of centers and smaller coverage of each center. But such propensity usually contradicts with the land price; then center location should be limited considering higher land price in metropolitan areas. Then the optimal locations cannot be prospected in straight forwardly. The second model expansion allows our model to analyze how regularity of demands affects on the network structure. Our paper applies the model to the realistic Japanese transportation network, and show which cities may possess distribution center function in the nationwide distribution network. Without the back-stock in plant level, each distribution center must prepare inventory for their demand, but such inventory sometime requires unrealistic large location cost in metropolitan area such as Tokyo. On the other hand, if distribution center can rely on the back stock in plant, the centers in metropolitan regions stand without their own inventory.

    Strategic distribution network planning with smart grid technologies

    Get PDF
    This paper presents a multiyear distribution network planning optimization model for managing the operation and capacity of distribution systems with significant penetration of distributed generation (DG). The model considers investment in both traditional network and smart grid technologies, including dynamic line rating, quadrature-booster, and active network management, while optimizing the settings of network control devices and, if necessary, the curtailment of DG output taking into account its network access arrangement (firm or non-firm). A set of studies on a 33 kV real distribution network in the U.K. has been carried out to test the model. The main objective of the studies is to evaluate and compare the performance of different investment approaches, i.e., incremental and strategic investment. The studies also demonstrate the ability of the model to determine the optimal DG connection points to reduce the overall system cost. The results of the studies are discussed in this paper

    Active local distribution network management for embedded generation

    Get PDF
    Traditionally, distribution networks have been operated as passive networks with uni-directional power flows. With the connection of increasing amounts of distributed generation, these networks are becoming active with power flowing in two directions, hence requiring more intelligent forms of management. The report into issues for access to electricity networks published by the Ofgem/DTI Embedded Generation Working Group in January 2001 called for new work in the area of active distribution network management. The report suggested an evolution from the present passive network control philosophy to fully active network control methods. In line with these recommendations Econnect is developing a new type of distribution network controller, called GenAVC. GenAVC is a controller for electricity distribution networks that aims to increase the amount of energy that can be exported onto the distribution networks by generating plants. The UK is leading the world in electricity de-regulation and one aspect of this is the increasing demand for the connection of distributed generation. Active distribution network management is seen to be essential for networks to accommodate the levels of distributed generation that are predicted for 2010. The work being undertaken as part of this project is therefore at the forefront of international network management technology

    Toward designing a quantum key distribution network simulation model

    Get PDF
    As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator
    corecore