77,593 research outputs found

    Distribution metric driven adaptive random testing

    Get PDF
    Adaptive Random Testing (ART) was developed to enhance the failure detection capability of Random Testing. The basic principle of ART is to enforce random test cases evenly spread inside the input domain. Various distribution metrics have been used to measure different aspects of the evenness of test case distribution. As expected, it has been observed that the failure detection capability of an ART algorithm is related to how evenly test cases are distributed. Motivated by such an observation, we propose a new family of ART algorithms, namely distribution metric driven ART, in which, distribution metrics are key drivers for evenly spreading test cases inside ART. Out study uncovers several interesting results and shows that the new algorithms can spread test cases more evenly, and also have better failure detection capabilities

    Optimal Calibration for Multiple Testing against Local Inhomogeneity in Higher Dimension

    Full text link
    Based on two independent samples X_1,...,X_m and X_{m+1},...,X_n drawn from multivariate distributions with unknown Lebesgue densities p and q respectively, we propose an exact multiple test in order to identify simultaneously regions of significant deviations between p and q. The construction is built from randomized nearest-neighbor statistics. It does not require any preliminary information about the multivariate densities such as compact support, strict positivity or smoothness and shape properties. The properly adjusted multiple testing procedure is shown to be sharp-optimal for typical arrangements of the observation values which appear with probability close to one. The proof relies on a new coupling Bernstein type exponential inequality, reflecting the non-subgaussian tail behavior of a combinatorial process. For power investigation of the proposed method a reparametrized minimax set-up is introduced, reducing the composite hypothesis "p=q" to a simple one with the multivariate mixed density (m/n)p+(1-m/n)q as infinite dimensional nuisance parameter. Within this framework, the test is shown to be spatially and sharply asymptotically adaptive with respect to uniform loss on isotropic H\"older classes. The exact minimax risk asymptotics are obtained in terms of solutions of the optimal recovery

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page

    Data-driven rate-optimal specification testing in regression models

    Get PDF
    We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to 1/\sqrtn. Asymptotic critical values come from the standard normal distribution and the bootstrap can be used in small samples. A general formalization allows one to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.Comment: Published at http://dx.doi.org/10.1214/009053604000001200 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore