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Abstract

Adaptive Random Testing (ART) was developed to

enhance the failure detection capability of Random

Testing. The basic principle of ART is to enforce ran-

dom test cases evenly spread inside the input domain.

Various distribution metrics have been used to measure

different aspects of the evenness of test case distribu-

tion. As expected, it has been observed that the fail-

ure detection capability of an ART algorithm is related

to how evenly test cases are distributed. Motivated by

such an observation, we propose a new family of ART

algorithms, namely distribution metric driven ART, in

which, distribution metrics are key drivers for evenly

spreading test cases inside ART. Out study uncovers

several interesting results and shows that the new al-

gorithms can spread test cases more evenly, and also

have better failure detection capabilities.

1. Introduction

Random Testing (RT) is a basic software testing tech-

nique. It simply generates test cases in a random man-

ner from the whole input domain (the set of all possible

inputs) [9, 14]. RT has been used in different areas to

detect software failures. For example, RT was used to

test standard UNIX utilities and it was reported that lots

of utility programs had been crashed or hanged by ran-

dom test data [12, 13]. RT was also applied to test Java

JIT compilers [17], SQL database systems [15], image

processing applications [11], communications protocols

implementations [16], and so on.

However, RT has been criticized as inefficient be-

cause it uses little information of system under test

when generating test cases. One common character-

istic of faulty programs is that the failure-causing in-

puts (program inputs that can reveal failures) are usu-

ally clustered together, as reported in [1, 2, 8]. Chen

et al. [6] investigated how to improve the failure de-

tection capability of RT under such a situation. They

proposed a new approach, namely Adaptive Random
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Testing (ART). Like RT, ART also randomly generates

test cases from the input domain. But ART uses addi-

tional criteria to guide the test case selection such that

test case are evenly spread over the whole input domain.

Different test case selection criteria give rise to differ-

ent ART algorithms, such as Fixed-Sized-Candidate-

Set ART (FSCS-ART) [6], Restricted Random Testing

(RRT) [3], and Lattice-based ART [10]. Previous sim-

ulations and empirical studies conducted on these algo-

rithms have shown that in general, when failure-causing

inputs are clustered into contiguous regions (namely

failure regions [1]), ART could use fewer test cases to

detect the first failure than pure RT.

It has been generally believed that how evenly an

ART algorithm spreads test cases has an impact on its

failure detection capability, and an even distribution of

test cases brings a high fault detection capability for

ART. Chen et al. [4] have used several metrics to mea-

sure and compare the test case distributions of various

ART algorithms. Among these metrics, discrepancy

and dispersion are two metrics commonly used to mea-

sure the equidistribution of sample points. It has been

further observed that there is a correlation between the

ART performance and the values of these distribution

metrics. For example, FSCS-ART generally has a small

value of dispersion, but its discrepancy is large when

the dimension of input domain is high; while the fail-

ure detection capability of FSCS-ART is fairly good

for low dimensional cases, but the capability becomes

worse with the increase of the dimension of input do-

main.

Since distribution metrics can reflect not only how

evenly test cases are spread, but also the failure detec-

tion capability of an ART algorithm to certain degrees,

we propose to drive the test case selection process of

ART by these metrics to enhance the ART performance.

In this paper, we adopt discrepancy and dispersion as

new criteria for selecting test cases, instead of using

them for measuring the test case distribution. It is ex-

pected that the research conducted in this paper can help

us answer the following questions.
• How ART performs if discrepancy or dispersion is
used as the standalone test case selection criterion?



• How ART performs if discrepancy or dispersion
works together with other selection criteria?

We conduct our work on a particular ART algorithm,

namely FSCS-ART. The paper is organized as follows.

In Section 2, we give some background information of

FSCS-ART and introduce the basic concepts of discrep-

ancy and dispersion. In Section 3, we propose two new

test case selection criteria based on discrepancy and dis-

persion, and then investigate how to adopt the new cri-

teria in FSCS-ART. Some new ART algorithms are pro-

posed. The simulation studies on these new algorithms

and the related results will also be reported in this sec-

tion. Finally, in Section 4, we conclude the paper.

2. Background

2.1. Notations

For ease of discussion, we introduce the following

notations, which will be used in the sequel.

• E denotes the set of already executed test cases.
• D denotes the input domain.
• dD denotes d-dimension, where d = 1, 2, 3, 4, · · · ,
and the dimension of input domain means the num-

ber of inputs parameters of the program under test.
• |E| and |D| denote the size of E and D, respec-
tively.

• dist(p,q) denotes the distance between two points
p and q.

• ñ(p,E) denotes p’s nearest neighbour in E.

2.2. FSCS-ART

Generally speaking, besides randomly generating

program inputs, ART uses additional criteria to se-

lect inputs as test cases in order to ensure the even

spreading of test cases. The test case selection process

in Fixed-Sized-Candidate-Set ART (FSCS-ART) [6] is

conducted as follows. There exist two sets of test cases,

the executed set denoted by E and the candidate set de-

noted by C. E contains all test cases which were al-

ready executed but have not revealed any failure; while

C contains k randomly generated inputs, where k is fixed

throughout the testing process. The next test case will

be the candidate that has the longest distance to its near-

est neighbour in E. Figure 1 gives the detailed algo-

rithm of FSCS-ART. In this paper, the default value of

k is set as 10, as recommended in [6].

In this paper, we will follow previous studies [3, 6,

10] to use F-measure (the expected number of test cases

required to detect the first failure) for measuring the

failure detection capability of ART (the preference of

F-measure to other measures on ART/RT was justified

in [7]). The F-measure of ART (denoted by FART ) de-

pends on many factors, so it is very difficult to theoret-

ically derive the value of FART . In [5], FART for FSCS-

ART was studied via a series of simulations. In each

1. Input an integer k, where k > 1.
2. Set n= 0 and E = {}.
3. Randomly generate a test case t from D, according to

uniform distribution.

4. Test the program with t as the program input.

5. while (no failure has been revealed)

6. Store t into E, and increment n by 1.

7. Randomly generate k program inputs (candidates)

from D, according to uniform distribution, and

construct C with these candidates.

8. Find cb ∈C such that ∀ j = 1, · · · ,k,dist(cb,ñ(cb,E))
≥ dist(c j,ñ(c j,E)).

9. Set t = cb.
10. Test the program with t as the program input.

11. end while

12. Report the detected failure.

13. Exit.

Figure 1. The algorithm of FSCS-ART

simulation, the failure rate θ (the ratio of the number

of failure-causing inputs to the number of all possible

inputs) and the failure pattern (the shapes of failure re-

gions together with their distribution over the input do-

mainD) were predefined. Test cases were generated one

by one until a point inside the failure region was picked

by ART (that is, a failure was detected). Such a process

was repeated for a sufficient number of times until the

mean value of FART was reliable within 95% confidence

level and ±5% accuracy range (details of simulations

can be found in [5]). We will use similar experiment

setting to investigate the FART of the algorithms devel-

oped in this paper.

ART was originally proposed to enhance the fail-

ure detection capability of RT, whose F-measure (de-

noted by FRT ) is theoretically equal to 1/θ when test
cases are selected with replacement, according to uni-

form distribution. In this paper, we will use ART F-ratio

(=FART/FRT ) to measure the enhancement of ART over
RT.

2.3. Discrepancy and dispersion

Chen et al. [4] have used discrepancy and dispersion

to measure the test case distribution of FSCS-ART (as

well as some other ART algorithms). For ease of discus-

sion, the detailed definitions of these metrics are given

as follows.
• Discrepancy.

MDiscrepancy = max
i=0...m

∣

∣

∣

∣

|Ei|

|E|
−

|Di|

|D|

∣

∣

∣

∣

, (1)

where D1, D2, ..., Dm denote m randomly defined

subsets of D, with their corresponding sets of test

cases being denoted by E1, E2, ..., Em, which are

subsets of E. The value ofmwas set as 1000 in [4].
Discrepancy intuitively indicates whether different

regions in D have an equal density of points. A

low discrepancy implies E is reasonably equidis-

tributed.



• Dispersion.

MDispersion = max
i=1...|E|

dist(ei,ñ(ei,E\{ei})), (2)

where ei ∈ E.

Dispersion intuitively indicates whether there is a

large empty spherical region (containing no point)

in D. A low dispersion also implies a reasonable

equidistribution of E.

It has been reported in [4] that the performance of

an ART algorithm has a correlation with the test case

distribution. This has motivated us to consider whether

the performance of ART can be enhanced if we enforce

a lower discrepancy or a lower dispersion during its test

case selection process. Obviously, such an enforcement

can be achieved by using discrepancy or dispersion as

the test case selection criterion in an ART algorithm,

with details reported in the next section.

3. Enhancing FSCS-ART by Using Dis-

crepancy and Dispersion as Test Case

Selection Criteria

3.1. Adopting discrepancy and dispersion as

test case selection criteria

The following outlines how discrepancy and disper-

sion could be used as test case selection criteria in

FSCS-ART.

• Test case selection criterion based on discrep-
ancy (denoted by Sdiscrepancy). Given the candidate

setC in FSCS-ART, for any c j ∈C, we define

d
j
discrepancy = max

i=0...m

∣

∣

∣

∣

|E ′
i |

|E ′|
−

|Di|

|D|

∣

∣

∣

∣

, (3)

where E ′ = E ∪ {c j}, and D1, D2, ..., Dm de-
note m randomly defined subsets of D, with their

corresponding sets of test cases being denoted by

E ′
1, E

′
2, ..., E

′
m, which are subsets of E

′. We

choose a candidate cb as the next test case, if

∀ j = 1, · · · ,k,dbdiscrepancy ≤ d
j
discrepancy. To be con-

sistent with the previous study [4], the value of m

in Equation 3 is also set as 1000 in this paper.

• Test case selection criterion based on dispersion
(denoted by Sdispersion). Given the candidate set C

in FSCS-ART, for any c j ∈C, we define

d
j
dispersion = max

i=1...|E ′|
dist(e′i,ñ(e′i,E

′\{e′i})), (4)

where E ′ = E ∪ {c j} and e
′
i ∈ E

′. We choose

a candidate cb as the next test case, if ∀ j =
1, · · · ,k,dbdispersion ≤ d

j
dispersion.

For consistency, we use Sdistance to denote the test

case selection criterion in the original FSCS-ART algo-

rithm (Line 8 in Figure 1) in the sequel.

3.2. Study on FSCS-ART using discrepancy or

dispersion as the standalone criterion to se-

lect test cases

We replaced Sdistance in FSCS-ART algorithm (Fig-

ure 1) by Sdiscrepancy and Sdispersion, and got two

new algorithms, namely FSCS-ART with selecting by

Sdiscrepancy (abbreviated as FSCS-ART-disc) and FSCS-

ART with selecting by Sdispersion (abbreviated as FSCS-

ART-disp), respectively. For clarify, we use FSCS-

ART-dist to denote the original FSCS-ART algorithm

in the sequel.

We conducted some simulations to study the fail-

ure detection capabilities of FSCS-ART-disc and FSCS-

ART-disp. We found that FSCS-ART-disc only outper-

forms RT marginally, and FSCS-ART-disp always has

a higher F-measure than RT. Simply speaking, neither

discrepancy nor dispersion will result in a high failure

detection capability for ART when each of them is ap-

plied as the standalone test case selection criterion.

In order to find the reasons why these two algo-

rithms cannot perform better than RT, we further in-

vestigated their test case distributions (the experimen-

tal setting can be found in [4]). It was observed that

FSCS-ART-disc always has a smaller MDiscrepancy than

FSCS-ART-dist, as intuitively expected; however, its

MDispersion is larger than that of FSCS-ART-dist, and

similar to that of RT. As explained in [4], MDispersion
is better than MDiscrepancy to indicate the correlation be-

tween the test case distribution and the performance

of an ART algorithm. FSCS-ART-disc does not have

a smaller Mdispersion than RT, although it has a small

Mdiscrepancy. Therefore, it is understandable that FSCS-

ART-disc does not significantly outperform RT. This

also tells us that a smallMDiscrepancy alone is not enough

to ensure a good failure detection capability of ART.

As far as FSCS-ART-disp is concerned, we found

that FSCS-ART-disp normally has a fairly large

MDiscrepancy although its MDispersion is smaller than that

of FSCS-ART-dist. The large value of MDiscrepancy for

FSCS-ART-disp may be due to the definition of disper-

sion used in this study. The intuition of dispersion is

to measure the largest empty spherical region inside D.

Given that the sample points are uniformly distributed,

the largest nearest neighbour distance is a good metric

to reflect the size of this empty spherical region. How-

ever, when FSCS-ART-disp solely uses such a defini-

tion to select test cases without considering the uniform

distribution, it is quite likely that the selected test cases

would be clustered into some regions inside D (a large

MDiscrepancy). As a result, FSCS-ART-disp has a poor

failure detection capability.

Briefly speaking, although discrepancy and disper-

sion measure certain aspects of the evenness of test case



distribution, neither of them can ensure the even spread-

ing of test cases if each of them is solely used as the

test case selection criterion in ART. This is due to the

fact that a low discrepancy and a low dispersion are just

necessary characteristics of the even spreading of test

cases, not vice versa. Compared with these two criteria,

Sdistance is a better test case selection criterion, because

it gives FSCS-ART-dist a small MDispersion, and also a

high failure detection capability. However, as pointed

out in [4], Sdistance is not perfect, because it may result

in a relatively large MDiscrepancy and the performance

of FSCS-ART-dist may be deteriorated in some special

cases. In the next section, we will investigate how to

boost up the performance of ART by using Sdiscrepancy
and Sdispersion as additional test case selection criteria to

supplement Sdistance.

3.3. Integration of discrepancy and dispersion

with the test case selection criterion in

FSCS-ART

We here propose new algorithms (Figure 2), which

use Sdiscrepancy or Sdispersion to select test cases together

with Sdistance.

1. Input two integer k1 and k2, where k1 > k2 > 1.
2. Set n= 0 and E = {}.
3. Randomly generate a test case t from D, according to

uniform distribution.

4. Test the program with t as the program input.

5. while (no failure has been revealed)

6. Store t into E, and increment n by 1.

7. Randomly generate k1 program inputs (candidates)

from D, according to uniform distribution, and

constructC with these candidates.

8. Find k2 best candidates c
′
1, · · · ,c

′
k2
fromC, according

to Sdistance, and construct a new candidate set

C′ = {c′1, · · · ,c
′
k2
}.

9. Find the best candidate c′b fromC
′, according to

Smetric, where Smetric = Sdiscrepancy or Sdispersion.
10. Set t = c′b.
11. Test the program with t as the program input.

12. end while

13. Report the detected failure.

14. Exit.

Figure 2. The algorithm of distribution metric

driven FSCS-ART

In the new algorithms, Sdistance is used as the primary

test case selection criterion (Line 8 in Figure 1), while

Sdiscrepancy and Sdispersion are adopted as secondary crite-

ria (Line 9). Since some of selection criteria in the new

algorithms are originally from some distribution met-

rics, we term the new algorithms as distribution metric

driven ART. We totally have two new ART algorithms,

which are distribution metric driven FSCS-ART with

selecting by Sdistance and then Sdiscrepancy (abbreviated

as FSCS-ART-dist-disc), and distribution metric driven

FSCS-ART with selecting by Sdistance and then Sdispersion
(abbreviated as FSCS-ART-dist-disp), respectively. In

the next two sections, the test case distributions and the

failure detection capabilities of the new algorithms are

examined, respectively.

3.4. Test case distributions of distribution met-

ric driven FSCS-ART

We conducted a series of simulations to measure

the test case distributions of new ART algorithms (with

k1 = 10 and k2 = 3), and got the values of MDiscrepancy
and MDispersion. The simulation results are summarised

in Tables 1 and 2, which also include the data of FSCS-

ART-dist and RT for ease of comparison. Due to page

limit, we cannot present all data in graphs, but we

wish to point out that the variations of MDiscrepancy and

MDispersion with respect to |E| are very similar for all
scenarios.

Table 1. Comparing MDiscrepancy of FSCS-ART-dist-

disc, FSCS-ART-dist-disp, FSCS-ART-dist and RT
dimen- Value Range of RT FSCS-ART- FSCS-ART- FSCS-ART-

sion M Discrepancy dist dist-disc dist-disp

1D max 1.06E-01 4.37E-02 2.97E-02 4.29E-02

min 1.05E-02 4.02E-03 1.13E-03 4.22E-03

max-min 9.51E-02 3.96E-02 2.86E-02 3.86E-02

2D max 1.09E-01 7.19E-02 4.71E-02 7.89E-02

min 1.06E-02 6.19E-03 1.85E-03 6.92E-03

max-min 9.87E-02 6.57E-02 4.53E-02 7.20E-02

3D max 9.25E-02 8.76E-02 5.01E-02 1.05E-01

min 9.18E-03 1.45E-02 2.63E-03 2.09E-02

max-min 8.33E-02 7.31E-02 4.75E-02 8.42E-02

4D max 7.85E-02 7.93E-02 4.57E-02 9.19E-02

min 7.69E-03 1.88E-02 3.90E-03 2.96E-02

max-min 7.09E-02 6.05E-02 4.18E-02 6.23E-02

Table 2. Comparing MDispersion of FSCS-ART-dist-

disc, FSCS-ART-dist-disp, FSCS-ART-dist and RT
dimen- Value Range of RT FSCS-ART- FSCS-ART- FSCS-ART-

sion M Dispersion dist dist-disc dist-disp

1D max 2.72E-02 1.60E-02 1.66E-02 1.51E-02

min 4.89E-04 2.07E-04 2.35E-04 2.01E-04

max-min 2.67E-02 1.58E-02 1.64E-02 1.49E-02

2D max 1.49E-01 1.28E-01 1.33E-01 1.19E-01

min 1.89E-02 1.41E-02 1.45E-02 1.36E-02

max-min 1.30E-01 1.14E-01 1.18E-01 1.05E-01

3D max 2.85E-01 2.73E-01 2.79E-01 2.54E-01

min 7.14E-02 6.01E-02 6.22E-02 5.86E-02

max-min 2.14E-01 2.13E-01 2.17E-01 1.96E-01

4D max 4.14E-01 4.14E-01 4.12E-01 3.85E-01

min 1.46E-01 1.30E-01 1.32E-01 1.26E-01

max-min 2.68E-01 2.84E-01 2.80E-01 2.59E-01

Based on these data, we have the following observa-

tions.
• As expected, FSCS-ART-dist-disc always has the
smallest MDiscrepancy. Its MDispersion is slightly

larger than that of FSCS-ART-dist, but smaller

than that of RT.

• FSCS-ART-dist-disp normally has the smallest
MDispersion. Its MDiscrepancy increases with the in-

crease of the dimension, like that of FSCS-ART-

dist, but generally larger than that of FSCS-ART-

dist.
Briefly speaking, both FSCS-ART-dist-disc and

FSCS-ART-dist-disp distribute their test cases not only

very well with respect to their own distribution metrics



(namely discrepancy and dispersion, respectively), but

also well with respect to the other metrics.

3.5. Failure detection capabilities of distribu-

tion metric driven FSCS-ART

We also conducted some simulations to study the

performance of FSCS-ART-dist-disc and FSCS-ART-

dist-disp. In these simulations, the input domain D was

set to be square and the dimension of D was set as ei-

ther 1D, 2D, 3D or 4D. A single square failure region

was randomly placed inside D. The size of the failure

region was decided by the failure rate θ , where θ was

set from 0.75 to 0.00005. The simulations results are

summarized in Figure 3, which also includes F-ratios of

FSCS-ART-dist for ease of comparison.

Based on the data in Figure 3, we have the following

findings.

• All three ART algorithms have similar failure de-
tection capabilities when failure rate is low.

• Both FSCS-ART-dist-disc and FSCS-ART-dist-
disc have a smaller FART than FSCS-ART-dist

when the failure rate is high.

• The performance improvement of the two new al-
gorithms over FSCS-ART-dist increases with the

increase of the dimension of D.

In summary, FSCS-ART-dist-disc and FSCS-ART-

dist-disp generally have a better failure detection ca-

pability than the original FSCS-ART algorithm (FSCS-

ART-dist), especially when the failure rate is high or the

dimension of D is high. Compared with FSCS-ART-

dist, FSCS-ART-dist-disc has a significantly smaller

MDiscrepancy, but a comparable MDispersion. On the

other hand, compared with FSCS-ART-dist, FSCS-

ART-dist-disp has a smaller MDispersion, but a compa-

rable MDiscrepancy. These results reinforce the intuition

of ART that the more evenly test cases are spread, the

better the failure detection capability is.

4. Discussion and Conclusion

ART was proposed as an enhancement of RT. ART

improves the failure detection capability by evenly

spreading random test cases inside the input domain.

In ART, some test case selection criteria are used to en-

sure the even spreading of random test cases. Though

even spreading is intuitively simple, there does not exist

a standard definition of even spreading, needless to say

the existence of a standard measurement for the even-

ness of test case distribution. Research [4] has been at-

tempted to use various distribution metrics to reflect, if

not measure, how evenly an ART algorithm spreads test

cases. Previous studies have conclusively shown that

some ART algorithms, which are not regarded by cer-

tain distribution metrics as evenly spreading their test

cases, usually perform poorly. This correlation between
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Figure 3. Comparing failure detection capabilities

of FSCS-ART-dist-disc, FSCS-ART-dist-disp, and

FSCS-ART-dist



test case distribution and failure detection capability has

motivated us to develop some new ART algorithms,

which apply these distribution metrics as test case se-

lection criteria in ART.

We first developed some algorithms using each of

these metrics as the standalone criterion to select test

cases in ART. Our simulation results showed that these

ART algorithms not only have poor performances, but

also unevenly distribute their test cases. Such results

should not be surprising, because even spreading im-

plies both low discrepancy and low dispersion, but nei-

ther low discrepancy nor low dispersion is sufficient on

its own to imply even spreading.

We further investigated the integration of these met-

rics and the notion of “far apart” in FSCS-ART (that is,

keeping test cases as far apart from one another as pos-

sible), and proposed a new family of ART algorithms,

namely distribution metric driven ART. The simulation

results showed that these new algorithms do improve

the evenness of test case distribution and enhance the

failure detection capability.

There are various definitions of discrepancy and dis-

persion in the literature, and we have only adopted the

most commonly used definitions in this study. In the

future work, we can investigate the impacts of other

definitions of discrepancy and dispersion. Moreover,

some parameters, such as m in Equations 3 and k1, k2
in the distribution metric driven ART algorithm (Fig-

ure 2), were arbitrarily set in this study. It is interest-

ing to further investigate the impact of other settings of

these parameters on the performance of the new algo-

rithms. Chen et al. have pointed out in [4] that the ART

algorithms under their study may not well satisfy the

definitions of some distribution metrics. RRT, for ex-

ample, generally has a smallMDispersion, but a relatively

large MDiscrepancy, just like FSCS-ART. Therefore, the

innovative approach of this study, that is, adopting test

case distribution metrics as test case selection criteria in

ART, can be equally applied to enhance other existing

ART algorithms.
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