41,515 research outputs found

    Encryption – use and control in E-commerce

    Get PDF
    The author describes how cryptography can be used to address modern business requirements such as identity protection, secure web access and digital signatures. Article by Robert Bond (Head of Innovation & Technology Group, Hobson Audley and Fellow of SALS). Published in Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at the Institute of Advanced Legal Studies, University of London

    Overview of Polkadot and its Design Considerations

    Get PDF
    In this paper we describe the design components of the heterogenous multi-chain protocol Polkadot and explain how these components help Polkadot address some of the existing shortcomings of blockchain technologies. At present, a vast number of blockchain projects have been introduced and employed with various features that are not necessarily designed to work with each other. This makes it difficult for users to utilise a large number of applications on different blockchain projects. Moreover, with the increase in number of projects the security that each one is providing individually becomes weaker. Polkadot aims to provide a scalable and interoperable framework for multiple chains with pooled security that is achieved by the collection of components described in this paper

    Securing The Root: A Proposal For Distributing Signing Authority

    Get PDF
    Management of the Domain Name System (DNS) root zone file is a uniquely global policy problem. For the Internet to connect everyone, the root must be coordinated and compatible. While authority over the legacy root zone file has been contentious and divisive at times, everyone agrees that the Internet should be made more secure. A newly standardized protocol, DNS Security Extensions (DNSSEC), would make the Internet's infrastructure more secure. In order to fully implement DNSSEC, the procedures for managing the DNS root must be revised. Therein lies an opportunity. In revising the root zone management procedures, we can develop a new solution that diminishes the impact of the legacy monopoly held by the U.S. government and avoids another contentious debate over unilateral U.S. control. In this paper we describe the outlines of a new system for the management of a DNSSEC-enabled root. Our proposal distributes authority over securing the root, unlike another recently suggested method, while avoiding the risks and pitfalls of an intergovernmental power sharing scheme

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Simplified Distributed Programming with Micro Objects

    Full text link
    Developing large-scale distributed applications can be a daunting task. object-based environments have attempted to alleviate problems by providing distributed objects that look like local objects. We advocate that this approach has actually only made matters worse, as the developer needs to be aware of many intricate internal details in order to adequately handle partial failures. The result is an increase of application complexity. We present an alternative in which distribution transparency is lessened in favor of clearer semantics. In particular, we argue that a developer should always be offered the unambiguous semantics of local objects, and that distribution comes from copying those objects to where they are needed. We claim that it is often sufficient to provide only small, immutable objects, along with facilities to group objects into clusters.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Merging and Extending the PGP and PEM Trust Models - the ICE-TEL Trust Model

    Get PDF
    The ICE-TEL project is a pan-European project that is building an Internet X.509 based certification infrastructure throughout Europe, plus several secure applications that will use it. This paper describes the trust model that is being implemented by the project. A trust model specifies the means by which a user may build trust in the assertion that a remote user is really who he purports to be (authentication) and that he does in fact have a right to access the service or information that he is requesting (authorization). The ICE-TEL trust model is based on a merging of and extensions to the existing Pretty Good Privacy (PGP) web of trust and Privacy Enhanced Mail (PEM) hierarchy of trust models, and is called a web of hierarchies trust model. The web of hierarchies model has significant advantages over both of the previous models, and these are highlighted here. The paper further describes the way that the trust model is enforced through some of the new extensions in the X.509 V3 certificates, and gives examples of its use in different scenarios

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange
    • …
    corecore