
Overview of Polkadot and its Design Considerations

Jeff Burdges1, Alfonso Cevallos1, Peter Czaban1

Rob Habermeier2, Syed Hosseini1, Fabio Lama1,
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Abstract

In this paper we describe the design components of the heterogenous multi-chain protocol
Polkadot and explain how these components help Polkadot address some of the existing short-
comings of blockchain technologies. At present, a vast number of blockchain projects have
been introduced and employed with various features that are not necessarily designed to work
with each other. This makes it difficult for users to utilise a large number of applications on
different blockchain projects. Moreover, with the increase in number of projects the security
that each one is providing individually becomes weaker. Polkadot aims to provide a scalable
and interoperable framework for multiple chains with pooled security that is achieved by the
collection of components described in this paper.
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1 Introduction

The Internet was originally designed for and built upon decentralised protocols such as TCP/IP,
however, its commercialisation has led to the centralisation of all popular web applications today.
We refer not to any centralisation of physical infrastructure, but rather to the logical centralisation
of power and control over the infrastructure. Two prominent examples are giant corporations like
Google and Facebook: while they maintain servers all around the world in a physically decentralised
fashion, these are ultimately controlled by a single entity.

A central entity controlling a system poses many risks for everyone. For example, they can stop
the service at any moment, can sell users’ data to third parties, and manipulate how the service is
working without the users’ agreement. This is in particular critical to users who heavily rely upon
these services for business or private purposes.

With all the current interest related to personal data ownership, there is a growing need for
a better security, freedom and control for net users, and with this a countermovement for more
decentralised applications where no single entity controls the system. This tendency towards
decentralisation is not new; it has been used in a number of areas of the development of web and
other systems, such as the free software movement.

Blockchains are a recent technology proposed to address these problems, in the quest to build a
decentralised web. However, it can only compete with the centralised web if it is usable for masses
of end-users. One important aspect of this is that separate applications must be able to interact,
otherwise each will become isolated and not adopted by as many users. Having to build such an
interoperability mechanism introduces new challenges, many of which are missing in the centralised
model because of the fundamental differences in the trust model between the two paradigms. For
example, Bitcoin[26] and Ethereum[10] are proof-of-work (PoW) blockchains where security relies
on assumptions about processing power; alternative proof-of-stake (PoS) systems’ security instead
rely on incentives and the ability to destroy security deposits. These differences present difficulties
for one blockchain to trust another. Another challenge that blockchain technologies need to tackle
is scalability. Existing blockchain systems generally have high latency and can only have tens of
transactions per second [14], whereas credit card companies such as Mastercard or Visa carry out
thousands of transactions per second [3].

One prominent solution to scalability for blockchains is to run many chains in parallel, often
called sharding. Polkadot is a multi-chain system that aims to gather the security power of all
these chains together in a shared security system. It was first introduced in 2016 by Gavin Wood
[33], and in this paper we expand on the details.

Briefly: Polkadot utilises a central chain called the relay chain which communicates with mul-
tiple heterogeneous and independent sharded chains called parachains (portmanteau of “parallel
chains”). The relay chain is responsible for providing shared security for all parachains, as well as
trust-free interchain transactability between parachains. In other words, the issues that Polkadot
aims to address are those discussed above: interoperability, scalablility, and weaker security due
to splitting the security power.

Paper Organisation In the next section, we give a synopsis of the Polkadot network including
its external interface with client parachains that we expand on in subsequent sections. We review
preliminary information such as description of roles of Polkadot’s participants and our adversary
model in Section 3. We explain what subprotocols and components of Polkadot try to achieve
in Section 4 and then continue to review them in detail, including low-level cryptographic and
networking primitives. Finally we shortly discuss some future work in Section 5. In the appendices,
we review relevant work such as a comparison to other multi-chain system A.3, a short description
of an interoperability scheme to bridge to external chains A.2, a secure execution schemes A.1 that
we will use for messaging, and a glossary with Polkadot-specific terms in Table 1.
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2 Synopsis

The aim of this section is to describe the main functionality of Polkadot without going into details
about the design considerations and reasoning.

The Polkadot system consists of a single open collaborative decentralised network called the
relay chain, that interacts with many other external chains run in parallel called parachains. From
a high-level perspective, parachains are clients of the relay chain, which provides a security service
to these clients, including secure communication. That is the sole purpose of the relay chain;
parachains are the entities providing application-level functionality, such as cryptocurrencies.

The internal details of parachains are not a concern of the relay chain; parachains need only ad-
here to the interface we specify. Some of these expectations are natural components of blockchains,
hence the naming. However, other non-blockchain systems may also run as a Polkadot parachain
as long as they satisfy the interface. This is described below: relevant parts are underlined.

These aspects may be abbreviated as, Polkadot is a scalable heterogeneous multi-chain.

2.1 Security model

We assume that parachains are running as external untrusted clients of the relay chain and that
the relay chain only deals with parachains via an interface and does not make assumptions about
their internals. For example, internally they may be permissioned or open; if some internal users
subvert the parachain, from Polkadot’s viewpoint the entire parachain (as a single client entity) is
malicious.

The Polkadot relay chain is designed to deal with a level of malicious behaviour internally, as a
requirement of being an open decentralised network. Specific individual nodes are untrusted, but
an indeterminable subset of nodes lower-bounded in size are trusted, and the protocol works to
ensure that the relay chain externally as a whole is trustable. See section 3.2 for details.

2.2 Nodes and roles

The Polkadot relay chain network consists of nodes and roles. Nodes are the network-level enti-
ties physically executing the Polkadot software, and roles (Section 3.1) are protocol-level entities
performing a particular purpose. Nodes may perform multiple roles.

On the network level, the relay chain is open. Any node may run the software and participate
as any of these types of nodes:

1. Light client - retrieves certain user-relevant data from the network. The availability of light
clients is irrelevant - they don’t perform a service for others.

2. Full node - retrieves all types of data, stores it long-term, and propagates it to others. Must
be highly available.

(a) Sentry node - publicly-reachable full nodes that perform trusted proxying services for a
private full node, run by the same operator.

Sometimes we refer to a full node of a parachain. In the abstract sense for non-blockchain
parachains, this means that they participate in it to a sufficient degree that they can verify
all data passing through it.

Beyond distributing data, relay-chain nodes may perform certain protocol-level roles listed
next. Some of these roles have restrictions and conditions associated with them:

1. Validator - performs the bulk of the security work. Must be a full node of the relay chain.
Interacts with parachain collators, but need not participate in a parachain as a full node.
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2. Nominator - stakeholder who backs and selects validator candidates (Section 4.1). This can
be done from a light client, and they need not have any awareness of parachains.

Parachains may decide their own internal network structure, but are expected to interact with
Polkadot via the following roles:

1. Collator1 - collects and submits parachain data to the relay chain, subject to protocol rules
described below. They are chosen as defined by the parachain, and must be full nodes of it.

2. Fishermen - performs additional security checks on the correct operation of the parachain,
on behalf of the relay chain who supplies a reward. This role is self-assigned and reward-
incentivized, and must be a full node of the parachain.

2.3 Protocol

The Polkadot relay chain protocol, including interaction with parachains, works as follows.

1. For each parachain:

(a) Collators watch the progress of the block-producing and consensus protocols, steps (2)
and (5) respectively below, e.g. by participating in the relay chain as a full node. Based
on what they think is the latest relay chain block that will most likely be finalised, they
build on top of the latest parachain block (or other data) that would be finalised by it.

(b) Collators sign data building on top of said latest parachain block, and submit it possibly
indirectly, to the validators assigned to their parachain (parachain validators for short),
for inclusion in the relay chain. Ideally they submit a unique one, to help performance.

(c) The parachain validators decide which parachain block to support, and presents relevant
data of it as a parachain’s next candidate to be added to the next relay chain block.

2. A block-producing validator collects candidates from all parachains, and puts this collection
along with any recent relay chain extrinsics into a relay chain head block. (Section 4.3.1).
For performance, this does not contain the full data from all parachains, but only metadata
and partial data, including security-related metadata.

In the unfavourable case, this can result in forks, resolved later in step (5). This subprotocol
is designed so that even with forks, participants have an idea of the block most likely to be
finalised, similar to Proof-of-Work protocols.

3. A subprotocol is run to ensure that the full data is indeed available, including and distributing
it to various other relay-chain nodes. (Section 4.4.2).

4. Data submitted from a parachain might include indications that they are sending messages
to another parachain, including metadata to facilitate this. This is now included on the relay
chain head(s), so recipient parachains are aware of which new messages have been sent to
them. They now retrieve the message bodies from the sending parachains. (Section 4.4.3).

5. Validators submit their votes on the block and finalises it, resolving any forks to a single
head. (Section 4.3.2). These votes are added to the relay chain blocks.

The rest of the paper expands on the above - roles next in Section 3, and protocol subcompo-
nents in Section 4.

1Validators are in some sense a collator of the relay chain network, in that they collect extrinsics (e.g. transac-
tions) within the relay chain network. However we typically only refer to them as validators even when performing
these tasks, and the term collator is reserved for parachain collators only.
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3 Preliminaries

In this section we describe in more detail the different entities involving in the running of Polkadot,
as well as our security model of these entities. This forms the design context for understanding
the protocol design described later, including how it works and why it is designed that way.

3.1 Roles

Nodes which run Polkadot network assume different roles and functions that we introduce next.

Validators: A validator is the highest in charge and helps seal new blocks on the Polkadot
network. The validator’s role is contingent upon a sufficiently high bond being deposited, though
we allow other bonded parties to nominate one or more validators to act for them and as such
some portion of the validator’s bond may not necessarily be owned by the validator itself but
rather by these nominators. A validator must run a relay-chain client implementation with high
availability and bandwidth. At each block the node must be ready to accept the role of ratifying
a new block on some parachain, and may be required to double check a few more. This process
involves receiving, validating and republishing candidate blocks. The parachain assignment is
random and changes frequently. Since the validator cannot reasonably be expected to maintain
a fully-synchronised database of all parachains, the task of devising a suggested new parachain
block will be delegated to a third-party, known as a collator. Once all new parachain blocks
have been properly ratified by their appointed validator subgroups, validators must then ratify
the relay-chain block itself. This involves updating the state of the transaction queues (essentially
moving data from a parachain’s output queue to another parachain’s input queue), processing the
transactions of the ratified relay-chain transaction set and ratifying the final block, including the
final parachain changes. A validator provably not fulfilling their role will be slashed i.e. part or
all of their bond will be taken. In some sense, validators are similar to the mining pools of current
PoW blockchains.

Nominators: A nominator is a stake-holding party who contributes to the security bond of a
validator. They have no additional role except to place risk capital and as such to signal that they
trust a particular validator (or set thereof) to act responsibly in their maintenance of the network.
They receive a pro-rata increase or reduction in their deposit according to the bond’s growth to
which they contribute. Together with collators, next, nominators are in some sense similar to the
miners of the present-day PoW networks.

Collators: Transaction collators (collators for short) are parties who assist validators in pro-
ducing valid parachain blocks. They maintain a “full-node” for a particular parachain; meaning
that they retain all necessary information to be able to author new blocks and execute transactions
in much the same way as block producers do on current blockchains. Under normal circumstances,
they will collate and execute transactions to create an unsealed block, and provide it, together
with a proof of validity, to one or more validators presently responsible for proposing a parachain
block.

Fishermen: Unlike the other two active parties, fishermen are not directly related to the block-
authoring process. Rather they are independent “bounty hunters” motivated by a large one-off
reward. Precisely due to the existence of fishermen, we expect events of misbehaviour to seldom
happen, and when they do only due to the bonded party being careless with secret key security,
rather than through malicious intent. The name comes from the expected frequency of reward,
the minimal requirements to take part and the eventual reward size. Fishermen get their reward
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through a timely proof that at least one bonded party acted illegally. This will be especially
valuable for detecting the ratification of invalid parachain blocks.

Fishermen are somewhat similar to “full nodes” in present-day blockchain systems that the
resources needed are relatively small and the commitment of stable uptime and bandwidth is not
necessary. Fishermen differ in so much as they must post a small bond. This bond prevents sybil
attacks from wasting validators’ time and compute resources. While fishermen are part of the
security model of Polkadot, the design would be secure without them. Since there is no incentive
model for fishermen designed yet we need to keep Polkadot secure in their absence. Adding an
incentive model for fishermen is part of our future work.

The structural elements and different roles defined in the Polkadot protocol are shown in
Figure 1, in an example with six parachains, 18 validators, and 5 collators per parachain. Figure 2
shows the relay chain with 5 such relay chain blocks. Note that the number of parachain validators
assigned to a parachain is divided by the number of parachains, however, the number of collators is
individual to parachains. The bridge is a sub-protocol that allows external chains to interoperate
with Polkadot, see A.2 for more information.

Figure 1: This figure shows a relay chain block securing six parachain blocks. Each parachain has
5 collators and 3 validators assigned to it (image credit: Ignasi Albero).

3.2 Adversarial Model of Polkadot

Roles: In general, we assume that honest parties follow the protocol while malicious ones can
follow any arbitrary algorithm. We assume that three quarters of nominators’ stake belong to
honest ones. As a result of this assumption, more than two third of validators who are elected by
nominators are honest. We do not have any limit on number of malicious fishermen since their
malicious behaviours are detectable and punishable.

Parachains: We do not have any security assumption on block production mechanism for
parachains. On the other hand, we assume that a significant amount of collators are honest.
The security of Polkadot does not depend on any precise honest fraction of collators but it requires
existence of some honest collators.
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Figure 2: This figure shows the relay chain with 5 relay chain blocks. For simplicity, in this figure
each relay chain block has parachain blocks from 6 parachains, however, the number of parachain
blocks per relay chain block might vary (image credit: Ignasi Albero).

Parts of the protocol assume that every parachain has at least one reachable honest member;
where this is not feasible or not realistic, we do not follow through on this assumption and instead
have additional checks against a totally-malicious membership.

Keys: We assume that malicious parties generate their keys with an arbitrary algorithm while
honest ones always generate their keys securely.

Network and Communication: All validators have their own local clock and their clocks do
not rely on any central clock. We assume that validators and collators are in a partially synchronous
network. It means that a message sent by a validator or a collator arrives at all parties in the
network at most ∆ units of time later where ∆ is an unknown parameter. So, we assume an
eventual delivery of a message in Polkadot. We also assume that collators and fishermen can
connect to the relay chain network to submit their reports.

4 Components and sub-protocols

Next, we summarise Polkadot functionality shortly for an overall picture and then continue to
describe the individual sub-protocols and components.

Polkadot’s validators are selected by the NPoS scheme (Section 4.1). Nominated Proof-of-Stake
or NPoS is our adaptation of PoS where an unlimited amount of token holders can participate as
nominators, backing with their stake a large but limited set of validators. This paradigm si-
multaneously achieves high levels of security and scalability, as well as an unprecedented level of
decentralisation by ensuring a property known in voting theory as proportional justified repre-
sentation [29, 7]. Nominators, who are economically vested in the security of the system, act as
watchdogs over the validators’ performance. Based on the nominators’ expressed preferences over
candidates, every era the system selects a set of validators with stake backings that are as high

8



and as evenly distributed as possible. Nominators are also economically disincentivized from con-
centrating their votes on too few validators, which helps keep the system decentralised over time.
Furthermore, the election mechanism is highly adaptive to sudden changes, such as some validators
being kicked out after a slashing, as it automatically redistributes the nominators’ backings across
the new set of validators, even when the votes themselves do not change.

The security goal of Polkadot is to be Byzantine fault tolerant when the participants are rational
(see Section 4.5 for more details on incentives and economics). We assume that with the properties
NPoS gives, the stakeholders elect a set of validators that has a more than 2/3 fraction of honest
members.

The elected validators are responsible for running the relay chain (Section 4.2). While each
parachain’s collators are responsible for generating parachain blocks (Section 4.4.1), the validators
are divided into rotating subsets, one for each parachain, and need to attest to the validity of
parachain blocks before the headers of those blocks are included in the relay chain.

To achieve good scalability the number of validators in each of these subsets is small. Nonethe-
less, thanks to the NPoS guarantee that every validator is well backed, the availability and validity
scheme (Section 4.4.2) can ensure that any attack on the validity of Polkadot is very expensive in
expectation. In fact, the entirety of Polkadot’s economic security backs every parachain. This is in
stark contrast to having, say, 100 independent blockchains with an equivalent sum total of stake,
where on average each blockchain is backed by 1/100-th of the stake, and thus only benefits from
1/100-th the level of security. We guarantee availability by using erasure coding of each parachain
block to make the validators collectively and robustly responsible for the availability of these blocks
without breaking scalability.

For this to work, we need to be able to revert the chain until we know with good probability
that all parachains are correct. This means that we need to be able to reorganise the chain and
for that the chain needs to be capable of forking. Thus we use a block production mechanism,
BABE (Section 4.3.1), that while run by validators, has similar properties to proof-of-work chains.
Specifically, we can use the longest chain rule as part of our consensus, and the next block producer
is not known in advance. On its own BABE would require us to wait a long time from the moment
a block is produced to the moment it is finalised, i.e. when we can be confident that with high
probability the block will never be reverted. Slow finality is required in some circumstances to
deal with challenges to availability. Most of the time, however, we would prefer to finalise blocks
much faster. For this purpose, validators finalise blocks using GRANDPA (Section 4.3), a finality
gadget that is cleanly separated from block production. This separation makes it very adaptive
and here allows us to delay finalising blocks until challenges are dealt with, without slowing down
block production. GRANDPA gets Byzantine agreement on finalised blocks and will allow us to
prove to an entity that keeps track of the validator set which blocks are finalised, which will be
important for bridges (Appendix A.2).

If an account on one parachain sends tokens to another parachain, then XCMP (Section 4.4.3)
ensures that this message is delivered correctly. It is sent at a speed which is not dependent on how
long it takes to finalise blocks, which means that it needs to deal with the possibility of Polkadot
forking. Thus we optimistically execute based on the assumption that the parachain blocks are
correct. If one is not, then we need to revert and for that, it is important that parachains only
receive messages that were sent by blocks recorded on this new relay chain fork, and not the
reverted fork. Thus we need that the parachain and XCMP logic ensure that a fork of the relay
chain defines a consistent history of Polkadot and thus messages only arrive when they have been
sent previously in the history defined by this fork.

If the token transfer is carried out in conjunction with SPREE modules (Appendix A.1) then
that ensures that so long as the parachains execute correctly, tokens can only be created and
destroyed in an agreed upon way. In turn the correct execution of the chains code is guaranteed
by the availability and validity scheme. SPREE ensures that shared code needed for the token
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transfer logic is correct as well. Even though chains can change their own code, they will not
be able to change the code of SPREE modules. Instead the code of SPREE modules is stored
centrally and the execution of that code and its storage will be sandboxed from the rest of the
state transition. This ensures that this token transfer message is interpreted correctly and obtains
the guarantees about tokens we want.

On the side of economics (Section 4.5), we aim to have a controlled near-constant yearly inflation
rate. As stated before, it is important for the security of the system that all validators have large
amounts of stake backing them. Our adaptive reward schedule for validators and the nominators
backing them ensures that overall participation in NPoS stays high, and that the validators’ stake
backings are evenly distributed. On a more granular level, we pay or slash validators on a per-
executed-action basis, and extend the same rewards or punishment onto nominators proportionally,
to ensure that the rational strategy is compatible with honest behaviour.

The relay chain’s logic itself will need updating occasionally. The governance mechanism (Sec-
tion 4.6) allows Polkadot token holders to participate in the decision-making process rather than
having any changes to the system be imposed by a central authority – or in the case of some de-
centralised systems, by a team of developers. Too often, a contentious code change has led existing
blockchains to an impasse or a permanent fork. We want a mechanism that balances being able
to make uncontentious changes quickly when needed, while also providing the tools to deal with
contentious proposals in a decisive and fair manner. The ultimate arbiters of Polkadot are the Dot
token holders and so all important decisions, such as code changes, are made by state-weighted ref-
erenda. There is an elected council, responsible for making smaller decisions and partially setting
the priority for referenda, in such a way that they cannot block a change that a majority wants.

Lastly we review some of the primitives that Polkadot sub-protocols are using such as the
cryptographic keys and networking scheme in Section 4.7 and Section 4.8, respectively. Polkadot’s
networking needs to extend the peer-to-peer gossip network that is standard in single chain per-
missionless blockchains to a multi-chain system, where any nodes network traffic should not scale
with the total data of the system.

4.1 Nominated proof-of-stake and validator election

Polkadot will have a native token called DOT. It will use Nominated Proof-of-Stake (NPoS), our
very own version of proof-of-stake (PoS). Consensus protocols with deterministic finality, such as
the one in Polkadot, require a set of registered validators of bounded size. Polkadot will maintain a
number nval of validators, in the order of hundreds or thousands. This number will be ultimately
decided by governance, and is intended to grow linearly with the number of parachains; yet it will
be independent of the number of users in the network, thus ensuring scalability. However, NPoS
allows for an unlimited number of DOT holders to participate as nominators, who help maintain
high levels of security by putting more value at stake. As such, NPoS is not only much more
efficient than proof-of-work (PoW), but also considerably more secure than conventional forms
of PoS such as DPoS and BPoS. Furthermore, we introduce new guarantees on decentralisation
hitherto unmatched by any other PoS-based blockchain.

A new set of validators is elected at the beginning of every era – a period during roughly one
day (see Table 1 in the Appendix) – to serve for that era, according to the nominators’ preferences.
More precisely, any DOT holder may choose to become a validator candidate or a nominator. Each
candidate indicates the amount of stake he is willing to stake and his desired commission fee for
operational costs. In turn, each nominator locks some stake and publishes a list with any number
of candidates that she trusts. Then a public protocol, discussed below, takes these lists as input
and elects the candidates with the most backing to serve as validators for the next era.

Nominators share the rewards, or eventual slashings, with the validators they nominated on
a per-staked-dot basis; see Section 4.5 for more details. Nominators are thus economically incen-
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tivised to act as watchdogs for the system, and they will base their preferences on parameters
such as validators’ staking levels, commission fees, past performance, and security practices. Our
scheme allows for the system to elect validators with massive amounts of aggregate stake - much
higher than any single party’s DOT holdings - and thus helps turn the validator election process
into a meritocracy rather than a plutocracy. In fact, at any given moment we expect there to be a
considerable fraction of all the DOT supply be staked in NPoS. This makes it very difficult for an
adversarial entity to get validators elected since it either needs a large amount of DOTs or high
enough reputation to get the required nominators’ backing, as well as being very costly to attack
because it is liable to lose all of its stake and its earned reputation.

Polkadot elects validators via a decentralised protocol with carefully selected, simple and pub-
licly known rules, taking the nominators’ lists of trusted candidates as input. Formally, the protocol
solves a multi-winner election problem based on approval ballots, where nominators have voting
power proportional to their stake, and where the goals are decentralisation and security.

Decentralisation: Our decentralisation objective translates into the classical notion of propor-
tional representation in voting theory. That is, a committee should represent each minority in the
electorate proportional to their aggregate vote strength (in this case, their stake), with no minority
being under-represented. We highlight here that nominators – and their lists of trusted candidates
– constitute a valuable gauge for the preferences of the general community, and that diverse pref-
erences and factions will naturally arise not only due to economical and security-related reasons,
but also political, geographical, etc. Such diversity of points of view is expected and welcome in a
decentralised community, and it is important to engage all minorities in decision-making processes
to ensure user satisfaction.

The goal of designing an electoral system that achieves proportional representation has been
present in the literature for a very long time. Of special note is the work of Scandinavian math-
ematicians Edvard Phragmén and Thorvald Thiele in the late nineteenth century. Very recently,
there has been considerable effort in the research community to formalise the notion of proportional
representation, and revisit the methods by Phragmén and Thiele and optimise them algorithmi-
cally. Our validator selection protocol is an adaptation of Phragmén’s methods and is guaranteed
to observe the technical property of proportional justified representation (PJR) [29, 7]. Formally,
this means that if each nominator n ∈ N has stake staken and backs a subset Cn ⊆ C of can-
didates,1 the protocol will elect a set V ⊆ C of nval validators such that, if there is a minority
N ′ ⊆ N of nominators such that

| ∩n∈N ′ Cn| ≥ t and
1

t

∑
n∈N ′

staken ≥
1

nval

∑
n∈N

staken,

for some 1 ≤ t ≤ nval, then |V ∩ (∪n∈N ′Cn)| ≥ t. In words, if a minority N ′ has at least t
commonly trusted candidates, to whom it could ”afford” to provide with an average support of
at least 1

nval

∑
n∈N staken (which in turn is an upper bound on the average validator support in

the elected set V), then this minority has a justified claim to be represented in V by at least t
candidates, though not necessarily commonly trusted.

Security: If a nominator gets two or more of its trusted candidates elected as validators, the
protocol must also establish how to split her stake and assign these fractions to them. In turn,
these assignations define the total stake support that each validator receives. Our objective is to
make these validators’ supports as high and as balanced as possible. In particular, we focus on

1For ease of presentation, we consider here a model where candidates have no stake of their own. The general
case can be reduced to this model by representing each candidate’s stake as an additional nominator that exclusively
nominates that candidate.
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maximising the minimum validator support. Intuitively, the minimum support corresponds to a
lower bound on the cost for an adversary to gain control over one validator, as well as a lower
bound on the slashable amount for a misconduct.

Formally, if each nominator n ∈ N has staken and backs a candidate subset Cn ⊆ C, the
protocol must not only elect a set V ⊆ C of nval validators with the PJR property, but also define
a distribution of each nominator’s stake among the elected validators that she backs, i.e. a function
f : N × V → R≥0 so that∑

v∈V∩Cn

f(n, v) = staken for each nominator n ∈ N ,

and the objective is then

max
(V,f)

min
v∈V

supportf (v), where supportf (v) :=
∑

n∈N : v∈Cn

f(n, v).

The problem defined by this objective is called maximin support in the literature [30], and is
known to be NP-hard. We have developed for it several efficient algorithms which offer theoretical
guarantees (constant-factor approximations), and also scale well and have been successfully tested
on our testnet. For more information, see our paper on validator election in NPoS [12].

4.2 Relay Chain State Machine

Formally, Polkadot is a replicated sharded state machine where shards are the parachains and the
Polkadot relay chain is part of the protocol ensuring global consensus among all the parachains.
Therefore, the Polkadot relay chain protocol, can itself be considered as a replicated state machine
on its own. In this sense, this section describes the relay chain protocol by specifying the state
machine governing the relay chain. To that end, we describe the relay chain state and the detail
of state transition governed by transactions grouped in the relay chain blocks.

State: The state is represented through the use of an associative array data structure composed
by a collection of (key, value) pairs where each key is unique. There is no assumption on the
format of the key or the value stored under it besides the fact that they both the key and the value
need to be finite byte arrays.

The (key, value) pairs which comprise the relay chain state are arranged in a Merkle radix-16
tree. The root of this tree canonically identifies the current state of the relay chain. The Merkle
tree also provides an efficient mean to produce the proof of inclusion for an individual pair in the
state.

To keep the state size in control, the relay chain state is solely used to facilitate the relay chain
operations such as staking and identifying validators. The Merkle Radix tree is not supposed to
store any information regarding the internal operation of the parachains.

State transition: Like any transaction-based transition system, Polkadot state changes via an
executing ordered set of instructions, known as extrinsics. These extrinsics include transactions
submitted by the public. They cover any data provided from “outside” of the machine’s state which
can affect state transition. Polkadot relay chain is divided into two major components, namely the
“Runtime” and the “Runtime environment”. The execution logic of the state-transition function
is mainly encapsulated in the Runtime while all other generic operations, commonly shared among
modern blockchain-based replicated state machines, are embedded into the Runtime environment.
In particular, the latter is in charge of network communication, block production and consensus
engines.
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Runtime functions are compiled into a WebAssembly module and are stored as part of the
state. The Runtime environment communicates the extrinsics to the Runtime and interacts with
it to execute the state transition. In this way, the state transition logic itself can be upgraded as
a part of the state transition.

Extrinsics: Extrinsics are the input data supplied to the Polkadot relay-chain state machine to
transition to new states. Extrinsics need to be stored into blocks of the relay chain in order to
achieve consensus among the state machine replica. Extrinsics are divided into two broad categories
namely: transactions and ”inherents” which represent data that is inherent to a relay chain block.
The timestamp t of a block is an example of inherent extrinsics which must be included in each
Polkadot relay chain block.

Transactions are signed and are gossiped around on the network between nodes. In contrast,
inherents are not signed and are not gossiped individually but rather only when they are included
in a block. The inherents in a block are assumed to be valid if a supermajority of validators
assumes so. Transactions on the relay chain are mainly concerned with the operation of the relay
chain and Polkadot protocol as a whole, such as set code, transfer, bond, validate, nominate,
vote.

Relay chain block producers listen to all transaction network messages. Upon receiving a
transaction message, the transaction(s) are validated by the Runtime. The valid transactions then
are arranged in a queue based on their priority and dependency and are considered for inclusion
in future blocks accordingly.

Relay chain block format: A typical relay chain block consists of a header and a body. The
body simply consists of a list of extrinsics.

The header contains the hash of parent block, block number, the root of the state tree, the root
of the Merkle tree resulting from arranging the extrinsics in such a tree and the digest. The digest
stores auxiliary information from the consensus engines which are required to validate the block
and its origin as well as information helping light clients to validate the block without having
access to the state storage.

Relay chain block building: In this section, we present a summary of various steps of relay
chain operation which are carried out by its validators. A priori, each validator privately knows
the times during which it is supposed to produce a block (see 4.3.1).

Meanwhile, transactions ranging from the validated parachain block hash, transfer, staking,
nomination or slashing for protocol violation are submitted to the relay chain validators. The
validators examine the validity of the transactions and store them in their transaction pool. Once
the time slot during which the validator is expected to produce the block has arrived, the validator
estimates the block which most likely represents the state which is going to be finalised by the
finality protocol and set it as the current state of the relay chain. Then the validator selects valid
transactions with from the transaction pool, executes them and updates the state accordingly. The
validator executes and collates as many transactions as the block capacity allows and attaches a
cryptographic digest of the final stage of the relay chain after executing the selected transactions.
Finally the validator signs and publishes the built block.

Upon receiving the new block, other validators examine the producer’s adherence to the protocol
as well as the validity of included transactions and store the block in the block tree which represents
all possible candidates for a final state transition of the relay chain.

Simultaneously, the set of validators votes on various branches of the block tree (see 4.3.2) and
prunes branches which conflict with the version agreed upon by the supermajority of the validators.
In that way, they eventually agree on a canonical state of the relay chain.
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4.3 Consensus

In this section, we explain the hybrid consensus protocol of Polkadot which consists of BABE: a
block production mechanism of the relay chain that provides probabilistic finality and GRANDPA
which provides provable, deterministic finality and works independently from BABE. Informally
probabilistic finality implies that after certain time passes, a block in the relay chain will be finalised
with very high probability (close to 1) and deterministic finality implies a finalised block stays final
forever. Furthermore provable finality means that we can prove to parties not actively involved in
the consensus that a block is final.

We need provable finality to make bridges to chains outside Polkadot easier; another blockchain,
not part of Polkadot’s consensus could then be convinced of when it is safe to act on data in a relay
chain or parachain block without any danger of it being reverted. The best way of getting that
is to have Byzantine agreement among the validators on the state of Polkadot and its parachains.
However the availability and validity scheme 4.4.2 may also require us to revert blocks, which
would mean that getting Byzantine agreement on every block, as in Tendermint [8] or Algorand
[23], would not be suitable. However, this should happen rarely as a lot of stake will be slashed when
we do this. As a result, we want a scheme that generates blocks and optimistically executes them,
but it may take some time to finalise them. Thus GRANDPA voters need to wait for assurances
of availability and validity of a block before voting to finalise that block. Even the speed at which
we finalise blocks may vary - if we do not receive reports of invalidity and unavailability then we
can finalise fast, but if we do then we may need to delay finality while we execute more involved
checks.

Because of the way Polkadot’s messaging protocol (XCMP 4.4.3) works, message passing speed
is constrained by block time, but not by finality time. Thus if we delay finality but in the end do
not revert, then message passing is still fast.

As a result of these requirements, we have chosen to separate the mechanisms for block produc-
tion and finalising blocks as much as possible. In the next two sections, we describe the protocols
BABE and GRANDPA that do these respectively.

4.3.1 Blind Assignment for Blockchain Extension (BABE)

In Polkadot, we produce relay chain blocks using our Blind Assignment for Blockchain Extension
protocol (BABE). BABE assigns validators randomly to block production slots using the random-
ness generated with blocks. A block production slot is a division of time when a block producer may
produce a block. Note, that time is not universally agreed on, which we will address later. These
assignments are completely private until the assigned validators produce their blocks. Therefore,
we use “Blind Assignment” in the protocol name. BABE is similar to Ouroboros Praos [15] with
some significant differences in the chain selection rule and timing assumptions.

In BABE, we may have slots without any assignment which we call empty slot. In order to fill
the empty slots, we have a secondary block production mechanism based on Aura [31] that assigns
validators to slots publicly. We note that these blocks do not contribute to the security of BABE
since the best chain selection and the random number generation algorithms work as if Aura blocks
do not exist. Therefore, next we only describe BABE together with its security properties.

BABE [2] consists of another time division called epochs (e1, e2, ...), where each epoch consists
of a number of sequential block production slots (ei = {sli1, sli2, . . . , slit}) up to the bound R. Each
validator knows in which slots it is supposed to produce a block at the beginning of every epoch.
When the time for its slot comes, the validator produces the block by proving that it is assigned
to this slot.

The blind assignment is based on the cryptographic primitive called verifiable random function
(VRF) [24] (see Section 4.7.2). A validator in an epoch em does the following to learn if it is
eligible to produce a block in slot slmi :
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1. it obtains the randomness in the genesis block if m = 1 or m = 2. Otherwise, it obtains the
randomness generated two epochs before (em−2).

2. it runs the VRF with its secret key and the input: randomness and the slot number slmi .

If the output of VRF is less than the threshold τ , then the validator is the slot leader meaning
that it is eligible to produce a block for this slot. We select τ with respect to security requirements
of BABE [2] e.g., bigger τ makes less probable to select only honest validators for a slot than
smaller τ . When a validator produces a block, it adds the output of the VRF and its proof to the
block which shows that its VRF output is less than τ in order to convince other validators that
it has a right to produce a block in the corresponding slot. The validators always generate their
blocks on top of the best chain. The best chain selection rule in BABE says that ignore the Aura
blocks and select the longest chain that includes the last finalised GRANDPA block. See Section
4.3.2 for the details how blocks are finalised in GRANDPA.

The randomness of an epoch em where m > 2 is generated by using the BABE blocks of the
best chain that belongs to that epoch: let ρ be the concatenation of all VRF values in BABE
blocks that belongs to em. Then, compute the randomness for epoch em as rm = H(m||ρ) where
H is a hash function. Validators run periodically the relative time algorithm described below to
learn at what time a slot starts according to their local clocks.

Relative Time Protocol: The elected validators for a slot need to know when the right time
is to produce a block for the consistency and the security of BABE. For this, validators uses their
local computer clock which is not adjusted by any centralized clock adjustment protocols such
as the Network Time Protocol [25]. Instead, they keep their clock synchronised with the other
validators with the relative time protocol. The formal security model of local clock synchronisation
in blockchains without NTP and further details about the relative time protocol can be found in
[5].

In BABE, we assume that after the genesis block is released, elected validators of the first epoch
store the arrival time of the genesis block with respect to their local clock. Then, they mark the
beginning time of the first slot and increment the slot number every T seconds. After this point,
they periodically run the relative algorithm not to lose the synchronisation with others because of
their local clock drifts. In addition to this, a validator who joins after the genesis block runs the
relative time algorithm to be synchronised with the other validators.

In every sync-epochs (different than epochs in BABE), validators update their clock according
to the result of the relative time protocol and use the new clock until the next sync-epoch. The
first sync-epoch ε1 starts just after the genesis block is released. The other sync-epochs εi start
when the slot number of the last (probabilistically) finalised block is s̄lε which is the smallest slot
number such that s̄lε − s̄lε−1 ≥ scd where s̄lε−1 is the slot number of the last (probabilistically)
finalized block in sync-epoch ε− 1. Here, scd is the parameter of the chain density (CD) property
which will be defined according the chain growth. In more detail, each validator stores the arrival
time tj of blocks together with the slot number sl′j in the block during a sync-epoch. At the end of
a sync-epoch, the validator retrieves the arrival time of probabilistically finalized blocks generated
during the sync-epoch and computes some candidate start times of the first slot sl of the next
sync-epoch i.e, given that aj = T (sl − sl′j), CT = {tj + aj}. The times in CT are considered as
candidates. In order to choose one candidate, the validator then sorts the list of candidates CT
and outputs the median of the sorted list as a start time of the sl. An example execution of the
relative time protocol in the first sync-epoch is in Figure 3.

Security Overview of BABE: Garay et al. [17] define the properties below in order to obtain
a secure blockchain protocol. Informally, we can describe these properties as follows:
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Figure 3: An example execution of the relative time protocol in the first epoch where scd = 9
(image credit: Ignasi Albero).

• Common Prefix (CP): It ensures that the blocks which are k-blocks before the last block of an
honest validator’s blockchain cannot be changed. We call all unchangeable blocks finalized
blocks. BABE satisfies CP property thanks to the honest super majority since malicious
validators are selected for a slot probabilistically much less than the honest validators. It
means that malicious validators do not have enough to construct another chain which does
not include one of the finalised blocks.

• Chain Quality (CQ): It ensures a minimum honest block contribution to any best chain
owned by an honest party in every certain number of slots. We guarantee even in the worst
case where a network delay is maximum that there will be at least one honest block in the
best chain during an epoch so that the randomness cannot be biased.

• Chain Growth (CG): It guarantees a minimum growth between slots. Thanks to super
majority of honest validators, malicious validators cannot prevent the growth of the best
chain.

• Chain Density (CD): It ensures that in a sufficiently long portion of the best chain more
than half of the blocks produced by honest validators. CQ and CG properties imply this
property [15].

Further details about BABE and its security analysis can be found in [2].

4.3.2 GRANDPA

As mentioned above, we want a finalisation mechanism that is flexible and separated from block
production, which is achieved by GRANDPA. The only modification to BABE required for it to
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work with GRANDPA is to change the fork-choice rule: instead of building on the longest chain,
a validator producing a block should build on the longest chain including all blocks that it sees as
finalised. GRANDPA can work with many different block production mechanisms and it will be
possible to switch out BABE with another.

Intuitively GRANDPA is a Byzantine agreement protocol that works to agree on a chain,
out of many possible forks, by following some simpler fork choice rule, which together with the
block production mechanism would give probabilistic finality if GRANDPA itself stopped finalising
blocks. We want to be able to agree on many blocks at once, in contrast to single-block Byzantine
agreement protocols.

We assume that we can ask the fork choice rule for the best block given a particular block. The
basic idea is that we want to reach Byzantine agreement on the prefix of the chain that everyone
agrees on. To make this more robust, we try to agree on the prefix of the chain that 2/3 of
validators agree on.

Figure 4: GRANDPA votes and how they are aggregated (image credit: Ignasi Albero).

We make use of a Greedy Heaviest Observed Subtree (GHOST) on votes rule, much like Casper
TFG [27] or some of the fork choice rules suggested for use with Casper FFG [11]. We use this rule
inside what is structured like a more traditional Byzantine agreement protocol, to process votes.
The 2/3 GHOST rule (pictured in Figure 4) works as follows. We have a set of votes, given by
block hashes in which honest validators should not have more than one vote, and we take the head
of the chain formed inductively as follows. We start with the genesis block and then include the
child of that block that 2/3 of the voters voted for descendants of, as long as there is exactly one
such child. The head of this chain is g(V ) where V is the set of votes. For example, in Figure 4,
the left hand side gives the votes for individual blocks and the right hand side the total votes for
each block and all of its descendants. The genesis block is at the top and we take its child with
100% > 2/3 of the votes. The children of that block have 60% and 40% of the votes respectively
and since these are below 2/3 we stop and return the second block.

There are two voting phases in a round of GRANDPA: prevote and precommit. Firstly valida-
tors prevote on a best chain. Then they apply the 2/3-GHOST rule, g, to the set of prevotes V
they see and precommit to g(V ). Then similarly they take the set of precommits C they see and
finalise g(C).

To ensure safety, we ensure that all votes are descendants of any block that could possibly have
been finalised in the last round. Nodes maintain an estimate of the last block that could have been
finalised in a round, which is calculated from the prevotes and precommits. Before starting a new
round, a node waits until it sees enough precommits for it to be sure that no block on a different
chain or later on the same chain as this round’s estimate can be finalised. Then it ensures that it
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only prevotes and precommits in the next round to blocks that are descendants of the last round’s
estimate which it keeps updating by listening to precommits from the last round. This ensures
safety.

To ensure liveness, we select one validator in rotation to be the primary. They start the round
by broadcasting their estimate for the last round. Then when validators prevote, if the primary’s
block passes two checks, that it is at least the validator’s estimate and that it got > 2/3 prevotes for
it and its descendants in the last round, then it prevotes for the best chain including the primary’s
block. The idea here is that if the primary’s block has not been finalised, then progress is made by
finalising the block. If the primary’s block has not been finalised and all validators agree on the
best chain including the last finalised block, which we should do eventually because BABE gives
probabilistic finality on its own, then we now make progress by finalising that chain.

4.4 Parachains

In this section we review parachain’s block production, their availability and validity scheme, and
their messaging scheme.

4.4.1 Block Production

We will discuss block production for a general parachain. At the end of the section, we will discuss
alternatives.

In outline, a collator produces a parachain block, sends it to the parachain validators, who sign
its header as valid, and the header with enough signatures is placed on the relay chain. At this
point, the parachain block is as canonical as the relay chain block its header appeared in. If this
relay chain block is in the best chain according to BABE (see Section 4.3.1), so is the parachain
block and when this relay chain block is finalised, so is the parachain block.

Because the parachain validators switch parachains frequently, they are stateless clients of
the parachain. Thus we distinguish between the parachain block B, which is normally enough
for full nodes of the parachain such as collators to update the parachain state, and the Proof of
Validity(PoV) block BPoV , which a validator who does not have the parachain state can verify.

Any validator should be able to verify BPoV given the relay chain state using the parachain’s
state transition validation function (STVF), the Web assembly code for which is stored on the
relay chain in a similar way to the relay chain’s runtime. The STVF takes as an input the PoV
block, the header of the last parachain block from this parachain and a small amount of data from
the relay chain state.

The STVF outputs the validity of the block, the header of this block and its outgoing mes-
sages. The PoV block contains any outgoing messages and the parachain block B. The parachain
validators should gossip the parachain block to the parachain network, as a back up to the collator
itself doing so.

The PoV block will be the parachain block, its outgoing messages, its header and light client
proof witnesses. These witnesses are Merkle proofs that give all elements of the input and output
state that are used or modified by the state transition from the input and output state roots.

To aid in censorship resistance, a parachain may want to use proof of work or proof of stake to
select collators, where the selection strategy is up to the given parachain. This can be implemented
in the STVF and need not be a part of the Polkadot protocol. So for proof of work, the STVF would
check that the hash of the block is sufficiently small. However, for speed, it would be useful to
ensure that most relay chain blocks can include a parachain block. For PoW, this would necessitate
it being probable that multiple collators are allowed to produce a block. As such we will still need
a tie-breaker for the parachain validators to coordinate on validating the same parachain block
first. This may be the golden ticket scheme of [33]. For proof of stake this may not be necessary.
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Optionally, for some parachains, the parachain block B may not be enough for collators to
update their state. This may happen for chains that use succinct zero-knowledge proofs to update
their state, or even for permissioned chains that just give signatures from authorities for validity.
Such chains may have another notion of parachain block which is actually needed to update their
state and must have their own scheme to guarantee the availability of this data.

4.4.2 Validity and Availability

Once a parachain block is created it is important that the parachain blob consisting of the PoV
block and set of outgoing messages from the parachain is available for a while. The naive solution
for this would be broadcasting/gossip the parachain blobs to all relay chain nodes, which is not
a feasible option because there are many parachains and the PoV blocks may be big. We want
to find an efficient solution to ensure PoV blocks from any recently created parachain blocks are
available.

For a single chain, such as Bitcoin, as long as 51% of hash power is honest, not making block data
available ensures that no honest miner builds on it so it will not be in the final chain. However,
parachain consensus in Polkadot is determined by relay chain consensus. A parachain block is
canonical when its header is in the relay chain. We have no guarantees that anyone other than the
collator and parachain validators have seen the PoV block. If these collude then the rest of the
parachain network need not have the parachain block and then most collators cannot build a new
block and this block’s invalidity may not be discovered. We would like the consensus participants,
here the validators, to collectively guarantee the availability rather than relying on a few nodes.

To this end we designed an availability scheme that uses erasure coding (see e.g. [4]) to
distribute the PoV block to all validators. When any misbehaviour, particularly in relation to
invalidity, is detected, the blob can be reconstructed from the distributed erasure coded pieces.

If a block is available then full nodes of the parachain, and any light client that has the PoV
block, can check its validity. We have three-level of validity checks in Polkadot. The first validity
check of a PoV block is executed by the corresponding parachain validators. If they verify the
PoV block then they sign and distribute the erasure codes of the blob, including the PoV block, to
each validator. We rely on nodes acting as fishermen to report the invalidity of a blob as a second
level of validity checking. They would need to back any claim with their own stake in DOTs. We
would assume that most collators will be fishermen, as they have a stake in continued validity of
the chain and are already running full nodes, so all they need is stake in DOTs. The third level of
validity checking is executed by a few randomly and privately assigned validators. We determine
the number of validators in the third level of validity checking considering the amount of invalidity
reports given by fishermen and unavailability reports given by collators. If an invalid parachain
block is detected, the validators who signed for its validity are slashed. We wait for enough of
these randomly assigned checkers to check the block before voting on it in GRANDPA. We also
want to ensure that the block is available before selecting the randomly assigned validators. This
means that the parachain validators have to commit running a high risk of being slashed for a small
probability of getting an invalid block finalised. This means that the expected cost of getting an
invalid block into Polkadot is higher than the amount of stake backing a single parachain.

The security of our availability and validity scheme is based on the security of the GRANDPA
finality gadget (see Section 4.3.2) and the quality of randomness generated in each BABE epoch
(see Section 4.3.1). Please see [1] for more details about the availability and validity scheme.

4.4.3 Cross-Chain Messaging Passing (XCMP)

XCMP is the protocol that parachains use to send messages to each other. It aims to guarantee
four things: first that messages arrive quickly; second that messages from one parachain arrive to
another in order; third that arriving messages were indeed sent in the finalised history of the sending
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chain; and fourth that recipients will receive messages fairly across senders, helping guarantee that
senders never wait indefinitely for their messages to be seen.

There are two parts to XCMP. (1) Metadata about outgoing messages for a parachain block
are included on the relay chain and later this metadata is used to authenticate messages by the
receiving parachain. (2) The message bodies corresponding to this metadata need to be actually
distributed from the senders to the recipients, together with a proof that the message body is actu-
ally associated with the relevant metadata. The details of distribution are covered as a networking
protocol in Cross-chain messaging; the remainder is covered below.

The way relay chain blocks include headers of parachain blocks gives a synchronous notion
of time for parachain blocks, just by relay chain block numbers. Additionally it allows us to
authenticate messages as being sent in the history given by the relay chain i.e. it is impossible
that one parachain sends a message, then reorgs 2 so that that message was not sent, but has
been received. This holds even though the system may not have reached finality over whether the
message was sent, because any relay chain provides a consistent history.

Because we require parachains to act on every message eventually, non-delivery of a single
message can potentially stop a parachain from being able to build blocks. Consequently we need
enough redundancy in our message delivery system. Any validators who validate the PoV block
should keep any outgoing messages from that block available for a day or so and all full nodes of
the sending parachain also store the outgoing messages until they know they have been acted on.

To achieve consistency, when a source parachain S sends messages in a parachain block B to a
destination parachain D, then we will need to authenticate these using the relay chain state, which
is updated based on the parachain header PH corresponding to the parachain block B that was
included in the relay chain. We need to limit the amount of data in headers like PH, in the relay
chain state and also to limit what the relay chain needs to do for authentication when processing
such parachain headers.

To this end, the parachain header PH contains a message root M of outgoing messages, as
well as a bitfield indicating which other parachains were sent messages in this block. The message
root M is the root of a Merkle tree of the head hash Hp of a hash chain for each parachain p that
this block sends messages to. The hash chain with head HD has the hash of all messages sent to
S from D, not just in block B but ever sent from S to D in any block up to block B. This allows
many messages from S to D to be verified at once from M . However the messages themselves are
passed, they should also be sent with the Merkle proof that allows nodes of the receiving parachain
to authenticate that they were sent by a B whose header PH was in a particular relay chain block.

Parachains receive incoming messages in order. Internally parachains may defer or reorder
acting on messages according to their own logic (possibly constrained by SPREE, see A.1). However
they must receive messages in the order determined by the consistent history given by the relay
chain. A parachain D always receives messages sent by parachain blocks whose header was in
earlier relay chain blocks first. When several such source parachains have a header in the relay
chain block, the messages from these parachains are received in some predetermined order of
parachains, either sequentially in order of increasing parachain id, or some shuffled version of this.

A parachain D receives all messages sent by one parachain S in one parachain block or none
of them. A parachain header PH ′ of D contains a watermark. This watermark consists of a block
number of a relay chain block R and a parachain id of a source parachain S. This indicates that D
has recieved all messages sent by all chains before relay chain block R, and has acted on messages
sent in block R from parachains up to and including S in the ordering.

The watermark must advance by at least one sending parachain in each of D’s parachain blocks,
which means that the watermark’s relay chain block number advances or it stays the same and
we only advance the parachain. To produce a parachain block on parachain D which builds on a
particular relay chain block R, a collator would need to look at which parachain headers were built

2reorganisation of the chain
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between the relay chain block that the last parachain block of this chain built on. In addition,
it needs the corresponding message data for each of those that indicated that they sent messages
to D. Thus it can construct a PoV block so that the STVF can validate that all such messages
were acted on. Since a parachain must accept all messages that are sent to it, we implement a
method for parachains to make it illegal for another parachain to send it any messages that can be
used in the case of spam occurring. When the parachain header of a parachain block that sends
a message is included in a relay chain block, then any nodes connected to both the source and
destination parachain networks should forward messages, together with their proofs, from sender
to receiver. The relay chain should at least act as a back up: the receiving parachain validators
of D are connected to D’s parachain network and if they do not receive messages on it, then they
can ask for them from the parachain validators of the sending chain S at the time the message was
sent.

4.5 Economics and Incentive Layer

Polkadot will have a native token called DOT. Its various functions are described in this section.

4.5.1 Staking rewards and inflation

We start with a description of staking rewards, i.e. payments to stakers – validators and nominators
– coming from the minting of new DOTs. Unlike some other blockchain protocols, the amount
of tokens in Polkadot will not be bounded by an absolute constant, but there will rather be a
controlled yearly inflation rate. Indeed, recent research [13] suggests that in a proof-of-stake based
protocol the staking rewards must remain competitive, in order to maintain high staking rates and
high security levels, so deflationary policies are advised against.

In our design, staking rewards are the only mechanism that mints DOTs. Thus, it is convenient
to introduce our inflation model in this section as well.

Recall from the description of the NPoS protocol (Section 4.1) that both validators and nomi-
nators stake DOTs. They get paid roughly proportional to their stake, but can be slashed up to
100% in case of a misconduct. Even though they are actively engaged for only one era3 at a time,
they can continue to be engaged for an unlimited number of eras. During this period their stake is
locked, meaning it cannot be spent, and it remains locked for several weeks after their last active
era, to keep stakers liable to slashing even if an offence is detected late.

Staking rate, interest rate, inflation rate: Let the staking rate be the total amount of
DOTs currently staked by validators and nominators, divided by the current total DOT supply.
The stakers’ average interest rate will be a function of the staking rate: if the staking rate dips
below a certain target value selected by governance, the average interest rate is increased, thus
incentivising more participation in NPoS, and vice versa. For instance, a target staking rate of 50%
could be selected as a middle ground between security and liquidity. If the stakers’ average yearly
interest rate is then set to 20% at that level, we can expect the inflation rate to fluctuate closely
around 50%×20% = 10%. Hence, by setting targets for the staking rate and stakers’ interest rate,
we also control the inflation rate. Following this principle, every era we adjust our estimate of the
staking rate, and use it to compute the total amount of DOTs to be paid to stakers for that era.

Rewards across validator supports: Once the total payout for the current era is computed,
we need to establish how it is distributed. Recall that the validator election protocol (Section
4.1) partitions the active stake into validator supports, where each validator support is composed
of the full stake of one validator plus a fraction of the stake of its backing nominators, and this

3Recall that an era lasts approximately one day. See Table 1 in the Appendix.
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partition is made so as to make validator supports as high and evenly distributed as possible,
hence ensuring security and decentralisation. A further incentive mechanism put in place to ensure
decentralisation over time is paying validator supports equally for equal work, regardless of their
stake. As a consequence, if a popular validator has a high support, its nominators will likely be
paid less per staked DOT than nominators backing a less popular validator. Hence, nominators
will be incentivised to change their preferences over time in favour of less popular validators (with
good reputation nonetheless), helping the system converge to the ideal case where all validator
supports have equal stake.

In particular, we devise a point system in which validators accumulate points for each payable
action performed, and at the end of each era validator slots are rewarded proportional to their
points. This ensures that validators are always incentivised to maintain high performance and
responsiveness. Payable actions in Polkadot include: a) validating a parachain block, b) producing
a relay chain block in BABE, c) adding to a BABE block a reference to a previously unreferenced
uncle block,4 and d) producing an uncle block.

Rewards within a validator slot: As a nominator’s stake is typically split among several
validator supports, their payout in an era corresponds to the sum of their payouts relative to each
of these supports. Within a validator support, the payment is as follows: First, the validator is
paid a commission fee, which is an amount intended to cover its operational costs. Then, the
remainder is shared among all stakers – both validator and nominators – proportional to their
stake. Thus, the validator receives two separate rewards: a fee for running a node, and a payout
for staking. We remark that the commission fee is up to each validator to set, and must be publicly
announced in advance. A higher fee translates to a higher total payout for the validator, and lower
payouts to its nominators, so nominators will generally prefer to back validators will lower fees,
and the market regulates itself in this regard. Validators who have built a strong reputation of
reliability and performance will however be able to charge a higher commission fee, which is fair.

We finalise the section with some observations on the incentives that our payout scheme is
expected to cause on stakers. First, as validators are well remunerated and their number is limited,
they have an incentive to ensure high backing levels from nominators to ensure getting elected,
and thus they will value their reputation. Over time, we expect elections to be highly competitive
and for elected validators to have strong track records of performance and reliability and large
stake backings. Second, even if payouts across different validator supports are independent of their
stake, within a validator support each actor is paid proportional to their stake, so there is always
an individual incentive to increase one’s own stake. Finally, if a validator gains a particularly high
level of backing, it can profit from it by either increasing its commission fee, which has the effect
of raising its own reward at the risk of losing some nominations, or launching a new node as a
validator candidate and splitting its backing among all its nodes. On this last point, we welcome
operators with multiple validator nodes, and even aim to make their logistics simpler.

4.5.2 Relay-chain block limits and transaction fees

Limits on resource usage: We bound the amount of transactions that a relay-chain block can
process, in order to a) ensure that each block can be processed efficiently even on less powerful
nodes and avoid delays in block production, and b) have guaranteed availability for a certain
amount of high-priority, operational transactions such as misconduct reports, even when there is

4In the BABE protocol, at times two block producers may generate different blocks A and B at the same height,
leading to a temporary fork in the relay chain. The fork will quickly be resolved and one of the blocks selected,
say A, as part of the main chain, while block B becomes an uncle to all descendents of A. For security reasons, it
is convenient to record and timestamp all blocks produced, but since uncle blocks cannot be accessed via parent
relations, we encourage block producers to explicitly add these references to the main chain.
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high network traffic. In particular, we set block constraints on the following resources: on-chain
byte-length, and time and memory required to process the transactions.

We classify transactions into several types, according to their priority level and resource con-
sumption profile. For each of these types we have run tests based on worst-case scenarios for
state, and for different input arguments. From these tests, we establish conservative estimates on
resource usage for each transaction, and we use these estimates to ensure that all constraints on
resource usage are observed.

We also add an extra constraint on resources: we distinguish between regular and high-priority
transactions, and only let regular transactions account for up to 75% of each block resource limit.
This is to ensure that each block has a guaranteed space for high-priority transactions of at least
25% of resources.

Transaction fees: We use the model described above to set the fee level of a transaction based
on three parameters: its type, its on-chain length, and its expected resource usage. This fee
differentiation is used to reflect the different costs that a transaction incurs on the network and
on the state, and to encourage the processing of certain types of transactions over others. A
fraction of every transaction fee is paid to the block producer, while another fraction goes to
finance the Treasury (Section 4.6.4). We highlight that, for a block producer, the rewards coming
from transaction fees may constitute only a small fraction of their overall revenue, just enough to
incentivise inclusion on the block.

We also run an adaptive transaction fee schedule that reacts to the traffic level, and ensures
that blocks are typically far from full, so that peaks of activity can be dealt with effectively and
long inclusion times are rare. In particular, the fee of each transaction is multiplied by a parameter
that evolves over time depending on the current network traffic.

We make fees evolve slowly enough, so that the fee of any transaction can be predicted accu-
rately within a frame of an hour. In particular, we do not intend for transaction fees to be the
main source of income for stakers.

4.6 Governance

Polkadot uses sophisticated mechanisms for Governance which allows it to evolve gracefully over
time at the ultimate behest of its assembled stakeholders. A key and unfailing rule is that all
changes to the protocol must be agreed upon by stake-weighted referendum – the majority of
stake always commands the network.

In order to make any changes to the network, the idea is to bring DOT holders together and
administrate a network upgrade decision with the help of the Council (see Section 4.6.2). No
matter whether the proposal is submitted by a DOT holder or by the Council, it will ultimately
have to go through a referendum to let all DOT holders, weighted by stake, make the decision.

Each DOT holder in Polkadot has the right to: a) submit a proposal, b) endorse a public
proposal to prioritise it in the referendum timetable, c) vote on all active referenda, d) become a
candidate for a seat in the Council, and e) vote on candidates for the Council. In addition, any
DOT holder may become a nominator or a validator candidate to participate in NPoS (see Section
4.1).

4.6.1 Proposals and Referenda

The core of the Polkadot logic is stored on-chain in an amorphous state-transition function and
defined in a platform-neutral language: WebAssembly. Each proposal takes the form of a privileged
function call in the runtime, that is able to modify the runtime code itself, achieving what would
otherwise require a ”hard fork”. A proposal is then tabled and voted upon via referendum.

Proposals can be started in one of several ways:
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• a public proposal, which is submitted by any DOT holder;

• a Council proposal, submitted by the Council;

• a proposal submitted automatically as part of the enactment of a prior referendum, and

• an emergency proposal submitted by the Technical Committee (Section 4.6.2).

Each proposal approved by referendum has an associated enactment delay, i.e. a time interval
between the referendum ending and the changes being enacted. For the first two types of proposals
above this is a fixed interval, tentatively set to 28 days. For the third type, it can be set as desired.
Emergency proposals deal with major problems with the network which need to be fast-tracked,
and hence will have a shorter enactment delay. Having an enactment delay ensures a level of
stability, as it gives all parties sufficient notice to adapt to the new changes. After this period, the
call to the associated privileged function is automatically made.

Any stakeholder can submit a public proposal by depositing a fixed minimum amount of DOTs,
which stays locked for a certain period. If someone agrees with the proposal, they may deposit
the same amount of tokens to endorse it. Public proposals are stored in a priority queue, and
at regular intervals the proposal with the most endorsements gets tabled for a referendum. The
locked tokens are released once the proposal is tabled.

Council proposals are submitted by the Council, and are stored in a separate priority queue
where the priorities are set at the Council’s discretion.

A referendum is a simple, inclusive, staked-weighted voting scheme. It has a fixed voting
period, after which votes are tallied. Referenda are always binary: voting options are ”aye”,
”nay”, or abstaining entirely.

Timetables: Every thirty days, a new proposal will be tabled and a referendum will come up
for a vote. The proposal to be tabled is the top proposal from either the public-proposal queue
or the Council-proposal queue, alternating between the two queues if both are non-empty. If both
queues are empty, the slot is skipped in the referendum timetable. Multiple referenda cannot be
active simultaneously, except for emergency referenda which follow a parallel timetable.

Vote counting: Voting on referenda is open to all DOT holders with a voting power proportional
to their stake, up to a possible vote multiplier which is awarded to some parties depending on their
level of commitment to the system, as we explain now. A party must generally lock their tokens
used for voting until at least the enactment delay period beyond the end of the referendum. This is
in order to ensure that some minimal economic buy-in to the result is needed and to dissuade vote
selling. It is possible to vote without locking at all, but in that case the voting power is a small
fraction of a normal vote for the given stake. Conversely, Polkadot will offer voluntary extended
locking, that allows any party to increase their voting power by extending the period of time they
are willing to lock up their tokens. This ensures that voters committed to the system long term,
who are willing to increase their exposure to the decision of a referendum, have a greater say in
the matter.

Turnout biasing: It may seem restrictive to force a full stakeholder-based process to do some-
thing as little as, say, nudging the block time down by 5%. However, without this rule the network
would likely be unstable, as placing its control outside of the hands of stakeholders would create a
misalignment that may lead to inaction or worse. However, by taking advantage of the fact that
turnout is rarely 100%, we can effect different outcomes depending on the circumstances, crafting
a balance of power between active and passive stakeholders. For example, simple voting systems
typically introduce a notion of quorum, whereby a minimum amount of turnout must be reached
before a change is passed.
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For public proposals, we generalise this notion into a ”positive turnout bias”, where additional
turnout always makes change more likely, assuming the same yay-to-nay ratio. More specifically, in
case of low turnout we favour the nay side, or status quo, by requiring a super-majority approval,
and as turnout approaches 100% the requirement dials down to majority-carries. This works on
two principles: Firstly that the status quo tends to be safer than any change, and thus should have
some bias towards it. Secondly that, like all means of empirical measurement, there is inevitably
going to be some degree of inaccuracy and volatility over time, particularly when turnout is low
– a result could be 51% − 49% one month and then change to 49% − 51%, and given the costs
involved in enacting the changes of a proposal it is advantageous to ensure that a result would not
likely flip shortly after enactment.

On the other hand, for proposals submitted by the Council, referenda have no turnout bias and
majority-carries is observed. The reasoning here is that proposals pre-approved by the Council are
deemed safer and less likely to be reverted, so the previously mentioned issues are alleviated and
we can let DOT holders freely decide on the matter.

Figure 5: Adaptive turnout biasing (image credit: Ignasi Albero).

Finally, in the exceptional case that a Council proposal receives unanimous support by all
Council members, it will observe a ”negative turnout bias”. This is the symmetric opposite of
the first case, where additional turnout always makes change less likely, we favour the yay side in
case of low turnout by requiring a super-majority of nays to reject the proposal, and as turnout
approaches 100% the requirement dials down to majority-carries. See Figure 5.

4.6.2 The Council and the Technical Committee

The Council is an entity comprising a number of actors each represented by an on-chain account.
Its goals are to represent passive stakeholders, submit sensible and important proposals, and cancel
uncontroversially dangerous or malicious proposals.

The Council will constantly review candidate proposals to deal with emerging issues in the
system. A candidate proposal is officially backed by the Council – and enters the queue of Council
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proposals – only after it is approved by a strict majority of Council members, with no member
exercising a veto. A candidate proposal can be vetoed only once; if, after a cool-down period, it is
once more approved by a majority of Council members, it cannot be vetoed a second time.

As mentioned before, in the case that all members vote in favour, a Council proposal is consid-
ered uncontroversial and enjoys a special turnout bias that makes it more likely to be approved.

Finally, Council members may vote to cancel any proposal, regardless of who submitted it, but
their vote must be unanimous. Since unanimity is a high requirement, it is expected that this
measure will only be used when it is an entirely uncontroversial move. This may function as a
last resort if there is an issue found late in the day with a referendum’s proposal such as a bug in
the code of the runtime or a vulnerability that the proposal would institute. If the cancellation is
controversial enough that there is at least one dissenter, then it will be left to all DOT holders en
masse to determine the fate of the proposal, with the registered Council cancellation votes serving
as red flags so that voters pay special attention.

Electing Council members: There will be 23 seats in the Council of Polkadot. A general
election for all seats will take place once per month. All DOT holders are free to register their
candidacy for the Council, and free to vote for any number of candidates, with a voting power
proportional to their stake. Much like the validator election problem in NPoS, this is a stake-
weighted, multi-winner election problem based on approval ballots. We can thus solve it using the
same algorithm we use for NPoS, which in particular offers the property of proportional justified
representation; see Section 4.1 for more details. This property guarantees that the elected Council
will represent as many minorities as possible, thus ensuring that Governance stay decentralised
and resistant to capture. Council members can be re-elected indefinitely, provided their approval
remains high enough.

The Technical Committee is composed according to a single vote for each team that has
successfully and independently implemented or formally specified the protocol in Polkadot, or in its
canary network Kusama5. Teams may be added or removed by a simple majority of the Council.

The Technical Committee is the last line of defence for the system. Its sole purpose is detecting
present or imminent issues in the system such as bugs in the code or security vulnerabilities, and
proposing and fast-tracking emergency referenda. An emergency proposal needs a simultaneous
approval of at least three-quarters of the Council members and at least two-thirds of the Technical
Committee members in order to be tabled. Once tabled, it is fast-tracked into a referendum that
runs in parallel with the timetable of regular referenda, with a far shorter voting period, and a
near-zero enactment period. The approval mechanics in this case are unchanged from what they
would be otherwise, i.e. either a simple majority or, in the case of a unanimous Council approval,
a turnout-based bias for approval.

We highlight that for practical reasons the Technical Committee is not democratically elected,
but in contrast it has an extremely reduced scope of action and no power to act unilaterally, as
explained in the lines above. This mechanism is expected to suffice for non-contentious bug fixes
and technical upgrades, but given the requirements imposed, may not be effective in the case of
emergencies that have a tinge of political sensitivity or strategic importance to them.

4.6.3 Allocation of parachain slots

We use auctions to have a fair, transparent and permissionless parachain allocation procedure.
Broadly speaking, parties interested in receiving a parachain slot participate in an auction with
DOT-denominated bids. The party with the highest bid is declared as winner and is allocated a
slot for a specific period of time, with its bid becoming a locked deposit that is released at the end
of said period. The leasing cost of the slot thus corresponds to the opportunity cost of having this

5http://kusama.network
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deposit locked. This DOT-denominated deposit also establishes the voting power of the parachain
in Polkadot’s governance.

Since implementing seal-bid auctions is difficult and in order to avoid bid sniping, we adopt a
Candle auction [16] mechanism with a retroactively determined close. Going into detail, we plan
to have an auction every few weeks, where in each auction four contiguous six-month slots are
offered for lease. A bid can be made for any combination of one, two, three or four contiguous
slots, for a total of ten possible time periods lasting 6, 12, 18 or 24 months. Once the auction
starts, parties can post bids as transactions for any one of these ten periods, within a fixed window
of time lasting several hours. A party is allowed to submit multiple bids, where a bid is registered
only if a) it beats the current highest bid for the corresponding period, and b) the party does not
become the provisional winner of two or more periods with gaps in between. For example, the
winner of period (1, 2) – constituted of the first two slots – cannot bid on period (4) – the fourth
slot – until someone else overbids the former period.

The stated goals of this design are to incentivise parties to bid early and avoid bid sniping,
to give less funded projects a chance of winning a slot hence securing the decentralised nature of
Polkadot, and to discourage griefing attacks by parties who raise the value of the winning bid with
no intention of winning themselves.

4.6.4 Treasury

The Treasury raises funds continually. These funds are used to pay for developers that provide
software updates, apply any changes decided by referenda, adjust parameters, and generally keep
the system running smoothly. Funds may also be used for further goals such as marketing activities,
community events and outreach. This is ultimately controlled by all DOT holders via Governance
and it will be the community and their collective imagination and judgment which really determines
the course of the Treasury.

Funds for Treasury are raised in two ways:

1. by channeling some of the validator rewards that come from minting of new tokens, and

2. by channeling a fraction of transaction fees and of slashings.

The first method allows us to maintain a fixed inflation rate while simultaneously having the
validator rewards be dependent of the staking level (see Section 4.5.1): the difference between the
scheduled minted tokens and the validator rewards is assigned to Treasury in each era. We also
argue that it is convenient to have a fraction of all slashings be redirected to Treasury: following an
event that produced heavy stake slashing, the system is likely to need additional funds to develop
software updates or new infrastructure that deal with an existing issue, or it might be decided by
Governance to reimburse some of the slashed stake. Thus, it makes sense to have the slashed DOTs
available in Treasury, instead of burning them and having to mint more DOTs soon thereafter.

4.7 Cryptography

In Polkadot, we necessarily distinguish among different permissions and functionalities with dif-
ferent keys and key types, respectively. We roughly categorise these into account keys with which
users interact and session keys that nodes manage without operator intervention beyond a certifi-
cation process.

4.7.1 Account keys

Account keys have an associated balance of which portions can be locked to play roles in staking,
resource rental, and governance, including waiting out a couple types of unlocking period. We
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allow several locks of varying duration, both because these roles impose different restrictions, and
for multiple unlocking periods running concurrently.

We encourage active participation in all these roles, but they all require occasional signatures
from accounts. At the same time, account keys have better physical security when kept in incon-
venient locations, like safety deposit boxes, which makes signing arduous. We avoid this friction
for users as follows.

Accounts that lock funds for staking are called stash accounts. All stash accounts register a
certificate on-chain that delegates all validator operation and nomination powers to some controller
account, and also designates some proxy key for governance votes. In this state, the controller and
proxy accounts can sign for the stash account in staking and governance functions respectively,
but not transfer funds.

At present, we support both ed25519 [6] and Schnorrkel/sr25519 [9] for account keys. These
are both Schnorr-like signatures implemented using the Ed25519 curve, so both offer extremely
similar security. We recommend ed25519 keys for users who require Hardware Security Module
(HSM) support or other external key management solution, while Schnorrkel/sr25519 provides
more blockchain-friendly functionality like Hierarchical Deterministic Key Derivation (HDKD)
and multi-signatures.

In particular, Schnorrkel/sr25519 uses the Ristretto implementation [21] of Mike Hamburg’s
Decaf [18, §7], which provide the 2-torsion free points of the Ed25519 curve as a prime order
group. Avoiding the cofactor like this means Ristretto makes implementing more complex pro-
tocols significantly safer. We employ Blake2b for most conventional hashing in Polkadot, but
Schnorrkel/sr25519 itself uses STROBE128 [19], which is based on Keccak-f(1600) and provides a
hashing interface well suited to signatures and non-interactive zero-knowledge proofs (NIZKs).

4.7.2 Session keys

Session keys each fill roughly one particular role in consensus or security. As a rule, session keys gain
authority only from a session certificate, signed by some controller key, that delegates appropriate
stake.

At any time, the controller key can pause or revoke this session certificate and/or issue re-
placement with new session keys. All new session keys can be registered in advance, and most
must be, so validators can cleanly transition to new hardware by issuing session certificates that
only become valid after some future session. We suggest using pause mechanism for emergency
maintenance and using revocation if a session key might be compromised.

We prefer if session keys remain tied to one physical machine because doing so minimises the
risk of accidental equivocation. We ask validator operators to issue session certificates using an
RPC protocol, not to handle the session secret keys themselves.

Almost all early proof-of-stake networks have a negligent public key infrastructure that en-
courages duplicating session secret keys across machines, and thus reduces security and leads to
pointless slashing.

We impose no prior restrictions on the cryptography employed by specific components or their
associated session keys types.6

In BABE 4.3.1, validators use Schnorrkel/sr25519 keys both for regular Schnorr signatures, as
well as for a verifiable random function (VRF) based on NSEC5 [28].

A VRF is the public-key analog of a pseudo-random function (PRF), aka cryptographic hash
function with a distinguished key, such as many MACs. We award block production slots when the
block producer scores a low enough VRF output VRFsk(re||slot number), so anyone with the VRF

6We always implement cryptography for Polkadot in native code, not just because the runtime suffers from
WASM’s performance penalties, but because all of Polkadot’s consensus protocols are partially implemented outside
the runtime in Substrate modules.
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public keys can verify that blocks were produced in the correct slot, but only the block producers
know their slots in advance via their VRF secret key.

As in [15], we provide a source of randomness re for the VRF inputs by hashing together all
VRF outputs form the previous session, which requires that BABE keys be registered at least two
full epochs before being used.

We reduce VRF output malleability by hashing the signer’s public key alongside the input,
which dramatically improves security when used with HDKD. We also hash the VRF input and
output together when providing output used elsewhere, which improves composability when used
as a random oracle in security proofs. See the 2Hash-DH construction from Theorem 2 on page
32 in appendix C of [15].

In GRANDPA 4.3.2, validators shall vote using BLS signatures, which supports convenient
signature aggregation and select ZCash’s BLS12-381 curve for performance. There is a risk that
BLS12-381 might drop significantly below 128 bits of security, due to number field sieve advance-
ments. If and when this happens, we expect upgrading GRANDPA to another curve to be straight-
forward.

We treat libp2p’s transport keys roughly like session keys too, but they include the transport
keys for sentry nodes, not just for the validator itself. As such, the operator interacts slightly more
with these.

4.8 Networking

In the preceding sections we talk about nodes sending data to another node or other set of nodes,
without being too specific on how this is achieved. We do this to simplify the model and to clearly
delineate a separation of concerns between different layers.

Of course, in a real-world decentralised system the networking part also must be decentralised -
it’s no good if all communication passes through a few central servers, even if the high-level protocol
running on top of it is decentralised with respect to its entities. As a concrete example: in certain
security models, including the traditional Byzantine fault-tolerant setting, nodes are modelled
as possibly malicious but no consideration is given to malicious edges. A security requirement
like “> 1/3 of nodes are honest” in the model, in fact translates to “> 1/3 of nodes are honest
and can all communicate perfectly reliably with each other all the time” in reality. Conversely,
if an edge is controlled by a malicious ISP in reality, it is the corresponding node(s) that must
be treated as malicious in any analysis under the model. More significantly, if the underlying
communications network is centralised, this can give the central parties the ability to “corrupt”
> 1/3 of nodes within the model thereby breaking its security assumptions, even if they don’t
actually have arbitrary execution rights on that many nodes.

In this section we outline and enumerate the communication primitives that we require in
Polkadot, and sketch a high-level design on how we achieve these in a decentralised way, with the
specifics to be refined as we move forward with a production system.

4.8.1 Networking overview

As discussed above, Polkadot consists of a unique relay chain interacting with many different
parachains and providing them with security services. These require the following network-level
functionality, generally for distribution and availability:

1. As with all blockchain-like protocols, the relay chain requires:

(a) accepting transactions from users and other external data (collectively known as extrin-
sic data or extrinsics), and distributing them

(b) distributing artefacts of the collation subprotocol 4.2
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(c) distributing artefacts of the finalisation subprotocol 4.3.2

(d) synchronising previously-finalised state

As an important special case, parachains may choose to implement themselves according
to the above structure, perhaps even re-using the same subprotocols. Part of the Polkadot
implementation is architected as a separate library called substrate for them to do just this.

2. For interaction between the relay chain and the parachains, we require:

(a) accepting parachain blocks from parachain collators

(b) distributing parachain block metadata including validity attestations

(c) distributing parachain block data and making these available for a time 4.4.2, for au-
diting purposes

3. For interaction between parachains, we require:

(a) distributing messages between parachains 4.4.3, specifically from the relevant senders
to the relevant recipients

For each of the above functionality requirements, we satisfy them with the following:

• 1(b), 1(c), 2(b) - artefacts are broadcast as-is (i.e. without further coding) via gossip.

• 1(a), 1(d), 2(a) - effectively, a set of nodes provide the same distributed service to clients.
For accepting extrinsics or blocks, clients send these directly to the serving node; for syn-
chronisation, clients receive verifiable data directly from the serving node.

• 2(c) - special case, below. Briefly, data is erasure-encoded so that different recipients receive
a small part; pieces are sent directly via QUIC.

• 3(a) - special case, below. Briefly, messages are sent directly via QUIC; in the process out-
boxes are reassembled into inboxes and the latter can be transferred as a batch to recipients.

We go into these in more detail in the next few sections. Finally, we talk about the lower layers
underpinning all of these subprotocols, namely Authentication, transport, and discovery.

4.8.2 Gossiping

This subprotocol is used for most relay-chain artefacts, where everyone needs to see more-or-less
the same public information. Part of its structure is also used for when a node goes offline for a
long time and needs to synchronise any newer data it hasn’t seen before.

The Polkadot relay chain network forms a gossip overlay network on top of the physical commu-
nications network, as an efficient way to provide a decentralised broadcast medium. The network
consists of a known number of trusted nodes (validators) who have been permissioned via staking,
and an unknown number of untrusted nodes (full nodes that don’t perform validation) from the
permissionless open internet. (As an aside, recall that some of the untrusted nodes may have other
roles as defined earlier, e.g. parachain collator, fishermen, etc.)

A simple push-based approach is implemented currently, with hash-based tracker caches to
avoid sending duplicates to peers, and a few restrictions to avoid the most common spam attacks:

• Artefacts may only be received in dependency order; peers are not allowed to send them out-
of-order. Though this decreases network-level efficiency, it is straightforward to implement
and provides a healthy level of security.
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• To efficiently communicate to sending peers what they are allowed to send in dependency
order, periodically peers update each other with their view of the latest heads of the chain.

There are also more specific constraint rules applied to artefacts belonging to the various higher-
level subprotocols using the gossip protocol, to avoid broadcasting obsolete or otherwise unneeded
artefacts. For example, for GRANDPA we only allow two votes being received for each type of
vote, round number, and voter; any further votes will be ignored. For block production only valid
block producers are allowed to produce one block per round; any further blocks will be ignored.

There is basic support for sentry nodes, proxy servers that are essentially the only neighbour
of a private server, running more security-critical operations such the validator role.

The network topology is a weak point currently; nodes connect to each other on an ad-hoc
basis by performing random lookups in the address book. Further work will proceed along two
fronts:

1. Trusted nodes will reserve a portion of their bandwidth and connection resources, to form
a structured overlay with a deterministic but unpredictable topology that rotates every era.
For nodes running behind sentries, this effectively means that their sentry nodes instead
participate in this topology.

2. For the remainder of trusted nodes’ resource capacity, and for the whole of untrusted nodes’
resource capacity, they will select neighbours via a scheme based on latency measurements,
with the details to be decided. Notably, for good security properties we want a scheme that
does not simply choose ”closest first”, but also some far links as well.

In some sense, this can be viewed as the trusted nodes forming a core with the untrusted
nodes around it - but note that trusted nodes are expected to use some of their resources to serve
untrusted nodes as well. Both topologies are chosen to mitigate eclipse attacks, as well as sybil
attacks in the permissionless untrusted case.

Further work will also include some sort of set reconciliation protocol, to further reduce re-
dundancy when many senders attempt to send the same object to the same recipient at once; and
potentially look into lifting the dependency-order restriction whilst retaining security.

4.8.3 Distributed service

This subprotocol is used when some part of Polkadot is providing a service to some external entity,
namely 1(a) accepting relay chain transactions, 1(d) synchronising relay chain state, and 2(a)
accepting collated blocks in the list above.

In our initial implementation, this simply involves looking up a particular target set in the
address book, selecting a few nodes from this set, and connecting to them. For 1(a) and 1(d) the
target set is the whole set of validators, and for 2(a) the target set is the set of parachain validators
for the client collator’s parachain. Both of these can be retrieved straightforwardly from the chain
state, and indeed for 1(a) this is simply the same process as joining the gossip network.

Further work will consider the issue of load-balancing the transport-layer connections over the
whole target set, as well as ensuring availability. This may require additional sophistication in the
address book.

4.8.4 Storage and availability

This subprotocol addresses the networking used for the Availability and Validity subprotocol de-
scribed in Section 4.4.2.

Recall that for scalability, Polkadot does not require everyone to store the state of the whole
system, namely all of the state pointed to by all of the blocks. Instead, every parachain block
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is split into pieces by erasure-coding, such that there is 1 piece for every validator for a total of
N pieces, the erasure threshold being ceil(N/3) blocks for security reasons explained elsewhere.
All the pieces are available initially at the relevant parachain validators, having been submitted
by some of the collators. (In this role, the parachain validators are also called the preliminary
checkers.) The pieces are then selectively distributed in the following phases:

1. Distribution - every validator initially wants 1 of these pieces, and the parachain validators
must distribute them as such.

2. Retrieval - the approval checkers need to be convinced that ceil(N/3) validators have their
pieces, and some of them will attempt to actually retrieve these.

3. Further retrieval - yet later, and optionally, other non-validator parties might also want to
perform further checks, e.g. in response to fishermen alerts, and again will want any ceil(N/3)
of the pieces.

This subprotocol therefore aims to ensure that the threshold is available and can be retrieved
from the relevant validators for some reasonable amount of time, until at least the latter phases
are complete. We will follow a bittorrent-like protocol with the following differences:

• With both distribution and retrieval, the set of recipients is known. Therefore, pieces can be
pre-emptively pushed from validators that already have the piece, in addition to bittorrent’s
pull semantics.

• Validators behind sentry nodes will use these as proxies, rather than directly sending.

• Instead of a centralised tracker, tracker-like information such as who has what piece, is
broadcast via the relay chain gossip network.

The preliminary checkers are expected to be fully- or mostly-connected; this is a pre-existing
requirement for the collation protocol as well. The approval checkers should also be fully- or
mostly-connected, to help the retrieval process complete faster.

Beyond this, nodes may communicate to any other nodes as the protocol sees fit, similar
to bittorrent. To protect against DoS attacks they should implement resource constraints as in
bittorrent, and furthermore nodes should authenticate each other and only communicate with other
validators, including the preliminary and approval checkers. Non-validator parties in the latter
optional phase will be supplied with an authentication token for this purpose. In a separate more
detailed document, we propose a scheme for load-balancing, such that nodes do not accidentally
overwhelm other nodes in their random choices.

There are various reasons why we do not consider it very suitable, to use a structured overlay
topology for this component:

1. Each piece is sent to specific people, rather than everyone.

2. (a) People that want a specific piece of data, know where to get it - i.e. validators, for their
own piece, i.e. the preliminary checkers.

(b) Other people want non-specific pieces - i.e. approval checkers, want any 1/3 of all pieces
to be able to reconstruct.

Overlay topologies are generally more useful for the exact opposite of the above usage require-
ments:

1. Each data piece is sent to nearly everyone, or

2. People want a specific data piece, but don’t know where to get it from.

For example, bittorrent has similar requirements and does not use a structured overlay - the
peers there connect to other peers on a by-need basis.
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4.8.5 Cross-chain messaging

This subprotocol address the networking scheme used for the XCMP messaging sub-protocol de-
scribed in Section 4.4.3.

To recap that section, parachains can send messages to each other. The contents of outgoing
messages are part of the parachain PoV blocks submitted by the sending parachain collators to
its validators. This is distributed to other validators as part of the availability protocol. Relay
chain blocks contain metadata that describes the relevant outgoing messages corresponding to
the incoming messages for every parachain. The job of XCMP networking therefore, is for each
recipient parachain to obtain its incoming messages from the outboxes.

Note that without any additional sophistication, this can always be done be retrieving the
erasure-coded pieces of the A&V protocol, for example via the gossip network, and decoding all
the outboxes of all potential senders. This of course is very inefficient - both using a broadcast
medium for data only the recipient parachain is interested in, and in the data being retrieved which
includes messages sent to parachains other than the recipient. Nevertheless this can serve as an
initial naive implementation for the early stages of the network where traffic is expected to be low.

Further work will proceed along the following lines. One view of the problem is how to efficiently
convert the outboxes of all senders, into the inboxes of all recipients. Once we have done that, any
recipient can simply retrieve the inbox directly, from whomever has done the conversion. We note
that the structure of our A&V networking has a very similar communication requirement - there,
the pieces of each parachain block have to be distributed to every other validator, and conversely
every validator has to receive a piece of every parachain block. Therefore, our main efforts will
be directed towards extending the A&V networking protocol, to support the conversion of XCMP
outboxes into inboxes.

One important difference that we must cover, is that the pieces in A&V have some in-built
redundancy, whereas XCMP messages have no in-built redundancy and must all be distributed
reliably. Applying erasure coding to these as well, is a straightforward and obvious solution, but
we will also explore alternatives.

4.8.6 Sentry nodes

Sometimes, network operators want to arrange aspects of their physical network for operational
security reasons. Some of these arrangements are independent and compatible with the design
of any decentralised protocol, which typically works in the layer above. However some other
arrangements need special treatment by the decentralised protocol, in particular arrangements
affecting the reachability of nodes.

For such use-cases, Polkadot supports running full-nodes as the sentry nodes of another full-
node that is only reachable by these sentry nodes. This works best when one runs several sentry
nodes for a single private full-node. Protocol wise, briefly, sentry nodes are regular neighbours of
their private node, with some additional metadata to tell others to communicate this private node
via its sentry nodes. In direct-sending mode, they act similarly to TURN servers, without any
resource bottleneck constraints since every sentry node is serving only one private node. These
additions are fairly straightforward and more details are available elsewhere.

It is not required to run sentry nodes, for example if you believe the aforementioned security
benefits are not worth the added latency cost.

A brief discussion about the security tradeoffs of this approach follows. One benefit of a
restricted physical topology, is to support load-balancing and DoS protection across a number of
gateway proxies. The indirection can also help to protect the private node if there are exploits
in the software - although note this does not cover the most severe exploits that give arbitrary
execution rights on the sentry node, which can then be used as a launching pad for attacks on the
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private node. So, while we don’t believe that a public address is itself a security liability when the
serving code is written well, sentry nodes can help to mitigate these other scenarios.

(An alternative possibility is for the network operator to run lower-level proxies, such as IP or
TCP proxies, for their private node. This certainly can be done without any protocol support from
Polkadot. One advantage of sentry nodes compared to this scenario is that the traffic coming from
a sentry node has been through some level of verification and sanitisation as part of the Polkadot
protocol, which would be missing for a lower-level proxy. Of course there can be exploits against
this, but these are dealt with with high priority since they are amplification vectors usable against
the whole network.)

4.8.7 Authentication, transport, and discovery

In secure protocols in general, and likewise with Polkadot, entities refer to each other by their
cryptographic public keys. There is no strong security association with weak references such
as IP addresses since those are typically controlled not by the entities themselves but by their
communications provider.

Nevertheless in order to communicate we need some sort of association between entities and
their addresses. In Polkadot we use a similar scheme as many other blockchains do, that is using
the widely used distributed hash table (DHT), Kademlia [22]. Kademlia is a DHT that uses the
XOR distance metric, and is often used for networks with high churn. We use Protocol Labs’
libp2p Kademlia implementation with some changes for this purpose. To prevent Eclipse attacks
[20] we allow for routing tables that are large enough to contain at least some honest nodes, and
are in the process of implementing the S-Kademia approach for multipath routing.

Currently, this address book service is also used as the primary discovery mechanism - nodes
perform random lookups on the space of keys when they join the network, and connect to whichever
set of addresses are returned. Likewise, nodes accept any incoming connections. This makes it
easy to support light clients and other unprivileged users, but also makes it easy to perform DoS
attacks.

Further work will decouple the discovery mechanism from the address book, as described in
Gossiping, resulting in a more security network topology. Part of this will require some fraction of
transport-level connections be authenticated against the currently-trusted validator set. However
we also require to retain the ability to accept incoming connections from unauthenticated entities,
and this needs to be restricted on a resource basis, without starving the authenticated entities.

Further work will also decouple the implementation of the address book from its interface, so
that e.g. we can put part of in on-chain. This has different security tradeoffs from a Kademlia-
based address book, some of which is outside of the current scope of Polkadot, such as location
privacy. By offering different possibilities, we hope to satisfy a diverse set of nodes having different
security requirements.

5 Future Work

For future work we plan to focus on a number of extensions for Polkadot. We want to add
an incentivisation model for fishermen to make sure they are incentivised to report malicious
behaviour. To enable trustless messaging we are working on SPREE A.1. We are also interested
to increase scalability of Polkadot further, for example by investigating the idea of having nested
relay chains. Moreover, we are working on incorporating bridging protocols A.2 to other chains
such as Bitcoin, Ethereum, and Zcash. Furthermore, to increase usability we are planning to enable
Parathreads, which have the same utility as parachains but are temporary and have a different fee
model.

.
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Pablo Basanta Val, and Piotr Skowron. Proportional justified representation. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[30] Luis Sánchez-Fernández, Norberto Fernández, Jesús A Fisteus, and Markus Brill. The max-
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A Appendix

A.1 SPREE

SPREE (Shared Protected Runtime Execution Enclaves) is a way for parachains to have shared
code, and furthermore for the execution and state of that code to be sandboxed. From the point
of view of parachain A, how much can it trust parachain B? Polkadot’s shared security guarantees
the correct execution of B’s code with as much security as it does A’s code. However, if we do not
know B’s code itself and even if we know the code now, maybe the governance mechanism of B
can change the code and we do not trust that. This changes if we knew some of B’s code, that it’s
governance did not have control of, and which could be sent messages by A. Then we would know
how B’s code would act on those messages if it was executed correctly and so shared security gives
us the guarantees we need.

A SPREE module is a piece of code placed in the relay chain, that parachains can opt into.
This code is part of that chains state transition validation function (STVF). The execution and
state of this SPREE module are sandboxed away from the rest of the STVF’s execution. SPREE
modules on a remote chain can be addressed by XCMP. The distribution of messages received by
a parachain would itself be controlled by a SPREE module (which would be compulsory for chains
that want to use any SPREE modules).

We expect that most messages sent by XCMP will be from a SPREE module on one chain to
the same SPREE module on another chain. When SPREE modules are upgraded, which involves
putting updated code on the relay chain and scheduling an update block number, it is upgraded
on all parachains in their next blocks. This is done in such a way as to guarantee that messages
sent by a version of the SPREE module one one chain to the same module on another are never
received by past versions. Thus message formats for such messages do not need to be forward
compatible and we do not need standards for these formats.

For an example of the security guarantees we get from SPREE, if A has a native token, the
A token, what we would like is to be sure that parachain B could not mint this token. We could
enforce this by A keeping an account for B in A’s state. However if an account on B want’s to
send some A token to a third parachain C, then it would need to inform A. A SPREE module for
tokens would allow this kind of token transfer without this accounting. The module on A would
just send a message to the same module on B, sending the tokens to some account. B could then
send them on to C and C to A in a similar way. The module itself would account for tokens in
accounts on chain B, and Polkadot’s shared security and the module’s code would enforce that
B could never mint A tokens. XCMP’s guarantee that messages will be delivered and SPREE’S
guarantee that they will be interpreted correctly mean that this can be done by just sending one
message per transfer and is trust free. This has applications far beyond token transfer and means
that trust minimising protocols are far easier to design.

Parts of SPREEs design and implementation have yet to be fully designed. Credit goes to the
reddit user u/Tawaren for the initial idea behind SPREE.

37



A.2 Interoperability with External Chains

Polkadot is going to host a number of bridge components to other chains. This section will be
focused on bridging to BTC and ETH (1.x) and hence will mostly be reviewing bridging proof
of work chains. Our bridge design is inspired by XClaim [35]. The bridge logic will have two
important parts: a bridge relay, which understands as much as possible the consensus of the
bridged chain, and a bank (name change possible for PR reasons), which involves staked actors
owning bridged chain tokens on behalf of Polkadot. The bridge relay needs to be able to carry
out consensus verification of the bridged chain and verify transaction inclusion proofs there. On
the one hand, the bank can be used by users on the bridged chain to lock tokens as backing for
the corresponding asset they want to receive on Polkadot, e.g., PolkaETH or PolkaBTC. On the
other hand, users can use the bank to redeem these assets into the bridged chain tokens. The
bridge relay aims to put as much of the logic of a light/thin client of a bridged chain on a bridge
parachain as is feasible – think BTC-Relay. However, crypto and storage are much cheaper on a
parachain than in an ETH smart contract. We aim to put all block headers and proofs-of-inclusion
of certain transactions of the bridged chain in the blocks of the bridge parachain. This is enough
to decide whether a transaction is in a chain which is probably final. The idea for the bridge relay
for Bitcoin and ETH1.0 is to have a longest-chain bridge chain where conflicts are resolved with a
voting/attestation scheme.

A.3 Comparison with other multi-chain systems

A.3.1 ETH2.0

Ethereum 2.0 promises a partial transition to proof-of-stake and to deploy sharding to improve
speed and throughput. There are extensive similarities between the Polkadot and Ethereum 2.0
designs, including similar block production and finality gadgets.

All shards in Ethereum 2.0 operate as homogeneous smart contract based chains, while
parachains in Polkadot are independent heterogeneous blockchains, only some of which support
different smart contract languages. At first blush, this simplifies deployment on Ethereum 2.0, but
“yanking” contracts between shards dramatically complicates the Ethereum 2.0 design. We have a
smart contract language Ink! that exists so that smart contract code can more easily be migrated
into being parachain code. We assert that parachains inherent focus upon their own infrastructure
should support higher performance far more easily than smart contracts.

Ethereum 2.0 asks that validators stake exactly 32 ETH, while Polkadot fixes one target number
of validators, and attempts to maximise the backing stake with NPoS (see Section 4.1). At a
theoretical level, we believe the 32 ETH approach results in validators being less “independent”
than NPoS, which weakens security assumptions throughout the protocol. We acknowledge however
that Gini coefficient matters here, which gives Ethereum 2.0 an initial advantage in “independence”.
We hope NPoS also enables more participation by Dot holders will balances below 32 ETH too.

Ethereum 2.0 has no exact analog of Polkadot’s availability and validity protocol (see Section
4.4.2). We did however get the idea to use erasure codes from the Ethereum proposal [4], which
aims at convincing lite clients.

Validators in Ethereum 2.0 are assigned to each shard for attesting block of shards as parachain
validators in Polkadot thus constitute the committee of the shard. The committee members receive
a Merkle proof of randomly chosen code piece from a full node of the shard and verify them. If
all pieces are verified and no fraud-proof is announced, then the block is considered as valid.
The security of this scheme is based on having an honest majority in the committee while the
security of Polkadot’s scheme based on having at least one honest validator either among parachain
validators or secondary checkers (see Section 4.4.2). Therefore, the committee size in Ethereum
2.0 is considerably large comparing to the size of parachain validators in Polkadot.
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The beacon chain in Ethereum 2.0 is a proof-of-stake protocol as Polkadot’s relay chain. Sim-
ilarly, it has a finality gadget called Casper [11, 34] as GRANDPA in Polkadot. Casper also
combines eventual finality and Byzantine agreement as GRANDPA but GRANDPA gives better
liveness property than Casper [32].

A.3.2 Sidechains

An alternative way to scale blockchain technologies are using side-chains 7. These solutions are
also addressing interoperability, in that they enabling bridging side chains to the main chain.
For example, for Eth1.0 many side-chains were introduced that contributed to scalability such as
Plasma Cash and Loom 8. A prominent solution that is solely based on bridging independent
chains to each other is Cosmos 9 that is reviewed and compared to Polkadot next.

A.3.3 Cosmos

Cosmos is a system designed to solve the blockchain interoperability problem that is fundamental
to improve the scalability for the decentralised web. In this sense, there are surface similarities
between the two systems. Hence, Cosmos consists of components which play similar roles and
resemble the sub-components of Polkadot. For example, the Cosmos Hub is used to transfer
messages between Comos’ zones similarly to how the Polkadot Relay Chain oversees the passing
of messages among Polkadot parachains.

There are however significant differences between the two systems. Most importantly, while
the Polkadot system as a whole is a sharded state machine (see Section 4.2), Cosmos does not
attempt to unify the state among the zones and so the state of individual zones is not reflected in
the Hub’s state. As the result, unlike Polkadot, Cosmos does not offer shared security among the
zones. Consequently, the Cosmos cross-chain messages, are no longer trust-less. That is to say,
that a receiver zone needs to fully trust the sender zone in order to act upon messages it receives
from the sender. If one considers Cosmos system as a whole, including all zones in a similar way
one analyses the Polkadot system, the security of such a system is equal to the security of the least
secure zone. Similarly the security promise of Polkadot guarantees that validated parachain data
are available at a later time for retrieval and audit (see Section 4.4.2). In the case of Cosmos, the
users are ought to trust the zone operators to keep the history of the chain state.

It is noteworthy that using the SPREE modules, Polkadot offers even stronger security than
the shared security. When a parachain signs up for a SPREE module, Polkadot guarantees that
certain XCMP messages received by that parachain are being processed by the pre-defined SPREE
module set of code. No similar cross-zone trust framework is offered by the Cosmos system.

Another significant difference between Cosmos and Polkadot consists in the way the blocks are
produced and finalised. In Polkadot, because all parachain states are strongly connected to relay
chain states, the parachain can temporarily fork alongside the relay chain. This allows the block
production to decouple from the finality logic. In this sense, the Polkadot blocks can be produced
over unfinalised blocks and multiple blocks can be finalised at once. On the other hand, the
Cosmos zone depends on the instant finality of the Hub’s state to perform a cross-chain operation
and therefore a delayed finalisation halts the cross-zone operations.

B Glossary

7that allow tokens from one blockchain to be considered valid on an independent blockchain and be used there
8https://loomx.io
9https://cosmos.network
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Name Description Symbol
(plural)

Def

BABE A mechanism to assign elected validators randomly to
block production for a certain slot.

4.3.1

BABE Slot A period for which a relay chain block can be pro-
duced. It’s about 5 seconds.

sl 4.3.1

Collator Assist validators in block production. A set of collators
is defined as C.

c(C) 3.1

Dot The Polkadot native token. 4.5
Elected
- validators

A set of elected validators. V

Epoch A period for which randomness is generated by BABE.
It’s about 4 hours.

e

Era A period for which a new validator set is decided. It’s
about 1 day.

Extrinsics Input data supplied to the Relay Chain to transition
states.

4.2

Fishermen Monitors the network for misbehaviour. 3.1
Gossiping Broadcast every newly received message to peers. 4.8.2
GRANDPA Mechanism to finalize blocks. 4.3.2
GRANDPA
- Round

A state of the GRANDPA algorithm which leads to
block finalisation.

4.3.2

Nominator Stake-holding party who nominates validators to be
elected. A set of nominators is defined as N .

n(N ) 3.1

NPoS Nominated Proof-of-Stake - Polkadot’s version of PoS,
where nominated validators get elected to be able to
produce blocks.

4.1

Parachain Heterogeneous independent chain. P
PJR Proportional-Justified-Representation - Ensures that

validators represent as many nominator minorities as
possible.

4.1

PoV Proof-of-Validity - Mechanism where a validator can
verify a block without having its full state.

4.4.1

Relay
- Chain

Ensures global consensus among parachains. 4.2

Runtime The Wasm blob which contains the state transition
functions, including other core operations required by
Polkadot.

4.2

Sentry
- nodes

Specialized proxy server which forward traffic to/from
the validator.

Session A session is a period of time that has a constant set
of validators. Validators can only join or exit the val-
idator set at a session change.

STVF State-Transition-Validation-Function - A function of
the Runtime to verify the PoV.

4.4.1

Validator The elected and highest in charge party who has a
chance of being selected by BABE to produce a block.
A set of candidate validators is defined as C. The
number of validators to elect is defined as nval.

v(V) 3.1
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VRF Verifiable-Random-Function - Cryptographic function
for determining elected validators for block produc-
tion.

4.3.1

XCMP A protocol that parachains use to send messages to
each other.

4.4.3

Table 1: Glossary for Polkadot
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