2,136 research outputs found

    Real-Time Local Volt/VAR Control Under External Disturbances with High PV Penetration

    Full text link
    Volt/var control (VVC) of smart PV inverter is becoming one of the most popular solutions to address the voltage challenges associated with high PV penetration. This work focuses on the local droop VVC recommended by the grid integration standards IEEE1547, rule21 and addresses their major challenges i.e. appropriate parameters selection under changing conditions, and the control being vulnerable to instability (or voltage oscillations) and significant steady state error (SSE). This is achieved by proposing a two-layer local real-time adaptive VVC that has two major features i.e. a) it is able to ensure both low SSE and control stability simultaneously without compromising either, and b) it dynamically adapts its parameters to ensure good performance in a wide range of external disturbances such as sudden cloud cover, cloud intermittency, and substation voltage changes. A theoretical analysis and convergence proof of the proposed control is also discussed. The proposed control is implementation friendly as it fits well within the integration standard framework and depends only on the local bus information. The performance is compared with the existing droop VVC methods in several scenarios on a large unbalanced 3-phase feeder with detailed secondary side modeling.Comment: IEEE Transactions on Smart Grid, 201

    Optimal Power Flow with Step-Voltage Regulators in Multi-Phase Distribution Networks

    Full text link
    This paper develops a branch-flow based optimal power flow (OPF) problem for multi-phase distribution networks that allows for tap selection of wye, closed-delta, and open-delta step-voltage regulators (SVRs). SVRs are assumed ideal and their taps are represented by continuous decision variables. To tackle the non-linearity, the branch-flow semidefinite programming framework of traditional OPF is expanded to accommodate SVR edges. Three types of non-convexity are addressed: (a) rank-1 constraints on non-SVR edges, (b) nonlinear equality constraints on SVR power flows and taps, and (c) trilinear equalities on SVR voltages and taps. Leveraging a practical phase-separation assumption on the SVR secondary voltage, novel McCormick relaxations are provided for (c) and certain rank-1 constraints of (a), while dropping the rest. A linear relaxation based on conservation of power is used in place of (b). Numerical simulations on standard distribution test feeders corroborate the merits of the proposed convex formulation.Comment: This manuscript has been submitted to IEEE Transactions on Power System

    Improving the Performance of Low Voltage Networks by an Optimized Unbalance Operation of Three-Phase Distributed Generators

    Get PDF
    This work focuses on using the full potential of PV inverters in order to improve the efficiency of low voltage networks. More specifically, the independent per-phase control capability of PV three-phase four-wire inverters, which are able to inject different active and reactive powers in each phase, in order to reduce the system phase unbalance is considered. This new operational procedure is analyzed by raising an optimization problem which uses a very accurate modelling of European low voltage networks. The paper includes a comprehensive quantitative comparison of the proposed strategy with two state-of-the-art methodologies to highlight the obtained benefits. The achieved results evidence that the proposed independent per-phase control of three-phase PV inverters improves considerably the network performance contributing to increase the penetration of renewable energy sources.Ministerio de Economía y Competitividad ENE2017-84813-R, ENE2014-54115-

    Evaluation of Single Phase Smart PV Inverter Functions in Unbalanced Residential Distribution Systems

    Get PDF
    In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, voltage regulators and on load tap changers. Furthermore, the standard basis is that when implementing Unbalanced Residential Distribution Systems into the grid, centralized control is a well-known choice, however, decentralized control provides a strong case for usage when using smart PV inverters in residential distribution systems. The objective of this thesis is to provide a better understanding of Unbalanced Residential Distribution Systems tied into the distribution side of the power grid when using control functions. Furthermore, better understand and prove the theory of using decentralize control for smart PV inverters in a residential distribution system. The future work will be analyzing the role of restoration practices and islanded mode with control algorithms that are used in grid connected mode. The specific areas below will be discussed in this thesi
    corecore