2,726 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Survey on Formation Control of Small Satellites

    Get PDF

    Mobile Robotics, Moving Intelligence

    Get PDF

    Validation of Quad Tail-sitter VTOL UAV Model in Fixed Wing Mode

    Get PDF
    Vertical take-off and landing (VTOL) is a type of unmanned aerial vehicle (UAV) that is growing rapidly because its ability to take off and land anywhere in tight spaces. One type of VTOL UAV, the tail-sitter, has the best efficiency. However, besides the efficiency offered, some challenges must still be overcome, including the complexity of combining the ability to hover like a helicopter and fly horizontally like a fixed-wing aircraft. This research has two contributions: in the form of how the analytical model is generated and the tools used (specifically for the small VTOL quad tail-sitter UAV) and how to utilize off-the-shelf components for UAV empirical modeling. This research focuses on increasing the speed and accuracy of the UAV VTOL control design in fixed-wing mode. The first step is to carry out analysis and simulation. The model is analytically obtained using OpenVSP in longitudinal and lateral modes. The next step is to realize this analytical model for both the aircraft and the controls. The third step is to measure the flight characteristics of the aircraft. Based on the data recorded during flights, an empirical model is made using system identification technique. The final step is to vali-date the analytical model with the empirical model. The results show that the characteristics of the analytical mode fulfill the specified requirements and are close to the empirical model. Thus, it can be concluded that the analytical model can be implemented directly, and consequently, the VTOL UAV design and development process has been shortened

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Robust fault estimation using relative information in linear multi-agent networks

    Get PDF
    Journal ArticleIn this technical note, a robust fault estimation method, based on sliding mode observers, is proposed for a collection of agents undertaking a shared task and exchanging only relative information over a communication network. Since the 'system of systems' formed by the agents is not observable with respect to relative sensing information, by appropriate transformations and scalings of the inputs and outputs of the actual system, a meaningful observable subsystem is created. For this new subsystem, after modal decomposition based on the associated Laplacian, decoupled sliding mode observers, depending only on the individual node level dynamics of the network, can be created exploiting an existing design philosophy. These collectively form a centralized fault estimation scheme for the original system. © 1963-2012 IEEE

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building
    corecore