1,466 research outputs found

    Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic

    Full text link
    We investigate the asymptotic behavior of the steady-state queue length distribution under generalized max-weight scheduling in the presence of heavy-tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic, and the other receives light-tailed traffic. We study the class of throughput optimal max-weight-alpha scheduling policies, and derive an exact asymptotic characterization of the steady-state queue length distributions. In particular, we show that the tail of the light queue distribution is heavier than a power-law curve, whose tail coefficient we obtain explicitly. Our asymptotic characterization also contains an intuitively surprising result - the celebrated max-weight scheduling policy leads to the worst possible tail of the light queue distribution, among all non-idling policies. Motivated by the above negative result regarding the max-weight-alpha policy, we analyze a log-max-weight (LMW) scheduling policy. We show that the LMW policy guarantees an exponentially decaying light queue tail, while still being throughput optimal

    Scheduling strategies to mitigate the impact of bursty traffic in wireless networks

    Get PDF
    Recent work has shown that certain queue-length based scheduling algorithms, such as max-weight, can lead to poor delays in the presence of bursty traffic. To overcome this phenomenon, we consider the problem of designing scheduling policies that are robust to bursty traffic, while also amenable to practical implementation. Specifically, we discuss two mechanisms, one based on adaptive CSMA, and the second based on maximum-weight scheduling with capped queue lengths. We consider a simple queueing network consisting of two conflicting links. The traffic served by the first link is bursty, and is modeled as being heavy-tailed, while traffic at the second link is modeled using a light-tailed arrival process. In this setting, previous work has shown that even the light-tailed traffic would experience heavy-tailed delays under max-weight scheduling. In contrast, we demonstrate a threshold phenomenon in the relationship between the arrival rates and the queue backlog distributions. In particular, we show that with an adaptive CSMA scheme, when the arrival rate of the light-tailed traffic is less than a threshold value, the light-tailed traffic experiences a light-tailed queue backlog at steady state, whereas for arrival rates above the same threshold, the light-tailed traffic experiences a heavy-tailed queue backlog. We also show that a similar threshold behavior for max-weight scheduling with capped queue lengthsNational Science Foundation (U.S.) (Grant CNS-0915988)National Science Foundation (U.S.) (Grant CNS-1217048)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238

    Throughput Optimal Scheduling Over Time-Varying Channels in the Presence of Heavy-Tailed Traffic

    Get PDF
    We study the problem of scheduling over time varying links in a network that serves both heavy-tailed and light tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic (the heavy queue), and the other receives light-tailed traffic (the light queue). The queues are connected to the server through time-varying ON/OFF links, which model fading wireless channels. We first show that the policy that gives complete priority to the light-tailed traffic guarantees the best possible tail behavior of both queue backlog distributions, whenever the queues are stable. However, the priority policy is not throughput maximizing, and can cause undesirable instability effects in the heavy queue. Next, we study the class of throughput optimal max-weight-α scheduling policies. We discover a threshold phenomenon, and show that the steady state light queue backlog distribution is heavy-tailed for arrival rates above a threshold value, and light-tailed otherwise. We also obtain the exact tail coefficient of the light queue backlog distribution under max-weight-α scheduling. Finally, we study a log-max-weight scheduling policy, which is throughput optimal, and ensures that the light queue backlog distribution is light-tailed.National Science Foundation (U.S.) (Grant CNS-1217048)National Science Foundation (U.S.) (Grant CNS-0915988)National Science Foundation (U.S.) (CMMI-1234062)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238

    Max-weight scheduling in networks with heavy-tailed traffic

    Get PDF
    We consider the problem of packet scheduling in a single-hop network with a mix of heavy-tailed and light-tailed traffic, and analyze the impact of heavy-tailed traffic on the performance of Max-Weight scheduling. As a performance metric we use the delay stability of traffic flows: a traffic flow is delay stable if its expected steady-state delay is finite, and delay unstable otherwise. First, we show that a heavy-tailed traffic flow is delay unstable under any scheduling policy. Then, we focus on the celebrated Max-Weight scheduling policy, and show that a light-tailed flow that conflicts with a heavy-tailed flow is also delay unstable. This is true irrespective of the rate or the tail distribution of the light-tailed flow, or other scheduling constraints in the network. Surprisingly, we show that a light-tailed flow can be delay unstable, even when it does not conflict with heavy-tailed traffic. Furthermore, delay stability in this case may depend on the rate of the light-tailed flow. Finally, we turn our attention to the class of Max-Weight-α scheduling policies; we show that if the α-parameters are chosen suitably, then the sum of the α-moments of the steady-state queue lengths is finite. We provide an explicit upper bound for the latter quantity, from which we derive results related to the delay stability of traffic flows, and the scaling of moments of steady-state queue lengths with traffic intensity
    • …
    corecore