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Abstract—Recent work has shown that certain queue-length
based scheduling algorithms, such as max-weight, can lead to
poor delays in the presence of bursty traffic. To overcome this
phenomenon, we consider the problem of designing scheduling
policies that are robust to bursty traffic, while also amenable
to practical implementation. Specifically, we discuss two mech-
anisms, one based on adaptive CSMA, and the second based
on maximum-weight scheduling with capped queue lengths. We
consider a simple queueing network consisting of two conflicting
links. The traffic served by the first link is bursty, and is modeled
as being heavy-tailed, while traffic at the second link is modeled
using a light-tailed arrival process. In this setting, previous work
has shown that even the light-tailed traffic would experience
heavy-tailed delays under max-weight scheduling.

In contrast, we demonstrate a threshold phenomenon in the
relationship between the arrival rates and the queue backlog
distributions. In particular, we show that with an adaptive CSMA
scheme, when the arrival rate of the light-tailed traffic is less than
a threshold value, the light-tailed traffic experiences a light-tailed
queue backlog at steady state, whereas for arrival rates above the
same threshold, the light-tailed traffic experiences a heavy-tailed
queue backlog. We also show that a similar threshold behavior
for max-weight scheduling with capped queue lengths.

I. INTRODUCTION

Since modern data networks support highly heterogeneous
traffic sources, it is imperative to design network control
policies that are inherently robust to burstiness in traffic.
Ideally, it is desirable to design and implement control policies
that do not adversely affect the stability and delay properties
of one traffic flow, due to erratic or bursty behavior of another
traffic flow in the network. In this paper, we study scheduling
policies that are amenable to practical implementation, while
also exhibiting robustness against bursty traffic.

In the context of communication networks, link scheduling
for maximum throughput is a well studied problem. Maximum
weight scheduling, first proposed in [1], [2], forms the basis
for much of the literature on this topic. Despite being capable
of supporting the largest possible set of arrival rates in a
constrained queueing network, maximum weight scheduling
suffers from some drawbacks when it comes to practical
implementation. In particular, finding the maximum weight
schedule is generally NP-hard, and requires global exchange
of the queue length information.

In networks carrying highly heterogeneous traffic, max-
weight scheduling suffers another disadvantage. Specifically,
when max-weight scheduling is employed in a queueing

network carrying a mix of heavy-tailed and light-tailed traffic,
it has the tendency to allocate most of the service to the heavy-
tailed traffic flow, following the arrival of a large burst. This in
turn leads to inordinately large delays and queue backlogs for
the light-tailed flows. This tendency of max-weight scheduling
to ‘infect’ light-tailed traffic flows with heavy-tailed delays
was first reported in [3], and more thoroughly characterized
in [4]. In fact, [3] showed that under certain assumptions
on the arrival process, max-weight scheduling can lead to
unbounded expected queue occupancy for the light-tailed links
- thus resulting in a “delay instability” phenomenon. To help
mitigate this effect, [4] showed that a log-max-weight (LMW)
scheduling policy can be used to guarantee light-tailed queue
backlog for the light-tailed traffic flow, while also maintaining
system-wide stability.

While the results in [3], [4] indicate that generalized max-
weight policies with appropriately chosen queue length func-
tions can be robust under heterogeneous and bursty traffic,
some problems still remain. Most importantly, the policies
proposed in [4] need a priori knowledge that a particular
flow is heavy-tailed, but this is quite hard to determine
in practice. Further, generalized max-weight scheduling also
requires the global exchange of queue length information,
and the computational complexity involved in computing the
optimal schedule is prohibitive in large networks.

In a series of recent papers [5]-[8], adaptive CSMA (carrier
sense multiple access) based algorithms have been proposed,
and shown to achieve maximum throughput. The key idea
of adaptive CSMA scheduling is to adjust the transmission
aggressiveness (TA) of each link according to its local queue
length. Specifically, when the queue length of a link increases,
the link transmits more aggressively by using smaller back-off
time or larger transmission time; and the link does the opposite
when its queue length decreases. The underlying techniques
are inspired by ideas from statistical physics, and exploit
the product-form stationary distribution of the transmission
states under CSMA. Adaptive CSMA based algorithms are
expected to find wide-spread applications in wireless networks,
owing to their optimality, simplicity of operation, and inherent
scalability.

The main contribution of this paper is in analyzing the
performance of practical scheduling schemes that achieve
maximum throughput, yet help mitigate the effect of bursty
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traffic in the network. First we characterize the performance
of an adaptive CSMA algorithm in a queueing network that
serves highly heterogeneous traffic. Our study is motivated by
the fact that packet switched networks serve a wide variety
of bursty as well as benign traffic sources, and otherwise
desirable network control policies (such as adaptive CSMA)
must be evaluated for robustness under such varied traffic
characteristics. To this end, we consider a simple queueing
network consisting of two conflicting links that access a
server using adaptive CSMA. One of the links serves heavy-
tailed traffic, while the other link serves light-tailed traffic.
We demonstrate a threshold phenomenon in the relationship
between the arrival rates and the queue backlog distributions.
Specifically, we identify a threshold arrival rate A* such that
when the arrival rate of the light-tailed traffic is less than \*,
the light-tailed link has light-tailed queue backlog at steady-
state. When the arrival rate of the light-tailed traffic exceeds
A*, the light-tailed traffic suffers a heavy-tailed queue backlog.
Comparing this result to those in [3], [4], we can conclude that
adaptive CSMA exhibits superior robustness to heterogeneous
traffic sources compared to max-weight scheduling, in addition
to being much simpler to implement.

Second, we develop a variant of max-weight algorithm with
capped queue lengths, and again show that the capping of the
queue lengths helps mitigate the effects of heavy-tailed traffic.
Since the original max-weight algorithm utilizes potentially
unbounded queue length information, it is not directly suitable
for scenarios such as a wireless uplink, where the mobiles
have to quantize their queue lengths and report it to the
base station. To address this problem, we propose a simple
variant of the max-weight algorithm, in which the nodes
report their queue lengths accurately only if the value is less
than a predetermined cap value ()p,.x. This variant is clearly
amenable to finite bit rate implementation, and is suitable for
scenarios such as the wireless uplink. However, this variant
is not throughput optimal in general, since the policy has
no way of distinguishing between queues that are larger than
Qmax- On the other hand, we show that the stability region of
the capped max-weight policy approaches the system stability
region as QQumax tends to infinity. In other words, for any
supportable arrival rate vector, there is a large enough cap
value Q,ax such that the system is stable under the proposed
policy. We prove this result using a piecewise quadratic-linear
Lyapunov function.

Next, in order to evaluate the robustness of the capped
max-weight policy under bursty traffic, we apply the policy
to the system with two conflicting links, one of them carrying
heavy-tailed traffic. We demonstrate a threshold phenomenon
where the light-tailed traffic experiences a heavy-tailed queue
backlog if and only if the arrival rate exceeds half the server
capacity. Finally, if we have a priori information that a
particular traffic flow is heavy-tailed, we show that light-
tailed link can always be guaranteed a light-tailed backlog,
by choosing (slightly) different caps for the links.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the system model and the requisite mathe-
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Fig. 1. A queueing system with two conflicting links. One of the links
receives heavy-tailed traffic, while the other receives light-tailed traffic.

matical preliminaries. In Section III, we study the performance
of an adaptive CSMA algorithm in the presence of bursty
traffic. In Section IV, we study the max-weight scheduling
policy with capped queue lengths. In Section V we discuss
some numerical results, and we conclude in Section VI. A
subset of the results in this paper were presented by invitation
at a recent workshop [9].

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a system consisting of two queues, sharing a com-
mon server. The queues access the server through conflicting
wireless links, i.e., the two queues cannot be served at the
same time.

Time is slotted, with bursts of packets arriving at random
to each queue at the beginning of each slot. The server is
capable of serving one packet per time slot. Although we
postpone the precise assumptions on the traffic statistics, let us
loosely say that one of the queues receives light-tailed traffic,
while the other receives heavy-tailed traffic (Fig. 1). We will
refer to the two queues as the light queue and the heavy
queue, respectively. Before we specify the precise assumptions
on the arrival processes, we pause to present some relevant
definitions.

A. Heavy-tailed and light-tailed random variables

Definition 1: A non-negative random variable X is said to
be light-tailed if there exists § > 0 for which E [exp(0X)] <
0o. A random variable is heavy-tailed if it is not light-tailed.
In other words, a light-tailed random variable is one that has
a well defined moment generating function in a neighborhood
of the origin. The complementary distribution function of a
light-tailed random variable decays at least exponentially fast.
Heavy-tailed random variables are those which have com-
plementary distribution functions that decay slower than any
exponential. We now define the tail-coefficient of a random
variable.

Definition 2: The tail coefficient of a random variable X is
defined by

Cx =sup{c>0| E[X‘] < c0}.

In words, the tail coefficient is the threshold where the power
moment of a random variable starts to blow up. Note that the
tail coefficient of a light-tailed random variable is infinite. On
the other hand, the tail coefficient of a heavy-tailed random



variable may be infinite (e.g., log-normal distribution) or
finite (e.g., Pareto distribution). In this paper, we restrict our
attention to the class of heavy-tailed random variables which
have a finite tail coefficient.

Next, we state the precise assumptions on the arrival pro-
cesses.

B. Assumptions on the arrival processes

We assume that the arrival processes to the two queues are
independent of each other, and that the arrival process to each
queue is independent and identically distributed (i.i.d.) from
slot-to-slot. The number of packet arrivals to the light queue
during any slot is a light-tailed random variable, with mean
Ar. The number of packet arrivals to the heavy queue during
any slot is a heavy-tailed random variable, with tail coefficient
Cy (2 < Cg < o0), and mean A\g.

IIT. ADAPTIVE CSMA WITH HEAVY-TAILED TRAFFIC

In this section, we characterize the robustness of an adaptive
CSMA algorithm to bursty traffic. Specifically, we employ
the CSMA algorithm to schedule the links in Fig. 1 and
characterize the steady-state queue lengths. Our main result
in this section identifies a threshold arrival rate A* such that
when A7 < \*, the backlog at the light-tailed link is light-
tailed, and when Ay, > \*, the light-tailed traffic experiences
heavy-tailed queue backlog.

A. CSMA scheduling algorithm

We first describe the operation of the adaptive CSMA algo-
rithm. Without loss of generality, we assume that a discrete-
time version of the adaptive CSMA algorithm is utilized,
where time is slotted and one unit of data can be transmitted
in one slot. We note, however, that our main results are not
affected if the continuous-time CSMA in [5] are adopted. As
mentioned before, the key idea of adaptive CSMA scheduling
is to adjust the transmission aggressiveness (TA) of each link
according to its queue length. In this paper, we assume that
the TA is adjusted at every frame boundary, where each frame
has T time slots. Specifically, at the beginning of time slot
§T (j =0,1,2,...)!, the TA of link k (k = H, L) is updated
according to

Tk[j] :min{%Qk[ermax} (1)

where Qp[j] is the queue length of link & at the beginning of
time slot 57, o < 1 is a constant, and the constant parameter
Tmax 15 the maximum permissible TA.

With TA rj[j], the CSMA operation of link k is essentially
as follows (see [6] for more details). If link & is active (i.e.,
transmitting) in slot ¢, then it becomes inactive in slot t+1 with
probability 1/(1 4 exp(rg[4])). If link & and all its conflicting
links are inactive in slot ¢, then link & becomes active in slot
t + 1 with probability exp(ri[j])/(1 + exp(ri[j])). Clearly,
link % transmits more aggressively with a higher r[j].

IHere, the indices of time slots start with 0.

Suppose that the TA’s of the two links are fixed at rz and
rr respectively. Then, when the underlying CSMA Markov
chain reaches steady-state, and it can be shown following [5],
[6] that the service rate of link & is given by

si(r)

Let us refer to the interval between the beginnings of time
slots §7 and (j + 1)7T as “frame 5. It is not difficult to see
that {Q[j], 0[j]};j=0,1,... forms a Markov chain [10], where
o[j] is the transmission state (indicating whether link & (k =
H, L) is transmitting) just before slot j7'. It has been shown
in [10] that the “empirical service rate” 3[j] of link & (i.e.,
the total number of packets transmitted on link & during frame
7, divided by T') satisfies

B {8k [5]} — se(x[j])| < 0/T 3)

for some constant b > 0, where E;{-} is a shorthand for the
conditional expectation E{-|Q[j], o[j]}. Let us also define the
quantity

_ exp(rk)
1+ exp(rg) +exp(rry)’

k=HL (2

Vo exp(Tmax)
1+ 2exp(Tmax)

In light of (2), A* can be understood as the service rate
afforded to each of the queues, when both links attempt
transmission with the maximum permissible TA of 7. The
quantity A* will play an important role in our analysis.

The queue dynamics is given by

where ag[j] is the total number of packet arrivals to link &
during frame j. Recall that az,[j] is assumed to be a light-tailed
random variable, and ag[j] is assumed to be heavy-tailed.

“4)

B. Stability

Our first result shows that the adaptive CSMA algorithm
can stabilize arrival rates that lie arbitrarily close to the largest
possible stability region boundary, as long as the parameters
Tmax, I and « are chosen appropriately.

Theorem 1: Suppose that .« > 1, and that

exp(rmax)
)\L * >\H = 1+ eXp(Tmax) + exp(l) %
where € > 0. Choose T' > 2b/e. Then both queues are stable.

Remark 1: : Clearly, the stability region approaches the
largest possible region (A + Ay < 1) as rypax — oo and
e — 0. This stability result is shown to hold in very general
single-hop networks in [5]. However, for the simple system
under consideration, a proof involving a linear Lyapunov
function suffices, as shown in Appendix A.

C. Queue length behavior at steady-state

We are now ready to state the main results regarding the
steady-state queue lengths under adaptive CSMA. First, we
show that when A is less than \*, the steady-state queue
occupancy at the light queue is light-tailed.



Theorem 2: Suppose that A\, < A\*—e where € > 0. Choose
T > 2b/e. Then, the steady-state queue occupancy @y, of the
light queue is light-tailed.

Proof: We first show that whenever Qr[j] > 7'max~, the
light queue has negative drift. Suppose that Qr[j] > Tmax%-
Then, according to (1), r[j] = Tmax. Since rg[j] < rmax, by
(2), we have

. exp(rmax) *
sp(rlj]) > HTP(T) ="
Therefore, by (3),
exp(Tmax) €

E;{5L[j]} > sc(x[j]) — b/T > T e " 3

So A — E;{5.j]} < —e/2 < 0 (i.e., there is a negative
drift). Next, since the arrival process is light-tailed, we can
invoke Theorem 2.3 (Eq. (2.8)) in [11], to conclude that the
light queue distribution is light-tailed in steady-state. ]

Our next result is a converse to Theorem 2. In other words,
we show that when the arrival rate of the light-tailed traffic
is greater than the threshold value \*, the steady-state queue
occupancy at the light queue is heavy-tailed.

Theorem 3: Suppose A, > A*, and that the CSMA pa-
rameters are chosen such that the system is stable. Then, the
steady-state occupancy of the light queue is heavy-tailed. with
tail coefficient at most Cyg — 1.

Proof: We need to show that for any § > 0,

E[ fH—”‘S} = 0. (5)
Instead, we will first show that
lim E [Qp[j]7" 7] = co. (©)
Jj—oo

The above (Eq. 6) concerns the limit of the expectation of a
sequence of random variables, whereas what we really want to
show in (5) is regarding the expectation of the limiting random
variable Q7. Although it is by no means obvious that the limit
and the expectation can be interchanged here, we will ignore
this technical detail for now.

To prove (6), we first note that the time intervals between
two successive frame boundaries at which the system empties
constitute renewal intervals. Let us denote by Tz the random
variable representing the number of frames in a renewal
interval. Since the system is stable, we have E [Tg] < co.

Let us now define the renewal reward function

R[j] = Qu[j]7 1.
By the key renewal theorem [12],
E[R]
E[Tr]’
where E [R] denotes the expected reward accumulated over a

renewal interval, and E [Tg] < oo. It is therefore enough to
show that?

lim E[R[j]] =

j—o0

E

Tr
> QL[i]CH‘“‘S] = 0. (7)
=0

2Without loss of generality, we have considered a busy period that com-
mences at time 0.

The busy period that commences at time O can be of three
different types. It can commence with (i) a burst arriving
to the light-tailed link alone, or (ii) a burst arriving to the
heavy-tailed link alone, or (iii) bursts arriving to both links
simultaneously. It can be shown that all the three events have
positive probabilities. The event that is of interest to us is (ii),
i.e., the busy period commencing with a burst at the heavy
queue only, so that Qg[0] > 0 and Q1 [0] = 0. Let us denote
this event by €y = {Qx[0]) > 0,QL[0] = 0}.

We now have the following lower bound on (7)

Tr
E -
1=0

Tr
> QLmCHW] >P{En}E
1=0

=P{Ey}E, |E

iQL[i]CH_1+6‘gH7 QH[O] = b‘|‘| .

In the last step above, we have iterated the expectation over the
initial burst size b. The inner expectation above is a function
of b; let us denote it by

gs(b) :==E

Tr
ZQL[Z'}CHAM‘gm Qul0] = b} .
i=0

Thus,

Tr
E [Z QL[Z']CH_H‘S] = P{Eu}Ey [g5(b)]
i=0
> P{Eu} Ey[95(0)1p>0,], (8)

Vby > 1. Since the above bound is true for any by, we can
make by as large as we want.

For large enough b, the TA of the heavy queue will saturate
at Tmax Starting from frame 1, and remain at 7., until the
occupancy of the heavy queue falls to % In other words,
the TA of the heavy queue will remain at r,,, for at least 7,
frames, where

Tmax

b —Trpax/a b

Tb

T T o

Note that 7, is O(b). During these 7, time frames, the light
queue receives service at a rate of A* at best, according to (2),
(3) and (4). At the same time, the light queue receives arrivals
at the rate Ap. Since Ay > \*, the light queue will build up
to O(b) during these 7, frames with high probability.

To make the above argument precise, choose £ > 0 such
that A\, — A\* — 2¢ = n > 0, and choose an arbitrarily small
k > 0. For any sample path of arrivals to the light queue,
the TA of the light queue is at most ry .. Since the heavy
queue is also attempting at 7,5 during the first 7, frames, it
is clear that the long term service rate given to the light queue
can be at most \*. Indeed, using the machinery in [10], it can
be shown that for every arrival sample path during the first
Ty time frames, and for suitably large 7" and b, the empirical



service afforded to the light queue satisfies®
1 &
P — > T§[j] < A" >1—k. 9
Tn,; Sl <N +€p 21—k ©)

Next, we invoke the weak law of large numbers for the light-
tailed arrival process to assert that the empirical rate is very
likely to be around Ap. That is, for any « > 0 and large
enough b,

(10)

1 &
P{—— 1>A, —€5>1— k.
TTb;aLD]_ L—&p>1—k

Note that (9) holds for all arrival sample paths, and in
particular, for the ‘typical’ sample paths characterized in (10).
Therefore, we can assert that the event corresponding to the
arrivals being typical (in the sense of (10)) as well as the
empirical service being typical has high probability. Thus,

To

1
il e -
T ;(%M T3L[j]) > A\p — A" =26 5 > 1— 25,
an
which implies that
P{Qr[m] > Tron} > 1 - 2k. (12)

The above lower bound asserts that the light queue at least
grows to O(b) with high probability, by the end of the frame
Tp. It is now inevitable that the light queue stays above
QL [m]/2 for another O(b) time slots, since at most one packet
can be served in a slot. In particular,

QL] >Tmn/2; 1 <j< T+ (g) ,

with probability at least 1 — 2. Thus, the light queue stays at
O(b) for O(b) time frames with high probability.

We can thus write the following lower bound for large
enough by and b > by

Tr
95(0)Lip>p0) = E [Z QL) | Ey, Qul0] = b] Lib>bo}

=0
mh+7 (%)
> (1-28) > (Trn/2) 7" 7| Lpsigy

i:Tb

= (1= 26)T (mn/2) 7" Lgpnpey = KibC 0000y,
(13)

for some positive constant K. Now, we use (13) in (8) to get

Tr
E [Z QL[i]CH_1+51 >P{En}Ey [KleH+51b>bo] = 0.
i=0

The last step is because the initial burst size b has tail
coefficient C7, so that Ey, [b97+°] = B, [b7 01,5, ] = o0

3The probabilities in (9) through (12) are conditioned on £, and on some
b > bo, where by is chosen suitably large. We refrain from explicitly notating
the conditioning, to avoid cumbersome expressions.

for all by and & > 0. Therefore, we are done proving (7), from
which (6) follows.

Finally, to prove that the limit and expectation can legiti-
mately be interchanged in (6), one needs to use a truncation
argument, followed by repeated use of the monotone conver-
gence theorem and the dominated convergence theorem. In
particular, we can imitate the methodology used in proving
[13, Proposition 5.4]. |

D. Discussion

In this section, we studied the performance of adaptive
CSMA under heavy-tailed traffic. We identified a threshold
arrival rate A\*, such that when the arrival rate of the light-tailed
traffic is less than \*, the light queue has light-tailed queue
backlog in steady-state (Theorem 2). When the arrival rate of
the light-tailed traffic exceeds \*, the light-tailed traffic suffers
a heavy-tailed queue backlog in steady-state (Theorem 3).
Since A* is close to one half for large ry,.y, our result is
tantamount to saying that adaptive CSMA induces heavy-tailed
backlog for the light queue only if the light-tailed traffic is
responsible for more than half the total supportable traffic rate
in the system.

On the other hand, it was shown in [4] that maximum weight
scheduling and its generalized version called max-weight-c
scheduling induce a heavy-tailed queue backlog at the light
queue, for all non-zero arrival rates of the heavy-tailed and
light-tailed traffic. Furthermore, it was shown that max-weight
scheduling induces the worst possible asymptotic behavior on
the light queue among all non-idling policies. In comparison,
the adaptive CSMA algorithm performs better in terms of the
backlog faced by the light-tailed traffic.

As explained in [4], max-weight scheduling induces very
poor queue backlog on the light-tailed link because large burst
arrivals to the heavy-tailed link can starve the light queue for
extended durations. On the other hand, with adaptive CSMA,
all links have bounded TA values. As a result, even when
large bursts arrive at a link carrying heavy-tailed traffic, the
link cannot take over the server by attempting to transmit
with arbitrary aggressiveness. This has the effect of ‘shielding’
the light-tailed traffic from the large bursts, at least when the
arrival rate is smaller than the threshold value. Furthermore,
adaptive CSMA does not need any a priori information about
traffic statistics. In contrast, the policies proposed in [4] to
mitigate the effect of heavy-tailed traffic need to have a priori
information about which flow is heavy-tailed.

We wish to point out that the cap on the TA values of
each link in adaptive CSMA was originally intended as a
mechanism to bound the mixing time of the CSMA Markov
chain. In other words, capped TA values imply bounded
‘fugacities’ in the underlying Glauber dynamics, which leads
to bounded mixing time. However in our context, the bounded
TA values help in another way as well, by preventing the
heavy-tailed link from attempting too aggressively.



IV. MAXIMUM WEIGHT SCHEDULING WITH CAPPED
QUEUE LENGTHS

As we just discussed, adaptive CSMA is able to mitigate the
effects of the heavy-tailed traffic by capping the transmission
aggressiveness (TA) parameter, thus preventing the heavy-
tailed link from attempting too aggressively. In this section
we show that a similar idea can also be used with max-
weight scheduling. In particular, capping the queue-length
values can similarly be used to prevent the heavy-tailed traffic
from saturating the channel. We develop a simple variation
of the well known max-weight scheduling policy, where the
nodes only report their capped queue lengths to the scheduler.
In particular, a queue length cap QQmax 1S chosen in advance,
and the nodes report their queue lengths accurately when it
is less than or equal to Qpax, otherwise nodes simply report
Qumax- In the proposed scheme, the scheduler performs max-
weight scheduling as usual, except it only has access to the
capped queue length values from each node.

Since the scheduler cannot discern large queue build up
beyond Quax in any queue, the max-weight policy with
capped queue lengths is not throughput optimal in general.
Interestingly however, we show in this section that the stabil-
ity region of max-weight policy with capped queue lengths
approaches the stability region of the system, as the cap value
increases. Specifically, in a general single-hop network and
for any arrival rate vector stabilizable by the max-weight
scheduling policy, there exists a cap value Q)y,ax for which the
corresponding max-weight policy with capped queue lengths
can stabilize the system under that arrival rate vector.

We now describe a simple single-hop network model and
describe the operation of the max-weight policy with capped
queue lengths. Consider a network represented by a graph G =
(V, E), where E represents the set of links in the network,
and V denotes the set of nodes. Let S denote the set of all
feasible link activations in the network. Note that S is usually
a proper subset of the power set of E, since not all links can
be simultaneously activated, due to interference constraints.
A scheduling policy selects a valid link schedule during each
time slot from the feasible set S. The stability region A of the
system is defined as the set of all arrival rate vectors that can
be stably supported by some scheduling policy.

Let puy, k € E denote the transmission rate on link k, if the
link were to be scheduled. The celebrated max-weight policy
[1], [2] picks the following schedule s*(¢) at each time slot,
where

*(t) = t .
$7(t) = avg max > Qu(t)u
kes(t)

The max-weight policy with capped queue lengths operates
as follows. Let QQpax be a cap value chosen a priori. During
time slot ¢, each link k reports its capped queue length

Qk (t) = mln(Qk (t)v Qmax)

to the scheduler. The scheduler picks the schedule 3(t) ac-

cording to

3(t) = arg max " Qu(t)u (14)
kes(t)

s(t)eS

In case of a tie, the scheduler picks uniformly at random
among the tied schedules.

The max-weight policy with capped queue lengths is not
throughput optimal in general. However, we show next that the
policy can come arbitrarily close to being throughput optimal,
for a large enough cap value.

Theorem 4: Let )\ be any arrival rate vector in the interior
of the stability region A defined above. Then, there exists a
value of QQu.x such that the max-weight policy with queue
lengths capped at Qy,ax can keep the queues in the single-hop
network stable, when the arrival rate is \.

The proof of Theorem 4 utilizes a piecewise quadratic-linear
Lyapunov function, similar to [14, Section 3.11], and is given
in Appendix B.

We remark that the value of QQ.x needed to stabilize
the system depends on the arrival rate vector in general.
Further, the policy is amenable to finite bit-rate implementation
with quantized queue length information, and is particularly
well suited to a wireless uplink scenario, where centralized
scheduling is not a problem.

Having shown in Theorem 4 that max-weight scheduling
with capped queue lengths is asymptotically throughput opti-
mal, we proceed to investigate its performance in the presence
of heavy-tailed traffic. To that end, we return to the simple two
link network in Fig. 1, and analyze the queue backlogs under
max-weight scheduling with capped queue lengths.

A. Impact of heavy-tailed traffic

Recall the system model in Fig. 1, and the assumptions
in Section II-B. Suppose now that max-weight scheduling
with queue length cap Quax is performed in this system.
In particular, for this simple system, the scheduler will serve
the longer queue in each slot, as long as the shortest queue
is smaller than Q,.x. If both queues are longer than Quax
during a particular slot, the scheduler will serve one of the
queues uniformly at random.

We show that for any fixed Qu,ax, the light queue suffers
a heavy-tailed queue backlog, if its arrival rate exceeds 1/2,
and a light-tailed backlog if its arrival rate is less than 1/2.

Theorem 5: Suppose that a max-weight policy with queue
lengths capped at Q. is used to schedule the links in Fig. 1.
Then, if Ay > 1/2, the steady-state queue backlog @, at the
light queue is heavy-tailed with tail coefficient Cy — 1. If
AL < 1/2, Qr is light-tailed.

Proof: The key observation is that whenever both queues
have more than Qp,.x packets, the max-weight policy with
capped queue lengths behaves essentially like a random
scheduling policy. Therefore, it should not be surprising that
the asymptotic steady-state queue length distributions should
be similar to that under a randomized scheduling policy [3].
Indeed, the result can be proved by using techniques similar



to Theorem 3 for the heavy-tailed part and Theorem 2 for the
light-tailed part. ]
Thus, we have shown that under max-weight policy with
capped queue lengths, the light queue suffers a heavy-tailed
queue backlog only when the arrival rate to the queue exceeds
half the server capacity. This is in contrast to the original max-
weight policy always induces heavy-tailed queue backlog at
the light queue, for all non-zero arrival rates [3], [4].

Finally, if we know a priori which of the two links carries
heavy-tailed traffic, we show that it is possible to ensure light-
tailed backlog at the light queue for all arrival rates. A simple
way to achieve this is to assign a larger queue length cap
to the light-tailed link, so that when @, is large, the light-
tailed link effectively gets priority. This is sufficient to induce
a light-tailed backlog at the light queue.

Proposition 1: Suppose that the following variant of the
max-weight policy with capped queue lengths is implemented
in the system shown in Fig. 1. The heavy-tailed link reports its
queue length capped by some Q1,.x, While the light-tailed link
reports its queue length capped by Qax + 1. In this case, the
steady-state backlog at the light queue is light-tailed, whenever
the system is stable.

Proof: When @)1, is large enough (in particular, larger than
Qmax + 1), the heavy-tailed link reports min{Qz, Qmax} <
Qumax as its queue length, while the light-tailed link reports
Qumax + 1. Thus, the scheduler will give priority to the light-
tailed traffic whenever QQp > Quax + 1. This implies that the
light queue backlog is light-tailed for all arrival rates. ]

V. NUMERICAL RESULTS

In this section, we use numerical simulations to study the
tail behavior of the steady-state backlog at the light-tailed link.
In particular, we compare the tail behavior under adaptive
CSMA and max-weight scheduling. We simulate a scenario
where the heavy queue is fed by a discrete Pareto distributed
traffic source, with arrival rate Ay = 0.3 packets/slot, and
tail coefficient C'y = 3. The light queue is fed by a discrete
Poisson source, with A\;, = 0.4 packets/slot. The system was
simulated in Matlab over 100 million time slots to obtain the
empirical backlog distribution.

Fig. 2 shows a log-log plot of the backlog tail distribution
at the light queue (i.e., logP{Qr > b} versus logb) under
max-weight scheduling, and the discrete time adaptive CSMA
algorithm proposed in [6]. As seen from the figure, the
plot corresponding to max-weight scheduling is approximately
linear with a negative slope, indicating that the backlog distri-
bution is heavy-tailed [3]. In contrast, the plot corresponding
to CSMA exhibits a distinctive ‘waterfall’ shape, which is
characteristic of a light-tailed distribution. This verifies our
assertion that adaptive CSMA can lead to a light-tailed backlog
at the light queue, even if max-weight scheduling leads to a
heavy-tailed backlog. Another interesting feature to note in
Fig. 2 is that the average queue backlog seems to be much
larger under CSMA than under max-weight, although the
former exhibits superior asymptotics. Indeed, simple CSMA
algorithms are known to suffer from poor average delay, and
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Fig. 2. Log-log plot of the backlog tail distribution P{Q, > b}.

various innovative modifications have been proposed in the
literature [6], [10], [15] to counter this problem.

VI. CONCLUDING REMARKS

We investigated scheduling policies that are robust to bursty
traffic, while also being suitable to practical implementation.
In particular, we discussed two scheduling schemes, one based
on adaptive CSMA, and another based on max-weight schedul-
ing with capped queue lengths. In a simple queueing network
consisting of two links, one of them carrying heavy-tailed
traffic, we showed a threshold phenomenon for the asymptotic
queue length behavior. Specifically, for both adaptive CSMA
and max-weight scheduling with capped queue lengths, we
showed that the light queue suffers a heavy-tailed backlog
if and only if the arrival rate exceeds about half the server
capacity.

Our study suggests that adaptive CSMA has the potential
to be more robust than max-weight scheduling, in queueing
networks that serve highly heterogeneous traffic. Our results
also suggest that max-weight scheduling, when implemented
approximately using quantized queue length information, does
not perform as poorly as predicted in [4]. Notably, neither the
adaptive CSMA algorithm nor the max-weight policy with
capped queue lengths needs a priori information regarding
which particular flow in the network is heavy-tailed. Finally,
if this information is available a priori, then we show that the
capped max-weight policy can be suitably modified to ensure
light-tailed backlog at the light queue for all arrival rates.

APPENDIX A
PROOF OF THEOREM 1

Consider the Lyapunov function L[j] := Qr[j] + Qxlj] >
0. We will show that if L[j] > 2ry.xT/c, then the following
holds:

E,{L[j +1] - Llj]} < ~Te. (15)

Suppose that L[j] > 2rmaxT/a, then Qglj] > rmaxI/a
for some k. Without loss in generality, assume that Q[j] >



Tmax 1 /@. SO TL[j] = Tmax. Since rmax > 1 and o < 1, one
has Qp[j] > T'. Therefore, Qr[j + 1] = Qr[j] — T - 3.[4] +
ar, [j}

Now consider two cases.

Case 1: If Qulj] > T, then Qulj +1] = Qulj] - T -
Smlj] + amlj]. Consequently,

E;{L[j + 1]} = L[j] + T{\r + An — E;{8.[j] + 3ulil}}-
With T' > 2b/e, the RHS of (3) is less than or equal to €/2.
Therefore,
exp(rilj]) + exp(rmj])
1+ exp(rr[j]) + exp(rulj])

€XP (rmax )
1+ €xp (Tmax )

— €

E; {5 + 3ulil} >

So (15) holds.
Case 2: If Qp[j] < T, we have Qu[j+1] < Quljl+anlj]-
So

Ei{Llj + 1} < LU+ T{AL + Aw — E{8.[j]}}-

Since Qp[j] < T we also have r[j] < a < 1. Therefore

o eXp(’rmax)
SL(r[]D - 1+ eXp('r'max) —+ eXp(TH[j])
< eXp(TmaX)
= 1+ exp(rmax) + exp(1)’

So (15) still holds.

Therefore, the Lyapunov function has a negative drift
whenever L[j] > 2rpaxT/a. Combined with the fact that
E;{L[j + 1]} — L[j] is bounded, by the Foster-Lyapunov
Criterion, we conclude that the queues are stable.

APPENDIX B
PROOF OF THEOREM 4

We prove this result for a general single-hop network.
Define the Lyapunov function L(Q) := ), Lj(Q)) where

Q2+2

Lk(Qk) = (QmaXQk)l{QkZQmax} + %1{Qk <Qmax}'

We have

OL(Q)
0Qy

- Qmaxl{QkZQmax} + le{Qk<Qmax}

Let 2x(Q(t)) := px - Lires(r)y» where 5(t) is defined in (14).
Then,
A(t) =

<

E[L(Q(t+1)IQ(1))] — L(Q(#))
0

L(Q)
SR Ay =21 (Q(1)] + D/2

= (Q() A Quax)" (A = x(Q(t))) + D/2

Q1)) (A = x(Q(t))) + D/2,

where D := Y, Elai(t)] + >, pi, with ay(t) being the
amount of arrivals to queue k in slot ¢. D is finite since we
have assumed that the tail coefficient of a(t) is larger than
2.

Since A € A°, there is € > 0 such that A + €1 € A. Since
x(Q(t)) € arg maxxen (Q(t))Tx, we have

(Q))"x(Q)) = (Q(t))" (A + €1).

Therefore, ~
At) < —e-(Q(t)T1+ D/2.

Choose Qmax = D/e. Then, whenever ||Q(t)||oo = Qmaxs
At) € —eQmax + D/2 =-D/2 < 0. (17)

Also, for any Q(t), we have A(t) < D/2 < oo. Therefore,
by the Foster-Lyapunov Criterion, Q(t) is stable under the
policy.
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