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Abstract

We study the problem of scheduling over time-varying links in a network that serves both heavy-

tailed and light-tailed traffic. We consider a system consisting of two parallel queues, served by a single

server. One of the queues receives heavy-tailed traffic (the “heavy queue”), and the other receives light-

tailed traffic (the “light queue”). The queues are connected to the server through time-varying ON/OFF

links, which model fading wireless channels. We first show that the policy that gives complete priority

to the light-tailed traffic guarantees the best possible tail behavior of both queue backlog distributions,

whenever the queues are stable. However, the priority policy is not throughput maximizing, and can

cause undesirable instability effects in the heavy queue. Next, we study the class of throughput optimal

max-weight-α scheduling policies. We discover a threshold phenomenon, and show that the steady-state

light queue backlog distribution is heavy-tailed for arrival rates above a threshold value, and light-tailed

otherwise. We also obtain the exact ‘tail coefficient’ of the light queue backlog distribution under max-

weight-α scheduling. Finally, we analyze a log-max-weight (LMW) scheduling policy, and show that in

addition to being throughput optimal, the LMW policy ensures that the light queue backlog distribution

is light-tailed.
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I. INTRODUCTION

Scheduling conflicting communication links is an important task that arises in a variety of settings,

including wireless networks and high speed switches. There is a large literature on scheduling conflicting

links in a constrained queueing network, and many of these papers are based on the maximum-weight

scheduling framework proposed in [20], [21]. The importance of maximum-weight scheduling is due

to its ‘throughput optimality’ property. That is, it can stably support the largest set of traffic rates that

is supportable by a given queueing network. For this reason, the max-weight family of scheduling

policies has received much attention in various networking contexts, including switches [13], satellites

[16], wireless [17], and optical networks [2].

Although throughput is an important first-order performance metric, a more discerning metric is the

delay experienced by the traffic flows. While the throughput optimality of max-weight scheduling and

its variants have been well understood for a while, the delay properties of these scheduling policies are

not as thoroughly understood. Average delay bounds, such as those in [10], [17] can be derived using

Lyapunov drift techniques; however, these are quite loose in general.

Existing results on the delay performance of max-weight policies indicate that these policies tend to

perform well when the competing traffic sources are, loosely speaking, symmetric and well-behaved.

This is intuitively due to the tendency of max-weight policies to balance the queues, by assigning greater

service rates to links that have larger queue backlogs. For example, [21] contains a strong sample path

optimality result for queue backlogs under stochastically symmetric traffic to parallel queues, and which

is generalized in [6]. Additionally, [15] derives order optimal delay bounds when the arrival rates are

‘f -balanced’, and lie inside a scaled version of the stability region. Certain large deviations optimality

results are also known [18], [19] for the class of max-weight policies when all the arrival processes are

sufficiently well-behaved and light-tailed.

On the other hand, the traffic flows encountered in practice tend to be highly asymmetric, exhibiting

wide range of variability or burstiness [11]. In this paper, we analyze the delay performance of

generalized max-weight policies, when the competing traffic sources are highly asymmetric. We study

a system consisting of two parallel queues, served by a single server. One of the queues is fed by a

highly bursty arrival process, which is modeled as being heavy-tailed. The other queue is fed by a

light-tailed arrival process. We refer to these queues as the ‘heavy’ and ‘light’ queues, respectively. The

performance metric we focus on in the present paper is the tail behavior of the steady-state queue backlog

distributions. This tail behavior essentially captures the probability of a large delay event occurring in
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the queueing system.

To our knowledge, [12] was the first paper to study the performance of the max-weight family

of scheduling policies, when heavy-tailed and light-tailed traffic compete for service. Specifically, it

was shown in [12] that when the heavy-tailed traffic has an infinite variance, the light-tailed traffic

experiences an infinite expected delay under max-weight scheduling, due to competition from the heavy-

tailed traffic. The authors also studied a more general max-weight-α policy, wherein by increasing the

preference afforded to the light queue, it is possible to make the expected delay of the light-tailed

traffic finite. In a subsequent paper [9], we obtained an exact asymptotic characterization of the steady-

state queue-backlog distributions under generalized max-weight policies, for a fairly general class of

heavy-tailed distributions. Our results in [9] show that the light-tailed traffic always suffers a heavy-

tailed backlog under max-weight-α scheduling, although the ‘tail coefficient’ can be influenced by

appropriately adjusting the α parameters in the policy.

In [9], we assume that the queues are reliably connected to the server. In the present paper, we

introduce channel variability into the model, and assume that the queues are connected to the server

through time-varying ON/OFF links (Fig. 1). This can be viewed as a rudimentary model of a wireless

uplink/downlink scenario, with two nodes communicating with a base station through fading channels.

In this setup with time-varying ON/OFF links, we discover a threshold phenomenon with respect to the

arrival rate of the light-tailed traffic, which essentially governs the queue backlog distribution faced by

the light-tailed traffic. Under max-weight-α scheduling, we show that the light queue backlog distribution

is light-tailed if the arrival rate to the light queue is below a certain threshold value, and heavy-tailed

if the arrival rate is above the threshold value. This is in contrast with the case of reliable channels [9],

where the light-tailed traffic faces heavy-tailed queue backlog for all positive arrival rates. Further, when

the arrival rate is above the threshold value, we obtain the exact tail coefficient of the queue backlog

distributions, which helps us identify all the bounded moments of the queue backlogs. This threshold

behavior is intuitively due to the fact that the light-tailed traffic can always be served whenever the link

serving the heavy-tailed queue is OFF, and is therefore guaranteed a minimum service rate independent

of the behavior of the heavy queue.

The simplest way to guarantee a good tail behavior for the light queue distribution is to give the

light queue complete priority over the heavy queue, so that it does not have to compete with the heavy

queue for service. However, giving priority to the light queue has an important shortcoming – it is not

a throughput optimal scheduling policy for the system. Indeed, we characterize the loss in throughput,

and point out that giving complete priority to the light queue can cause undesirable instability effects
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Fig. 1. A system of two parallel queues, with one of them fed with heavy-tailed traffic. The channels connecting the queues

to the server are unreliable ON/OFF links.

in the heavy queue.

Thus on the one hand, the throughput optimal max-weight-α scheduling policy can lead to heavy-

tailed asymptotics for the light queue. On the other hand, giving priority to the light queue leads to

good tail behavior for the light queue, but is not throughput optimal. As a compromise, we study a

log-max-weight (LMW) scheduling policy, which gives significantly more importance to the light queue

compared to max-weight-α scheduling. We show that the LMW policy has both desirable attributes –

namely, it is throughput optimal, and ensures good tail behavior for the light queue distribution.

The remainder of this paper is organized as follows. In Section II, we introduce the system model and

the requisite technical preliminaries. In Section III, we study priority scheduling. Section IV deals with

queue backlog behavior under max-weight-α scheduling. In Section V, we analyze the queue backlog

behavior under log-max-weight scheduling. Section VI concludes the paper.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this section, we describe the system model, and specify our assumptions about the traffic statistics.

Our system consists of two parallel queues, H and L, served by a single server, as depicted in Fig. 1.

Time is slotted, and stochastic arrivals of packet bursts occur to each queue in each slot. The server

is capable of serving one packet per time slot, from only one of the queues according to a scheduling

policy. Let H(t) and L(t) denote the number of packets that arrive at the end of slot t, to H and L

respectively. Although we postpone the precise assumptions on the traffic statistics to Section II-B, let

us loosely say that the input L(t) is light-tailed, and H(t) is heavy-tailed. We will refer to the queues

H and L as the heavy and light queues, respectively.

The queues are connected to the server through time-varying links. Let SH(t) ∈ {0, 1} and SL(t) ∈

{0, 1} respectively denote the states of the channels connecting the H and L queues to the server. When

a channel is in state 0, it is OFF, and no packets can be served from the corresponding queue in that
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slot. When a channel is in state 1, it is ON, and a packet can be served from the corresponding queue

if the server is assigned to that queue. This channel model can be used to represent fading wireless

links in a two-user up-link or down-link system. We assume that the scheduler can observe the current

channel states as well as the queue lengths before making a scheduling decision in a slot.

The channel processes SH(t) and SL(t) are independent of each other, and independent of the arrival

processes. We assume that SH(t) and SL(t) are i.i.d. from slot to slot, distributed according to Bernoulli

processes with positive means pH and pL respectively. That is, P {Si(·) = 1} = pi, i ∈ {H,L}. We

say that a particular time slot t is exclusive to H , if SH(t) = 1 and SL(t) = 0, and similarly for L.

Before we specify the precise assumptions on the arrival processes, we pause to make some relevant

definitions.

A. Heavy-tailed and light-tailed random variables

Definition 1: A non-negative random variable X is said to be light-tailed if there exists θ > 0 for

which E [exp(θX)] < ∞. A random variable is heavy-tailed if it is not light-tailed.

In other words, a light-tailed random variable is one that has a well defined moment generating

function in a neighborhood of the origin. The complementary distribution function of a light-tailed

random variable decays at least exponentially fast. Heavy-tailed random variables are those that have

complementary distribution functions that decay slower than any exponential. We now define the tail

coefficient of a random variable.

Definition 2: The tail coefficient of a random variable X is defined by

CX = sup{c ≥ 0 | E [Xc] < ∞}.

In words, the tail coefficient is the threshold where the power moment of a random variable starts to

blow up. Note that the tail coefficient of a light-tailed random variable is infinite. On the other hand,

the tail coefficient of a heavy-tailed random variable may be infinite (e.g., log-normal) or finite (e.g.,

Pareto). In this paper, we restrict our attention to the class of heavy-tailed random variables that have

a finite tail coefficient.

We now state the precise assumptions on the arrival processes.

B. Assumptions on the arrival processes

1) The arrival processes H(t) and L(t) are independent of each other.

2) H(t) is independent and identically distributed (i.i.d.) from slot-to-slot.
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3) L(t) is i.i.d. from slot-to-slot.

4) L(·) is light-tailed with E [L(t)] = λL.

5) H(·) is heavy-tailed with tail coefficient CH (1 < CH < ∞), and E [H(t)] = λH .

The conditions for a rate pair (λH , λL) to be stably1 supportable in this system are well known.

Specifically, it follows from the results in [21] that the rate region of the system is given by

Λ = {(λH , λL) | 0 ≤ λL < pL, 0 ≤ λH < pH , λH + λL < pH + pL − pHpL } . (1)

Thus, the rate region is pentagonal, with its boundary indicated by the solid line in Fig. 2.

Let qH(t) and qL(t), respectively, denote the number of packets in H and L at the beginning of

slot t, under a particular scheduling policy, and let qH and qL denote the corresponding steady-state

queue backlogs when they exist. Our aim is to characterize the distributions of qH and qL under various

scheduling policies.

III. PRIORITY POLICIES

In this section, we study two extremal scheduling policies, namely, priority for L and priority for H .

Our analysis helps us arrive at the conclusion that the tail of the heavy queue is inevitably heavy-tailed

under any scheduling policy.

A. Priority for the heavy-tailed traffic

Under priority for H , the heavy queue receives service whenever it is non-empty and connected to

the server. Queue L receives service during its exclusive slots, and when both queues are connected, but

H is empty. It should be intuitively clear at the outset that this policy is bound to have an undesirable

impact on the light queue. The reason we analyze this policy is that it gives us a best case scenario

for the heavy queue. The following result shows that the heavy queue backlog distribution is one order

heavier than its input distribution under this policy.

Proposition 1: Under priority for H , the steady-state queue backlog distribution of the heavy queue

is a heavy-tailed random variable with tail coefficient equal to CH − 1. That is, for every ϵ > 0, we

have

E
[
qCH−1−ϵ
H

]
< ∞, (2)

and

E
[
qCH−1+ϵ
H

]
= ∞. (3)

1The notion of stability we use is the positive recurrence of the system backlog Markov chain.
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Fig. 2. The rate region of the system is shown in solid line, and the set of stabilizable rates under priority for L is the region

under the dashed line.

Proof: We first note that under priority for H, the heavy queue behaves like a discrete time G/M/1

system. For such a queue, the upper bound (2) is easily obtained using a drift argument for the Lyapunov

function V (qH(t)) = qH(t)CH−ϵ. To obtain the lower bound (3), let us define H̃ as a fictitious heavy

queue, which is fed by the same input sample path as the original queue H. However, H̃ is always

connected to the server, and receives service in every slot. Notice now that qH stochastically dominates

qH̃ . It is therefore sufficient to show that E
[
qCH−1+ϵ

H̃

]
= ∞, and this can be accomplished by following

[9, Theorem 1] . 2

Since priority for H affords the most favorable treatment to the heavy queue, it follows that the tail

behavior of H can be no better than the above under any policy.

Proposition 2: Under any scheduling policy, qH is heavy-tailed with tail coefficient at most CH − 1.

That is, Equation (3) holds for all scheduling policies.

B. Priority for the light-tailed traffic

Under priority for L, the light queue is served whenever its channel is ON, and L is non-empty. The

heavy queue is served during the exclusive slots of H , and in the slots when both channels are ON, but

L is empty. This policy ensures that the light queue does not have to compete with the heavy queue for

service, and guarantees the lowest possible light queue backlog among all policies. However, we show

that this policy is not throughput optimal, and that it fails to stabilize the heavy queue for some arrival

rates within the rate region in (1). The following theorem characterizes the behavior of both queues

under priority for L.

Theorem 1: The following statements hold under priority scheduling for the light queue.
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(i) If λH > pH(1− λL), the heavy queue is unstable, and no steady-state exists.

(ii) If λH < pH(1 − λL), the heavy queue is stable, and its steady-state backlog qH is heavy-tailed

with tail coefficient CH − 1.

(iii) qL is light-tailed and satisfies the LDP

lim
b→∞

−1

b
logP {qL > b} = IL,

where IL is the intrinsic exponent of the light queue given by

IL = sup
{
θ
∣∣∣ ΛL(θ)− log

(
1− pL + pLe

θ
)
< 0

}
, (4)

and ΛL(θ) = logE
[
eθL(1)

]
is the log moment generating function of L(·).

In Figure 2, the line λH = pH(1−λL) is shown using a dashed segment. The above theorem asserts

that H is stable under priority for L only in the trapezoidal region under the dashed line, while the

rate region of the system is clearly larger. Therefore, priority for L is not throughput optimal in this

setting. To summarize, priority for L can lead to instability of the heavy queue, but for all arrival rates

that it can stabilize, the asymptotic behavior of both queues is as good as it can possibly be. Let us

now prove the above theorem.

Proof: First, we note that the light queue behaves like a discrete time G/M/1 queue under priority, since

the service time for each packet is geometrically distributed with mean 1/pL. Thus, qL is light-tailed,

and satisfies the same LDP as a G/M/1 queue. Statement (iii) therefore follows from classical large

deviation results [5, Theorem 1.4].

Let us now prove statement (i) of the theorem. Under priority for L, denote by D̂H(t) ∈ {0, 1}

the indicator of a service opportunity afforded to the heavy queue in slot t. Thus, D̂H(t) = 1 if H

is ON and the server is assigned to H during slot t, and zero otherwise. Note that D̂H(t) = 1 does

not necessarily imply a departure from the heavy queue in that slot, since H could be empty. We will

compute the long term average rate of service opportunities given to H under priority for L, defined

as2

lim
T→∞

1

T

T∑
t=1

D̂H(t).

Since the light queue behaves as a G/M/1 queue, the intervals between successive commencements

of busy periods of L are renewal intervals. Let us denote by XL a random variable representing the

length of a renewal interval. Also denote by B and I, respectively, the average length of a busy and

idle period of L. The average length of a renewal interval is therefore E [XL] = B + I. Consider now

2We will see momentarily that this limit exists almost surely.
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the total number of service opportunities d̂H(i) given to H during the ith renewal interval. Thus, d̂H(i)

equals the number of exclusive slots of H during the renewal interval, plus the number of slots when

both channels are ON and L is empty (the idle time). We can then consider d̂H(i) as a renewal reward

function, and invoke the renewal reward theorem [4] to write (almost surely)

lim
T→∞

1

T

T∑
t=1

D̂H(t) =
E
[
d̂H(i)

]
B + I

.

Let us now compute E
[
d̂H(i)

]
. First, the average number of exclusive slots of H during a renewal

interval is given by pH(1 − pL)(B + I). Second, the average number of slots when both channels

are ON, and L is empty is given by IpHpL. Therefore, E
[
d̂H(i)

]
= pH(1 − pL)(B + I) + IpHpL.

Substituting this in the reward theorem, we get

lim
T→∞

1

T

T∑
t=1

D̂H(t) = pH(1− pL) + pHpL
I

B + I
. (5)

In the above, note that I
B+I

is the fraction of time that the light queue is idle. Also, by applying Little’s

law to the server at the light queue, we find that the fraction of time the light queue is busy should

equal λL

pL
, which is the load on the light queue. Therefore,

I

B + I
= 1− λL

pL
.

Substituting in (5),

lim
T→∞

1

T

T∑
t=1

D̂H(t) = pH(1− pL) + pHpL

(
1− λL

pL

)
= pH(1− λL). (6)

Thus, the average rate of service opportunities for H almost surely equals pH(1 − λL). If λH >

pH(1−λL), then the average service rate given to the heavy queue is dominated by the average arrival

rate, leading to the instability of H . This proves statement (i).

Finally, to prove statement (ii), we can use a direct Lyapunov approach as shown in [7, Theorem

5.1]. Alternatively, we could invoke [3, Theorem 1] on the heavy queue in isolation, after verifying that

the requisite conditions are met. 2

The special case in which the queues are always connected to the server, i.e., pH = pL = 1, is

interesting. In this case, the set of arrival rates stabilizable under priority for L coincides with the

stability region of the system, which is given by

{(λH , λL) | λH + λL < 1} .

Therefore, when the queues are reliably connected to the server, priority scheduling for the light-tailed

traffic is throughput optimal, and also ensures the best possible tail behavior for both queues.



10

IV. MAX-WEIGHT-α SCHEDULING

In this section, we analyze the tail behavior of the light queue distribution under max-weight-α

scheduling. For fixed parameters αH > 0 and αL > 0, the max-weight-α policy operates as follows.

During each slot t, compare

qL(t)
αLSL(t) ⋛ qH(t)αHSH(t),

and serve one packet from a queue that wins the comparison. Ties are broken in favor of the light queue.

Note that αL = αH corresponds to the usual max-weight policy, which serves the longest connected

queue in each slot. The case αL/αH > 1 corresponds to emphasizing the light queue over the heavy

queue, and vice-versa.

It can be shown using standard Lyapunov arguments that max-weight-α scheduling is throughput

optimal for all αH > 0 and αL > 0. That is, it can stably support all arrival rates within the rate region

(1). This throughput optimality result follows, for example, from [3, Theorem 1].

We show that under max-weight-α scheduling, the tail behavior of the steady-state light queue backlog

distribution is strongly dependent on λL, the arrival rate to the light queue. Specifically, we show that

qL is light-tailed when λL is below a threshold value, and heavy-tailed with a finite tail coefficient for

λL above the threshold value.

The following result shows that the light queue distribution is light-tailed under any ‘reasonable’

policy, as long as the rate λL is smaller than a threshold value.

Proposition 3: Suppose that λL < pL(1− pH). Then qL is light-tailed under any policy that serves

L during its exclusive slots.

Proof: The proof is straightforward once we note that the exclusive slots of L occur independently

during each slot with probability pL(1− pH). Indeed, consider the L queue under a policy that serves

L only during its exclusive slots. Under this policy, the L queue behaves like a G/M/1 queue with light-

tailed inputs at rate λL, and service rate pL(1 − pH). It can be shown using standard large deviation

arguments [5, Theorem 1.4] that qL is light-tailed under the policy that serves L only during its exclusive

slots. It follows, using a stochastic dominance argument that qL is light-tailed under any policy that

serves L during its exclusive slots. 2

The above proposition implies that for λL < pL(1− pH), the light queue distribution is light-tailed

under max-weight-α scheduling. The region λL < pL(1− pH) is shown unshaded in Fig. 3. Thus, qL

is light-tailed under max-weight-α scheduling for arrival rates in the unshaded region.
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Fig. 3. Under max-weight-α scheduling, qL is light-tailed for arrival rates in the unshaded region, and heavy-tailed in the

shaded region.

In the remainder of this section, we investigate the tail behavior of the light queue under max-

weight-α scheduling when the arrival rate is above the threshold, i.e., for λL > pL(1 − pH). In this

case, the light queue receives traffic at a higher rate than can be supported by the exclusive slots of L

alone. Therefore, the light queue has to compete for service with the heavy queue during the slots that

both channels are ON. Since the heavy queue can be very large with substantially high probability, it

seems intuitively reasonable that the light queue will suffer from this competition, and also take on a

heavy-tailed behavior. This intuition is indeed correct, although proving the result takes some effort.

We prove that the light queue distribution is heavy-tailed when λL > pL(1 − pH) for all values

of the scheduling parameters αL and αH . We also obtain the exact tail coefficient of the light queue

distribution for ‘plain’ max-weight scheduling (αL/αH = 1), and for the regime where the light queue

is given more importance (αL/αH > 1).

A. Max-weight scheduling

Let us first characterize the tail coefficient of the steady-state light queue backlog under the max-

weight policy, which serves the longest connected queue in each slot. Since qL is light-tailed for

λL < pL(1− pH) according to Proposition 3, we will focus on the case λL > pL(1− pH).

Theorem 2: Suppose that λL > pL(1− pH). Then, under max-weight scheduling, qL is heavy-tailed

with tail coefficient CH − 1.

In terms of Fig. 3, the theorem asserts that qL is heavy-tailed with tail coefficient CH − 1 for

all arrival rates in the shaded region. Proving the above result involves showing (i) an upper bound:

E
[
qCH−1−ϵ
H

]
< ∞, and (ii) a lower bound: E

[
qCH−1+ϵ
H

]
= ∞, for any ϵ > 0. We deal with each part
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separately.

1) Upper Bound for max-weight scheduling:

Proposition 4: Under max-weight scheduling, we have

E
[
qCH−1−ϵ
L

]
< ∞, ∀ ϵ > 0.

Proof: This is a special case (αL/αH = 1) of Proposition 6, in the next section. 2

2) Lower Bound for max-weight scheduling:

Proposition 5: Suppose that λL > pL(1− pH). Then, under max-weight scheduling, we have

E
[
qCH−1+ϵ
L

]
= ∞, ∀ ϵ > 0.

This is a special case of Proposition 7, but we will provide a proof because this special case is more

transparent. Since the proof is rather involved, we describe the idea informally, and present the formal

proof in Appendix A. In our intuitive argument, we will argue that

lim
t→∞

E
[
qL(t)

CH−1+ϵ
]
= ∞. (7)

The above is the limit of the expectation of a sequence of random variables, whereas what we really

want in Proposition 5 is the expectation of the limiting random variable qL. Although it is by no means

obvious that the limit and the expectation can be interchanged here, we will ignore this as a technical

point for the time being.

The main idea behind the proof is to consider the renewal intervals that commence at the beginning

of each busy period of the system. Let us define the renewal reward process R(t) = qL(t)
CH−1+ϵ. By

the key renewal theorem for arithmetic processes [4, pp. 81],

lim
t→∞

E [R(t)] =
E [R]

E [T ]
,

where E [R] denotes the expected reward accumulated over a renewal interval, and E [T ] < ∞ is the

mean renewal interval. It is therefore enough to show that3

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
= ∞.

To see intuitively why the above expectation is infinite, let us condition on the busy period com-

mencing at time 0 with a burst of size b to the heavy queue4. After this instant, the heavy queue drains

at rate pH , assuming for the sake of a lower bound that there are no further bursts arriving at H . In the

3Without loss of generality, we have considered a busy period that commences at time 0.
4It is easy to show that this event has positive probability for all large enough b.
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meantime, the light queue receives traffic at rate λL, and gets served only during the exclusive slots of

L, which occur at rate pL(1− pH). With high probability therefore, the light queue will steadily build

up at rate λL − pL(1 − pH), until it eventually catches up with the draining heavy queue. It can be

shown that the light queue will build up to an Ω(b) level before it catches up with the heavy queue.

Further, the light queue backlog stays at Ω(b) for a time interval of length Ω(b). Therefore, with high

probability, the reward is at least Ω(bCH−1+ϵ) for Ω(b) time slots. Thus, for some constant K,

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
≥ E

[
Kb · bCH−1+ϵ

]
= E

[
KbCH+ϵ

]
= ∞,

where the last expectation is infinite because the initial burst size has tail coefficient equal to CH .

In words, the light queue not only grows to a level proportionate to the initial burst size, but also stays

large for a period of time that is proportional to the burst size. This leads to a light queue distribution

that is one order heavier than the burst size distribution.

B. Max-weight-α scheduling with αL ≥ αH

In this subsection, we characterize the exact tail coefficient of the light queue distribution under

max-weight-α scheduling, with αL ≥ αH . We only treat the case λL > pL(1− pH), since qL is known

to be light-tailed otherwise. Our main result for this regime is the following.

Theorem 3: Suppose that λL > pL(1− pH). Then, under max-weight-α scheduling with αL ≥ αH ,

qL is heavy-tailed with tail coefficient

γ =
αL

αH
(CH − 1). (8)

In terms of Fig. 3, the above theorem asserts that qL is heavy-tailed with tail coefficient γ for all arrival

rates in the shaded region. As before, proving this result involves showing (i) an upper bound of the

form E
[
qγ−ϵ
H

]
< ∞, and (ii) a lower bound of the form E

[
qγ+ϵ
H

]
= ∞, for all ϵ > 0. We deal with

each of them separately.

1) Upper Bound for max-weight-α scheduling:

Proposition 6: Under max-weight-α scheduling, we have

E
[
qγ−ϵ
L

]
< ∞, ∀ ϵ > 0.

Proof: The result is a consequence of a theorem in [3]. Indeed, max-weight-α scheduling in our context

is equivalent to comparing qL(t)
βαLSL(t) with qH(t)βαHSH(t), where β > 0 is arbitrary, and scheduling
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the winning queue in each slot. In particular, if we choose β = (CH − 1)/αH − ϵ/αL, the conditions

imposed in [3, Theorem 1] are satisfied for any ϵ > 0, so that the steady-state queue backlogs satisfy

E
[
qγ−ϵ
L

]
< ∞,

and

E
[
q
CH−1−αH

αL
ϵ

H

]
< ∞. (9)

2

Remark 1: (i) Proposition 6 is valid for any parameters αL and αH , and not just for αL ≥ αH .

(ii) Equation (9) and Proposition 2 together imply that the tail coefficient of qH is equal to CH − 1

under max-weight-α scheduling, for any parameters αL and αH .

2) Lower Bound for max-weight-α scheduling with αL ≥ αH :

Proposition 7: Suppose that λL > pL(1−pH). Then, under max-weight-α scheduling with αL ≥ αH ,

we have

E
[
qγ+ϵ
L

]
= ∞, ∀ ϵ > 0.

To prove the above result, we take an approach that is conceptually similar to the proof of Proposition 5.

We consider the renewal process that commences at the beginning of each busy period of the system, and

define the reward process Rγ(t) = qL(t)
γ+ϵ. We will show that the expected reward accumulated over

a renewal interval is infinite. The key renewal theorem will then imply that limt→∞ E [qL(t)
γ+ϵ] = ∞.

Finally, the result we want can be obtained by invoking a truncation argument to interchange the limit

and the expectation.

To see intuitively why the expected reward over a renewal interval is infinite, let us condition on the

busy period commencing with a burst of size b at the heavy queue. Starting at this instant, the light

queue will build up at the rate λL − pL(1 − pH) with high probability. However, unlike in the case

of max-weight scheduling, the light queue only builds up to an Ω(bαH/αL) level before it ‘catches up’

with the heavy queue and wins back the service preference. It can also be shown that the light queue

catches up within a time interval of length Ω(bαH/αL). It might therefore be tempting to argue that

the light queue stays above Ω(bαH/αL) for an interval of duration Ω(bαH/αL). Although this argument

is not incorrect as such, it fails to capture what typically happens in the system. Let us briefly follow

through with this argument, in order to understand why it does not give us the lower bound we want.
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Indeed, following the above argument, the reward is at least Ω(b(γ+ϵ)αH/αL) = Ω(bCH−1+ϵαH/αL)

for Ω(bαH/αL) time slots, so that the expected reward over the renewal interval is lower bounded by

Eb

[
Ω(bαH/αL)Ω(bCH−1+ϵαH/αL)

]
= Eb

[
Ω(bCH−1+αH/αL+ϵαH/αL)

]
.

However, the right-hand side above turns out to be finite for αL/αH > 1. Therefore, the above simple

bound fails to give the result we are after.

The problem with the above argument is that it looks at the time scale at which the light queue

catches up, whereas the event that decides the tail coefficient happens after the light queue catches up.

In particular, the light queue catches up relatively quickly, in a time scale of Θ(bαH/αL). However, after

the light queue catches up with the heavy queue, the two queues drain together, with most of the slots

being used to serve the heavy queue. In fact, as we show, before the light queue backlog can drain by

a constant factor after catch-up, the heavy queue drains by Ω(b). As such, the light queue remains at

an Ω(bαH/αL) level for Ω(b) time slots. Therefore, the expected reward can be lower bounded by

Eb

[
Ω(b)bCH−1+ϵαH/αL)

]
= Eb

[
Ω(bCH+ϵαH/αL)

]
= ∞,

which is what we want. In sum, the light queue builds up relatively quickly until catch-up, but takes a

long time to drain out after catch-up. The proof is relegated to Appendix B.

C. Max-weight-α scheduling with αL < αH

We finally consider the case αL < αH under max-weight-α scheduling, and study the asymptotic

behavior of qL. Recall that max-weight-α scheduling with αL < αH corresponds to giving the heavy

queue more importance compared to the light queue. In this regime, we show that qL is heavy-tailed

with a finite tail coefficient, for arrival rates in the shaded region of Figure 3.

Our first result for this case is an upper bound on the tail coefficient of qL. Intuitively, we would

expect that the tail behavior of qL in this regime cannot be better than it is under max-weight scheduling.

In other words, the tail coefficient of qL in this regime cannot be larger than CH − 1. This intuition is

indeed correct.

Proposition 8: Suppose that λL > pL(1−pH). Then, under max-weight-α scheduling with αL < αH ,

the tail coefficient of qL is at most CH − 1.

Proof: The argument is similar to the proof of Proposition 5. Specifically, conditioning on an initial

burst of size b arriving to the heavy queue, it can be shown that with high probability, qL will be O(b)

in size for at least O(b) time slots. 2



16

 L

 H

pL

pH

Fig. 4. Under max-weight-α scheduling with αL < αH , qL is light-tailed for arrival rates in the unshaded region, and

heavy-tailed with tail coefficient equal to CH − 1 in for arrival rates in the gray region. For arrival rates in the region colored

black, the tail coefficient lies in [γ,CH − 1].

Next, to obtain a lower bound on the tail coefficient of qL, recall that Proposition 6 holds for the

present regime as well. Thus,

γ =
αL

αH
(CH − 1)

is a lower bound5 on the tail coefficient of qL. In sum, we have shown that for λL > pL(1− pH), the

light queue backlog distribution is heavy-tailed, with a tail coefficient that lies in the interval [γ, CH−1].

It turns out that we can obtain the exact tail coefficient of qL for arrival rates in a subset of the shaded

region in Fig. 3. Specifically, consider the region represented by pL(1− pH) < λL < pL(1− λH). In

Fig. 4, this region is shown in gray. It can be shown that all arrival rates in the region shaded gray

can be stabilized under priority for H. Furthermore, under priority for H , it can be shown that qL is

heavy-tailed with tail coefficient equal to CH − 1, when pL(1− pH) < λL < pL(1− λH).

Since the tail of qL under max-weight-α scheduling with any parameters is no worse than under

priority for H, we can conclude that the tail coefficient of qL is at least CH − 1 when pL(1− pH) <

λL < pL(1− λH). Combining this with Proposition 8, we conclude that the tail coefficient qL is equal

to CH − 1, when the arrival rate pair lies in the gray region of Fig. 4.

Proposition 9: Suppose that pL(1−pH) < λL < pL(1−λH). Then, under max-weight-α scheduling

with αL < αH , the tail coefficient of qL is equal to CH − 1.

The region shaded black in Fig. 4 (λL > pL(1 − λH)) corresponds to the arrival rates for which

priority for H is not stabilizing6. Under max-weight-α scheduling with αL < αH , we are unable to

5Note that γ is smaller than CH − 1 in this regime.
6This case is symmetric to the case in Theorem 1(i).
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determine the exact tail coefficient of qL for arrival rates in the black region of Fig. 4. However, we

have shown that the tail coefficient lies in the interval [γ,CH − 1].

D. Special case of reliable links

In the special case of reliably connected links (pH = pL = 1), the tail behavior of qL under max-

weight-α scheduling can be obtained from our foregoing analysis. Specifically, it follows from the

results above that the light queue backlog distribution is heavy-tailed under max-weight-α scheduling,

for all values of the scheduling parameters, and all non-zero arrival rates. The tail coefficient of qL for

this case is given by

(i) CH − 1 for αL

αH
≤ 1, and

(ii) γ = αL

αH
(CH − 1) for αL

αH
> 1.

We remark that this recovers our results in [9].

E. Section summary

We showed the following threshold result in this section. When λL < pL(1 − pH), the light queue

backlog distribution is light-tailed under max-weight-α scheduling, for all values of the scheduling

parameters. However, when λL > pL(1 − pH), the light queue distribution is inevitably heavy-tailed

under max-weight-α scheduling. In particular, under max-weight scheduling (αL = αH ), the tail

coefficient of qL is equal to CH − 1. For αL ≥ αH , the tail coefficient of qL is γ = (CH − 1)αL/αH .

Finally, for αL < αH , the tail coefficient of qL lies in [γ, CH − 1]. Finally, we also showed that the

heavy queue distribution is heavy-tailed with tail coefficient CH − 1 for all values of the scheduling

parameters.

V. LOG-MAX-WEIGHT SCHEDULING

In this section, we study the performance of log-max-weight scheduling policy. During each time

slot t, the log-max-weight policy compares

qL(t)SL(t) ⋛ log(1 + qH(t))SH(t),

and serves one packet from the queue that wins the comparison. Again, ties are broken to favor the

light queue.

The main idea in the LMW policy is to give preference to the light queue to a far greater extent than

any max-weight-α policy. Specifically, for αL/αH > 1, the max-weight-α policy compares qL to a



18

power of qH that is smaller than 1. On the other hand, LMW scheduling compares qL to a logarithmic

function of qH , leading to a significant preference for the light queue. We will show that this significant

de-emphasis of the heavy queue with respect to the light queue ensures a better tail behavior for qL

compared to max-weight-α scheduling.

Furthermore, the LMW policy has another useful property when the heavy queue gets overwhelmingly

large. Although the LMW policy significantly de-emphasizes the heavy queue, it does not ignore it,

unlike priority for L. That is, if the H queue backlog gets overwhelmingly large compared to L, the

LMW policy will serve the heavy queue. In contrast, priority for L will ignore any build-up in H , as

long as L is non-empty. This property ensures that the LMW policy stabilizes all arrival rates within

the rate region in (1).

We show that LMW scheduling has desirable performance on both fronts, namely throughput opti-

mality, and the tail behavior of the light queue backlog. The LMW policy can be shown to be throughput

optimal, using the results in [3]. In terms of the tail, we show that the LMW policy guarantees that the

light queue backlog distribution is light-tailed, for all arrival rates that can be stabilized by priority for

L. For arrival rates that are not stabilizable under priority for L, the LMW policy will still stabilize the

system, although we are not able to guarantee that qL is light-tailed for these arrival rates.

Let us now state the main result regarding LMW scheduling.

Theorem 4: Under LMW scheduling, qL is light-tailed if at least one of the following conditions

hold:

(i) λL < pL(1− pH), or

(ii) λH < pH(1− λL).

Note that for λL < pL(1 − pH), qL is easily seen to be light-tailed under LMW scheduling, since

the arrival rate is small enough to be supported by the exclusive slots of L. The second condition in

Theorem 4 states that for all arrival rates that can be stabilized under priority for L (i.e., the trapezoidal

region in Fig. 2), qL is light-tailed under LMW scheduling.

The union of the two regions in which qL is light-tailed according to Theorem 4 is shown unshaded

in Fig. 5. As can be seen, the unshaded region occupies most of the rate region, except for the shaded

triangle. For arrival rates in the shaded triangle, the LMW policy still stabilizes the system. However,

we are unable to determine the tail behavior of qL for arrival rates in the shaded triangle.

The proof of Theorem 4 is omitted in the interest of brevity, and can be found in [7, Theorem 5.4].

We remark that in a recent paper [14], it has been proven that qL is light-tailed under the LMW policy

for all arrival rates inside the rate region. This more general proof uses a completely different approach,
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Fig. 5. Under LMW scheduling, qL is light-tailed for arrival rates in the unshaded region.

and can be found in [14, Theorem 9].

VI. CONCLUSIONS

We considered a system of parallel queues fed by a mix of heavy-tailed and light-tailed traffic, and

served by a single server through time-varying channels. We studied the tail behavior of the queue

backlog distributions under various scheduling policies. We showed that the backlog distribution of the

heavy queue is inevitably heavy-tailed. In contrast, the light queue backlog distribution can be heavy-

tailed or light-tailed, depending on the arrival rates and the scheduling policy. A major contribution

of this paper is the characterization of the tail of the queue backlog distributions under max-weight-

α scheduling. We showed that the light queue backlog distribution under max-weight-α scheduling

is light-tailed for arrivals rates below a certain threshold, and heavy-tailed for arrival rates above the

threshold.

Another contribution of the paper was to show that the LMW scheduling policy ensures that the light

queue backlog distribution is light-tailed, in addition to being throughput optimal. Indeed, we believe

that the LMW policy occupies a special place in the context of scheduling light-tailed traffic in the

presence of heavy-tailed traffic. This is because the LMW policy de-emphasizes the heavy-tailed flow

sufficiently to maintain good light queue asymptotics, while also ensuring network-wide stability.

APPENDIX A

PROOF OF PROPOSITION 5

We will first show Eq. (7) and then use a truncation argument to interchange the limit and the

expectation. Consider the renewal process defined by the commencement of each busy period of the
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system. Let T denote a typical renewal interval. We have E [T ] < ∞ since the system is stable. Define

the reward function

R(t) = qL(t)
CH−1+ϵ.

As argued earlier, due the key renewal theorem, it is enough to show that the expected reward accumu-

lated over a renewal interval is infinite. Without loss of generality, let us consider a busy period that

commences at time 0. We need to show that

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
= ∞.

The busy period that commences at time 0 can be of three different types. It can commence with (i)

a burst arriving to L alone, or (ii) a burst arriving to H alone, or (iii) bursts arriving to both H and L

simultaneously. It can be shown that all the three events have positive probabilities7. The event that is

of interest to us is (ii), i.e., the busy period commencing with a burst at the heavy queue only, so that

qH(0) > 0 and qL(0) = 0. Let us denote this event by EH = {qH(0) > 0, qL(0) = 0}. We now have

the following lower bound

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
≥ E

[
T∑
i=0

qL(i)
CH−1+ϵ; EH

]
= Eb

[
E

[
T∑
i=0

qL(i)
CH−1+ϵ; EH

∣∣∣qH(0) = b

]]
.

In the last step above, we have iterated the expectation over the initial burst size b. The inner expectation

above is a function of b; let us denote it by

gϵ(b) := E

[
T∑
i=0

qL(i)
CH−1+ϵ; EH

∣∣∣qH(0) = b

]
.

Thus,

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
≥ Eb [gϵ(b)] ≥ Eb [gϵ(b); b > b0] , ∀b0 ≥ 1. (10)

Since the above bound is true for any b0, we can make b0 as large as we want. In particular, we will

make the initial burst size large enough to be able to assert that the arrival process to L as well as the

channel processes behave ‘typically’ for time scales of order b.

To be more precise, choose δ > 0 such that λL − pL(1− pH)− 3δ = η > 0, and choose any small

κ > 0. Define

τb =
b

2(pH + λL)
.

7In fact, we can explicitly compute the probability of each of the three events in terms of the probability mass at 0 for H(·)

and L(·), but the actual probabilities are not important for the proof.
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For large enough b0, and b > b0, it is clear from the (weak) law of large numbers (LLN) that

P

{∣∣∣∣∣ 1τb
τb∑
i=0

SH(i)− pH

∣∣∣∣∣ > δ

}
< κ.

In words, the channel process of H is overwhelmingly likely to behave according to its mean pH . Now

for all t ≤ τb, the backlog of H can be lower bounded as

qH(t) ≥ b−
τb∑
i=0

SH(i) ≥ b− (pH + δ)τb = b

(
pH + 2λL − δ

2(pH + λL)

)
, (11)

with probability greater than 1 − κ. Similarly, the input process to the light queue is also likely to

behave according to its mean. That is, for large enough b0 and b > b0,

P

{∣∣∣∣∣ 1τb
τb∑
i=0

L(i)− λL

∣∣∣∣∣ > δ

}
< κ.

Therefore, for all t ≤ τb, the backlog of L can be upper bounded as

qL(t) ≤
τb∑
i=0

L(i) ≤ b

(
λL + δ

2(pH + λL)

)
, (12)

with probability greater than 1 − κ. From (11), (12), and the independence of the processes L(·) and

SH(·), we can conclude that qH(t) > qL(t) for all t ≤ τb, with probability greater than 1− 2κ. Since

the light queue remains smaller that the heavy queue for t ≤ τb with high probability, it follows that

the light queue receives service only during its exclusive slots. More precisely, the departure process

from the light queue can be bounded as
τb∑
i=1

DL(i) ≤
τb∑
i=1

SL(i)(1− SH(i)),

with probability at least 1 − 2κ. However, the exclusive slots of L are also overwhelmingly likely to

behave according to the mean:

P

{∣∣∣∣∣ 1τb
τb∑
i=0

SL(i)(1− SH(i))− pL(1− pH)

∣∣∣∣∣ > 2δ

}
< κ.

Thus,
τb∑
i=1

DL(i) ≤ τb(pL(1− pH) + 2δ),

with probability at least 1− 3κ. Using the above bound on the departures from L, along with the fact

that arrivals to L are also typical, we can lower bound qL(τb) with high probability. Indeed,

qL(τb) =

τb∑
i=1

L(i)−
τb∑
i=1

DL(i) ≥ τb(λL − δ)− τb(pL(1− pH) + 2δ) = b

(
η

2(pH + λL)

)
,
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with probability at least 1− 3κ. Next, since at most one packet can be served in a slot, we have,

qL(t) ≥ b

(
η

4(pH + λL)

)
, if τb ≤ t ≤ τb + τb

(η
2

)
,

with probability at least 1− 3κ.

We can thus lower bound gϵ(b) for large enough b0 and b > b0 as

gϵ(b)1{b>b0} = E

[
T∑
i=0

qL(i)
CH−1+ϵ; EH

∣∣∣qH(0) = b

]
1{b>b0}

≥

(1− 3κ)

τb+τb( η

2 )∑
i=τb

(
ηb

4(pH + λL)

)CH−1+ϵ

 1{b>b0}

≥ (1− 3κ)
ητb
2

(ητb
2

)CH−1+ϵ
1{b>b0} = KbCH+ϵ1{b>b0}, (13)

for some constant K > 0. Thus, going back to (10),

E

[
T∑
i=0

qL(i)
CH−1+ϵ

]
≥ Eb [gϵ(b); b > b0] ≥ Eb

[
KbCH+ϵ; b > b0

]
= ∞.

The last step is because the initial burst size b has tail coefficient CH , so that Eb

[
bCH+ϵ; b > b0

]
≥

Eb

[
bCH+ϵ − bCH+ϵ

0

]
= ∞ for all b0. Therefore, we are done proving (7).

Finally, we use a truncation argument to prove that E
[
qCH−1+ϵ
L

]
= ∞, where qL is the steady-state

limit of qL(t).

A. Truncation argument

Our intention is to show that the limit and the expectation in (7) can be interchanged, so that we

get the desired moment result for the limiting random variable qL. Our truncation argument relies on

the Monotone Convergence Theorem (MCT) [1, Theorem 16.2], as well as a result that affirms the

convergence of moments when there is convergence in distribution [1, Theorem 25.12].

The main idea here is to define a truncated reward function

RM (t) = (M ∧ qL(t))
CH−1+ϵ ,

where M is a large integer, and M ∧ qL(t) := min(M, qL(t)). There are three steps in our truncation

argument.
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(i) Tracing all the steps leading up to (13) in the proof above, and using the key renewal theorem for

the truncated reward function, we can show that

wM := lim
t→∞

E [RM (t)] ≥ 1− 3κ

E [T ]
Eb

[
ητb
2

(
M ∧

(ητb
2

))CH−1+ϵ
1{b>b0}

]
, (14)

for all M and large enough b0. The left hand side in the above inequality is a function of M,

which we have denoted by wM . The expression inside the expectation on the right is a function

of b and M, which we denote by

uM (b) =
ητb
2

(
M ∧

(ητb
2

))CH−1+ϵ
1{b>b0}.

When viewed as a sequence of functions indexed by M , it is easy to see that {uM (b), M > 1}

is a monotonically non-decreasing sequence of functions. Furthermore,

lim
M→∞

uM (b) = KbCH+ϵ1{b>b0}, ∀ b, b0

where K is the positive constant in Equation (13). Invoking the MCT for the sequence uM (b), we

have

lim
M→∞

Eb [uM (b)] = Eb

[
lim

M→∞
uM (b)

]
= Eb

[
KbCH+ϵ; b > b0

]
= ∞.

Next, going back to (14) and taking M to infinity, we have

lim
M→∞

wM = lim
M→∞

(
lim
t→∞

E [RM (t)]
)
≥ 1− 3κ

E [T ]
lim

M→∞
Eb [uM (b)] = ∞. (15)

(ii) Recall that the steady-state queue backlog qL is defined as the distributional limit of qL(t), as t

becomes large. In other words, viewing qL(t) as a sequence of random variables indexed by t, we

have qL(t) ⇒ qL, where “⇒” denotes convergence in distribution. Next, let us fix M, and view

RM (t) as a sequence of random variables indexed by t. We have

RM (t) ⇒ (M ∧ qL)
CH−1+ϵ.

Theorem 25.12 in [1] asserts that when a sequence of random variables converges in distribution,

the corresponding sequence of means also converges to the mean of the limiting random variable,

as long as a technical condition called uniform integrability is satisfied. Since RM (t) is bounded

above by MCH−1+ϵ for all t, uniform integrability is trivially satisfied, and we have

lim
t→∞

E [RM (t)] = E
[
(M ∧ qL)

CH−1+ϵ
]
,

for each M. Thus,

wM = E
[
(M ∧ qL)

CH−1+ϵ
]
. (16)
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(iii) Consider finally the term inside the expectation on the right hand side of Equation (16). When

viewed as a sequence of random variables indexed by M, the term (M ∧ qL)
CH−1+ϵ represents a

monotonically non-decreasing sequence of random variables. Furthermore,

lim
M→∞

(M ∧ qL)
CH−1+ϵ = qCH−1+ϵ

L .

Thus, another application of the MCT gives

lim
M→∞

E
[
(M ∧ qL)

CH−1+ϵ
]
= E

[
qCH−1+ϵ
L

]
. (17)

Finally, combining (17), (16), and (15), we get

E
[
qCH−1+ϵ
L

]
= lim

M→∞
E
[
(M ∧ qL)

CH−1+ϵ
]
= lim

M→∞
wM = ∞.

Proposition 5 is now proved. 2

APPENDIX B

PROOF OF PROPOSITION 7

For the renewal process considered above, consider the reward function Rγ(t) = qL(t)
γ+ϵ. Our aim

is to show that the expected reward over the renewal interval is infinite, or

E

[
T∑
i=0

qL(i)
γ+ϵ

]
= ∞.

The key renewal theorem would then imply that limt→∞ E [qL(t)
γ+ϵ] = ∞. We can finally appeal to a

truncation argument to interchange the limit and the expectation, and obtain the desired result.

Defining EH = {qH(0) > 0, qL(0) = 0}, and proceeding as in the proof of Proposition 5,

E

[
T∑
i=0

qL(i)
γ+ϵ

]
≥ E

[
T∑
i=0

qL(i)
γ+ϵ; EH

]
= Eb

[
E

[
T∑
i=0

qL(i)
γ+ϵ; EH

∣∣∣qH(0) = b

]]
.

In the last step above, we have iterated the expectation over the initial burst size b. The inner expectation

above is a function of b; let us denote it by

gγ(b) := E

[
T∑
i=0

qL(i)
γ+ϵ; EH

∣∣∣qH(0) = b

]
.

Thus,

E

[
T∑
i=0

qL(i)
γ+ϵ

]
≥ Eb [gγ(b)] ≥ Eb [gγ(b); b > b0] , ∀b0 ≥ 1. (18)

Since the above bound is true for any b0, we can make b0 as large as we want. We will make b0 large

enough for us to be able to invoke the law of large numbers several times in the rest of the proof.
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At this point, we note that for the sake of a lower bound on the expected reward over the renewal

interval, we can assume that the heavy queue receives no further arrivals after the initial burst. Under

this assumption, we will next show that the light queue catches up with the heavy queue in Θ(bαH/αL)

time slots. We first need to define what exactly we mean by ‘catch-up’.

The catch-up time τc is defined as

τc = min
{
t > 0

∣∣∣qL(t)αL/αH ≥ qH(t) > 0
}
. (19)

In words, the catch-up time is the first time after the arrival of the initial burst for which qL(τc)
αL/αH ≥

qH(τc). Note that the catch-up time need not always exist, even if EH occurs8. However, we show that

if the initial burst size is large, the catch-up time exists with high probability.

Indeed, let b > b0 for large enough b0, and suppose that a catch-up time does not exist. Let us

consider the queue backlogs after the first b − 1 time slots, by which time the busy period could not

have possibly ended. Since the light queue never catches up, the departure process from the light queue

can be upper bounded by the number of exclusive slots. Thus, the light queue backlog at time b − 1

can be lower bounded as

qL(b− 1) ≥
b−1∑
i=0

L(i)− SL(i)(1− SH(i)).

Since catch-up has not occurred until time b−1, it follows that qL(b−1)αL/αH < qH(b−1) < b. Thus,

assuming that a catch-up time does not exist implies(
b−1∑
i=0

L(i)− SL(i)(1− SH(i))

)αL/αH

< b,

or equivalently, (
1

b

b−1∑
i=0

L(i)− SL(i)(1− SH(i))

)αL/αH

<
b

bαL/αH
.

When b is large, the weak LLN implies that the above event has a small probability. This is because

the term inside the parentheses on the left is a sample average of random variables with positive mean.

Thus, the non-occurrence of catch-up implies the occurrence of a small probability event. This implies

that a catch-up time exists for large b with high probability9.

8For example, the initial burst size might be small, and the system might empty again without the light queue ever receiving

a single packet during the renewal interval.
9In this proof, when we state that an event occurs with high probability for large b, we mean the following: Given any

κ > 0, there exists a large enough b0 such that for all b > b0, the event in question has probability greater than 1− κ. In a

symmetric fashion, we can define a low probability event for large b as the complement of a high probability event.
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Next, we show that τc is Θ(bαH/αL) with high probability. First, to obtain a lower bound on τc,

define τ1(b) as the unique positive solution to the equation

(λLτ1(b))
αL = (b− pHτ1(b))

αH .

It is easy to see that τ1(b) = Ω(bαH/αL). Let us now bound the queue backlogs in the interval 0 ≤ t ≤

⌊ τ1(b)2 ⌋. For the heavy queue,

qH(t) ≥ b−
⌊ τ1(b)

2
⌋∑

i=0

SH(i) ≥ b− (pH + δ)⌊τ1(b)
2

⌋

with high probability for large b, where δ > 0 can be chosen arbitrarily small. Similarly, for the light

queue,

qL(t) ≤
⌊ τ1(b)

2
⌋∑

i=0

L(i) ≤ ⌊τ1(b)
2

⌋(λL + δ)

with high probability for large b. Comparing the last two bounds, it is evident that

qL(t)
αL/αH > qH(t), 0 ≤ t ≤ ⌊τ1(b)

2
⌋,

for large b, with high probability. Thus, catch-up has not occurred by time ⌊ τ1(b)2 ⌋, so that τc > ⌊ τ1(b)2 ⌋

with high probability for large b. Since τ1(b) = Ω(bαH/αL), it follows that τc is at least Ω(bαH/αL).

Second, to obtain an upper bound on the catch-up time, define

τ2(b) =
(2b)αH/αL

λL − pL(1− pH)
.

Suppose that catch-up has not occurred by time ⌈τ2(b)⌉. Then, the departures from the light queue only

occur during the exclusive slots of L. Thus,

qL(⌈τ2(b)⌉) ≥
⌈τ2(b)⌉∑
i=0

L(i)− SL(i)(1− SH(i)).

Since we assumed that catch-up has not occurred by time ⌈τ2(b)⌉, we have qL(⌈τ2(b)⌉)αL/αH <

qH(⌈τ2(b)⌉) ≤ b. Therefore,⌈τ2(b)⌉∑
i=0

L(i)− SL(i)(1− SH(i))

αL/αH

< b,

or equivalently,

1

⌈τ2(b)⌉

⌈τ2(b)⌉∑
i=0

L(i)− SL(i)(1− SH(i)) <
bαH/αL

⌈τ2(b)⌉
<

λL − pL(1− pH)

2αH/αL
.
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By the weak LLN, the above event is of low probability when b is large. Therefore, we conclude that

τc < ⌈τ2(b)⌉ with high probability when b is large.

We have so far shown that the light queue catches up with the heavy queue in a time scale of

Θ(bαH/αL) with high probability. Therefore, it easily follows that qL(τc) = Θ(bαH/αL) and qH(τc) =

b−Θ(bαH/αL) with high probability. We have now reached the core of the proof where we show that

after τc, the light queue stays at Θ(bαH/αL) for Ω(b) time slots.

To this end, define σc as the first time after τc that the light queue backlog falls below (qH(τc)/2)
αH/αL .

That is,

σc = min

{
t > τc

∣∣∣∣∣ qL(t) <
(
qH(τc)

2

)αH/αL

}
.

It is clear that σc is well defined when τc exists, since the system eventually empties.

With the intention of necessitating a low probability event, let us assume that

qH(t) ≥ 3qH(τc)

4
, for all t ∈ [τc, σc]. (20)

Next, define

ωc = max

{
τc ≤ t < σc

∣∣∣∣∣qL(t) ≥
(
3qH(τc)

4

)αH/αL

}
.

In words, ωc is the last time before σc that the light queue backlog exceeds (3qH(τc)/4)
αH/αL . Now,

by the definition of ωc and the assumption made in (20), it is clear that qL(t)
αL/αH < qH(t) for

ωc < t ≤ σc. Thus, the departures that occur from the light queue during the interval ωc < t ≤ σc must

necessarily occur during the exclusive slots of L. Therefore,

qL(σc) = qL(ωc) +

σc∑
i=ωc+1

L(i)− SL(i)(1− SH(i)),

or equivalently,
1

σc − ωc

σc∑
i=ωc+1

L(i)− SL(i)(1− SH(i)) =
qL(σc)− qL(ωc)

σc − ωc
.

This necessarily implies

1

σc − ωc

σc∑
i=ωc+1

L(i)− SL(i)(1− SH(i)) < 0. (21)

From the definition of σc and ωc, it is clear that

σc − ωc > qL(ωc)− qL(σc) =
(
3αH/αL − 2αH/αL

)(qH(τc)

4

)αH/αL

,

so that σc−ωc is at least Ω(bαH/αL). Therefore, by the weak LLN, the event in (21) is a low probability

event for large b.
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What we have shown now is that the assumption in (20) implies the occurrence of a low probability

event for large b. Therefore, the assumption (20) will be false with high probability when b is large.

In other words, with high probability, there exists t ∈ [τc, σc] for which qH(t) < 3qH(τc)
4 . In particular,

this implies that σc − τc >
qH(τc)

4 , with high probability for large b.

Next, since qH(τc) = b−Θ(bαH/αL) with high probability, we have qH(τc) > b/2 for large enough

b. Thus, σc − τc > b/8, with high probability, and for τc ≤ t < σc, the light queue backlog is lower

bounded by

qL(t) ≥
(
qH(τc)

2

)αH/αL

>

(
b

4

)αH/αL

,

also with high probability. We have thus shown that after catch-up, the light queue backlog stays at

Ω(bαH/αL) for Ω(b) slots, with high probability.

We can now return to (18) to finish the sequence of inequalities. In particular, let us choose b0 large

enough such that for b > b0, the intersection of all the high probability events above has probability at

least 1− κ, for some κ > 0. Then,

E

[
T∑
i=0

qL(i)
γ+ϵ

]
≥ Eb [gγ(b); b > b0] ≥ (1− κ)Eb

[
b

8
·
(
b

4

)αH/αL(γ+ϵ)

; b > b0

]

= K1Eb

[
b · bCH−1+ϵαH/αL ; b > b0

]
= ∞,

since the burst size b has tail coefficient CH . The key renewal theorem would then imply that

lim
t→∞

E
[
qL(t)

γ+ϵ
]
= ∞, for all ϵ > 0.

We can finally invoke a truncation argument similar to the one in Proposition 5 to interchange the limit

and the expectation. Thus, for the steady-state backlog qL, we have E
[
qγ+ϵ
L

]
= ∞, for all ϵ > 0. 2
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