3,215 research outputs found

    Position estimation and tracking of an autonomous mobile sensor using received signal strength

    Full text link
    In this paper, an algorithm for approximating the path of a moving autonomous mobile sensor with an unknown position location using Received Signal Strength (RSS) measurements is proposed. Using a Least Squares (LS) estimation method as an input, a Maximum-Likelihood (ML) approach is used to determine the location of the unknown mobile sensor. For the mobile sensor case, as the sensor changes position the characteristics of the RSS measurements also change; therefore the proposed method adapts the RSS measurement model by dynamically changing the pass loss value alpha to aid in position estimation. Secondly, a Recursive Least-Squares (RLS) algorithm is used to estimate the path of a moving mobile sensor using the Maximum-Likelihood position estimation as an input. The performance of the proposed algorithm is evaluated via simulation and it is shown that this method can accurately determine the position of the mobile sensor, and can efficiently track the position of the mobile sensor during motion.<br /

    Investigations on real time RSSI based outdoor target tracking using kalman filter in wireless sensor networks

    Get PDF
    Target tracking is essential for localization and many other applications in Wireless Sensor Networks (WSNs). Kalman filter is used to reduce measurement noise in target tracking. In this research TelosB motes are used to measure Received Signal Strength Indication (RSSI). RSSI measurement doesn’t require any external hardware compare to other distance estimation methods such as Time of Arrival (TOA), Time Difference of Arrival (TDoA) and Angle of Arrival (AoA). Distances between beacon and non-anchor nodes are estimated using the measured RSSI values. Position of the non-anchor node is estimated after finding the distance between beacon and non-anchor nodes. A new algorithm is proposed with Kalman filter for location estimation and target tracking in order to improve localization accuracy called as MoteTrack InOut system. This system is implemented in real time for indoor and outdoor tracking. Localization error reduction obtained in an outdoor environment is 75%

    Alzheimer Patient Tracking System in Indoor Wireless Environment

    Get PDF
    Alzheimer's disease is a disease of the nerves that are irreversible, resulting in memory impairment. This condition resulted in Alzheimer's patients easily lost because they forget the existence. In this research, we designed a tracking system for Alzheimer's patients in a hospital environment, incorporating Kalman method to estimate the position of the patient. As known Received Signal Strength Indicator value is strongly influenced by environmental conditions that lead to the acquisition of position estimation is inaccurate. From the test results showed that the optimal Kalman estimated value obtained when the value of R = 0:01 and Q = 0.1 with the average percentage of error only 7.01 % of the actual patient position. The test results with various data variations also indicate the reliability of the Kalman method, because of the average estimated position approach the actual patient position

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding
    • …
    corecore