136 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Distributed averaging over communication networks:Fragility, robustness and opportunities

    Get PDF
    Distributed averaging, a canonical operation among many natural interconnected systems, has found applications in a tremendous variety of applied fields, including statistical physics, signal processing, systems and control, communication and social science. As information exchange is a central part of distributed averaging systems, it is of practical as well as theoretical importance to understand various properties/limitations of those systems in the presence of communication constraints and devise new algorithms to alleviate those limitations. We study the fragility of a popular distributed averaging algorithm when the information exchange among the nodes is limited by communication delays, fading connections and additive noise. We show that the otherwise well studied and benign multi-agent system can generate a collective global complex behavior. We characterize this behavior, common to many natural and human-made interconnected systems, as a collective hyper-jump diffusion process and as a L\\u27{e}vy flights process in a special case. We further describe the mechanism for its emergence and predict its occurrence, under standard assumptions, by checking the Mean Square instability of a certain part of the system. We show that the strong connectivity property of the network topology guarantees that the complex behavior is global and manifested by all the agents in the network, even though the source of uncertainty is localized. We provide novel computational analysis of the MS stability index under spatially invariant structures and gain certain qualitative as well as quantitative insights of the system. We then focus on design of agents\u27 dynamics to increase the robustness of distributed averaging system to topology variations. We provide a general structure of distributed averaging systems where individual agents are modeled by LTI systems. We show the problem of designing agents\u27 dynamics for distributed averaging is equivalent to an H\mathcal{H}_{\infty} minimization problem. In this way, we could use tools from robust control theory to build the distributed averaging system where the design is fully distributed and scalable with the size of the network. It is also shown that the agents could be used in different fixed networks and networks with speical time varying interconnections. We develop new iterative distributed averaging algorithms which allow agents to compute the average quantity in the presence of additive noise and random changing interconnections. The algorithm relaxes several previous restrictive assumptions on distributed averaging under uncertainties, such as diminishing step size rule, doubly stochastic weights, symmetric link switching styles, etc, and introduces novel mechanism of network feedback to mitigate effects of communication uncertainties on information aggregation. Based on the robust distributed averaging algorithm, we propose continuous as well as discrete time computation models to solve the distributed optimization problem where the objective function is formed by the summation of convex functions of the same variable. The algorithm shows faster convergence speed than existing ones and exhibits robustness to additive noise, which is the main source of limitation on algorithms based on convex mixing. It is shown that agents with simple dynamics and gradient sensing abilities could collectively solve complicated convex optimization problems. Finally, we generalize this algorithm to build a general framework forconstrained convex optimization problems. This framework is shown to be particularly effective to derive solutions for distributed decision making problems and lead to a systems perspective for convex optimization

    Predictive Control of Networked Multiagent Systems via Cloud Computing

    Get PDF

    Cooperative Control of Nonlinear Multi-Agent Systems

    Get PDF
    Multi-agent systems have attracted great interest due to their potential applications in a variety of areas. In this dissertation, a nonlinear consensus algorithm is developed for networked Euler-Lagrange multi-agent systems. The proposed consensus algorithm guarantees that all agents can reach a common state in the workspace. Meanwhile, the external disturbances and structural uncertainties are fundamentally considered in the controller design. The robustness of the proposed consensus algorithm is then demonstrated in the stability analysis. Furthermore, experiments are conducted to validate the effectiveness of the proposed consensus algorithm. Next, a distributed leader-follower formation tracking controller is developed for networked nonlinear multi-agent systems. The dynamics of each agent are modeled by Euler-Lagrange equations, and all agents are guaranteed to track a desired time-varying trajectory in the presence of noise. The fault diagnosis strategy of the nonlinear multi-agent system is also investigated with the help of differential geometry tools. The effectiveness of the proposed controller is verified through simulations. To further extend the application area of the multi-agent technique, a distributed robust controller is then developed for networked Lipschitz nonlinear multi-agent systems. With the appearance of system uncertainties and external disturbances, a sampled-data feedback control protocol is carried out through the Lyapunov functional approach. The effectiveness of the proposed controller is verified by numerical simulations. Other than the robustness and sampled-data information exchange, this dissertation is also concerned with the event-triggered consensus problem for the Lipschitz nonlinear multi-agent systems. Furthermore, the sufficient condition for the stochastic stabilization of the networked control system is proposed based on the Lyapunov functional method. Finally, simulation is conducted to demonstrate the effectiveness of the proposed control algorithm. In this dissertation, the cooperative control of networked Euler-Lagrange systems and networked Lipschitz systems is investigated essentially with the assistance of nonlinear control theory and diverse controller design techniques. The main objective of this work is to propose realizable control algorithms for nonlinear multi-agent systems

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network
    corecore