8,651 research outputs found

    Observations on adaptive vector filters for noise reduction in color images

    Get PDF
    In a series of papers, Plataniotis et al. proposed a number of filters for noise reduction in color images where the noise type is unknown. In this letter, those filters with a unified notation are summarized, and it is shown that they are essentially variants of the same filtering procedure. It is also shown that the class of adaptive vector filters can be considered as interpolants between the arithmetic mean filter and the vector median filter. Results are presented of numerical computations with the filters on test images corrupted with noise. It is found that the adaptive vector filters perform well with general applicability

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Efficient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal estimation and beamforming

    Get PDF
    Wireless sensor networks are often deployed over a large area of interest and therefore the quality of the sensor signals may vary significantly across the different sensors. In this case, it is useful to have a measure for the importance or the so-called "utility" of each sensor, e.g., for sensor subset selection, resource allocation or topology selection. In this paper, we consider the efficient calculation of sensor utility measures for four different signal estimation or beamforming algorithms in an adaptive context. We use the definition of sensor utility as the increase in cost (e.g., mean-squared error) when the sensor is removed from the estimation procedure. Since each possible sensor removal corresponds to a new estimation problem (involving less sensors), calculating the sensor utilities would require a continuous updating of different signal estimators (where is the number of sensors), increasing computational complexity and memory usage by a factor. However, we derive formulas to efficiently calculate all sensor utilities with hardly any increase in memory usage and computational complexity compared to the signal estimation algorithm already in place. When applied in adaptive signal estimation algorithms, this allows for on-line tracking of all the sensor utilities at almost no additional cost. Furthermore, we derive efficient formulas for sensor removal, i.e., for updating the signal estimator coefficients when a sensor is removed, e.g., due to a failure in the wireless link or when its utility is too low. We provide a complexity evaluation of the derived formulas, and demonstrate the significant reduction in computational complexity compared to straightforward implementations
    corecore