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Abstract—Wireless sensor networks are often deployed over
a large area of interest and therefore the quality of the sensor
signals may vary significantly across the different sensors. In
this case, it is useful to have a measure for the importance
or the so-called ‘utility’ of each sensor, e.g., for sensor subset
selection, resource allocation or topology selection. In this paper,
we consider the efficient calculation of sensor utility measures
for four different signal estimation or beamforming algorithms
in an adaptive context. We use the definition of sensor utility
as the increase in cost (e.g., mean-squared error) when the
sensor is removed from the estimation procedure. Since each
possible sensor removal corresponds to a new estimation problem
(involving less sensors), calculating the sensor utilities would
require a continuous updating of K different signal estimators
(where K is the number of sensors), increasing computational
complexity and memory usage by a factor K. However, we derive
formulas to efficiently calculate all sensor utilities with hardly
any increase in memory usage and computational complexity
compared to the signal estimation algorithm already in place.
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When applied in adaptive signal estimation algorithms, this
allows for on-line tracking of all the sensor utilities at almost
no additional cost. Furthermore, we derive efficient formulas for
sensor removal, i.e., for updating the signal estimator coefficients
when a sensor is removed, e.g., due to a failure in the wireless link
or when its utility is too low. We provide a complexity evaluation
of the derived formulas, and demonstrate the significant reduc-
tion in computational complexity compared to straightforward
implementations.

EDICS: SAM-BEAM Beamforming, SAM-MCHA Multichannel
processing, SEN Signal Processing for Sensor Networks

Index Terms—Wireless sensor networks (WSNs), sensor utility,
sensor subset selection, signal estimation, signal enhancement,
MMSE estimation, LCMV beamforming, multi-channel Wiener
filtering

I. INTRODUCTION

A wireless sensor network (WSN) [2]–[6] is a low-cost com-
munication network that allows spatially distributed sensing
and wireless connectivity in applications with limited power.
A WSN consists of randomly deployed embedded wireless
devices, called sensor nodes, that are equipped with one
or more sensors, a lightweight processor, and a low power
radio transceiver. The sensor nodes exchange signals with
neighboring nodes or with an external processing unit (a so-
called fusion center) in order to perform a network-wide task
such as signal estimation, detection, localization, etc. WSNs
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enable numerous new applications but the limited nature of the
devices has to be taken into account in the algorithm design.
As the sensor nodes in a WSN usually have limited power
sources (e.g. batteries or energy harvesting), energy efficiency
is of great importance, both in terms of processing power and
network lifetime. Furthermore, the communication resources
are also often limited, and therefore protocols and algorithms
for WSNs pursue a minimal data exchange.

A. Contribution

In this paper, we consider the case where a WSN is used
for adaptive signal estimation or beamforming, where the goal
is to recover an unknown desired signal from the noisy sensor
signals collected by the WSN. By using a WSN, a large area
can be covered to obtain more spatial information, which may
result in an improved estimation performance compared to a
system with a small local sensor array. However, coverage of
a large area also implies that the quality of the sensor signals
may vary significantly over the different sensors in the WSN.
Therefore, some sensor nodes may be more useful than others.
Due to the limited energy and communication resources, it is
important to identify the ’usefulness’ or utility of each sensor.

A natural definition of sensor utility is the increase in
cost (e.g. mean-squared error) when the sensor is removed
(backward mode), or the decrease in cost if a sensor is added
(forward mode) [1], [7], [8]. This definition of utility is
adopted in this paper for four different signal estimation or
beamforming algorithms:

1) Linearly constrained minimum variance (LCMV) beam-
forming [9]

2) Linear minimum mean-squared error (LMMSE) signal
estimation, a.k.a. multi-channel Wiener filtering (MWF)
[1], [10]

3) Distortion-weighted LMSSE1 (DW-LMMSE) [11]–[13]
4) Rank-1 DW-LMMSE, a.k.a. Rank-1 MWF (R1-MWF)

[8], [12].
It is noted that the well-known minimum variance distortion-
less response (MVDR) beamformer [9] is a special case of
the LCMV beamformer and the R1-MWF, and is therefore
also implicitly incorporated in this list. We only treat sensor
removal (backward mode). Sensor addition is tougher, and
beyond the scope of this paper. It is noted that, for LMMSE
signal estimation, sensor addition has been addressed in [1].

We consider adaptive signal estimation and beamforming
algorithms, where we assume that the sensor signal statistics
may change over time due to movement of sources or sensors.
This also means that the sensor utilities may change over
time, which requires an on-line calculation of the sensor
utilities. Assuming there are K sensors, this would require a
continuous updating of K different signal estimators (one for
each sensor removal), since the optimal estimators for each
set of K − 1 sensors are different from the optimal estimator
with K sensors. This increases the computational complexity

1This signal estimation algorithm allows to control the trade-off between
distortion and noise reduction. This is, i.a., used in speech enhancement
literature where it is often referred to as speech distortion weighted MWF
(SDW-MWF) [11].

and memory requirements by a factor K, e.g., assuming
the optimal signal estimator can be computed with O(K3)
complexity, then calculating all sensor utilities has O(K4)
complexity. Our main contribution of this paper is to provide
efficient formulas to calculate the sensor utilities for the above
four signal estimation algorithms. We show that, with the
signal estimation already in place, it is possible to track all
the sensor utilities simultaneously with O(K) complexity, i.e.,
with hardly any additional computational effort.

Finally, we also provide computationally efficient formulas
to remove a sensor from the current estimator2. This is interest-
ing for backwards greedy sensor subset selection algorithms
(see Subsection I-B). Furthermore, WSNs often suffer from
link failures, e.g. due to power shortage or interference. The
signal estimation algorithm must then be able to swiftly adapt
to these link failures to maintain sufficient estimation quality.
Due to the low complexity of the sensor removal procedure
described here, sensor nodes are able to react very quickly to
link failures, which is important in real-time applications with
high data rates such as in, e.g., WSN’s for real-time audio
acquisition [15]–[20].

B. The use of utility measures in practice

The earlier mentioned utility measure can be used (and has
been used) in several contexts, e.g., for sensor subset selection,
resource allocation, topology selection, compression or source
coding, etc. In this subsection, we briefly address some of
these techniques.

So-called sensor subset selection (SSS) algorithms aim at
selecting those sensor nodes that yield a significant contribu-
tion to the signal estimation process, while putting the other
sensor nodes to sleep [1], [7], [8], [21]–[24]. This allows
a more efficient allocation of communication resources, and
it reduces interference. Furthermore, since sleeping nodes
consume less energy, SSS usually also prolongs the lifetime
of the network, assuming that the SSS algorithm itself has
low computational complexity. Selecting the optimal set of
sensors for signal estimation or beamforming is a non-trivial
task since it is a combinatorial optimization problem which
is typically NP-hard [7], [25]. It is more difficult than, e.g.,
the notorious knapsack problem due to the fact that the utility
of each sensor depends on the other sensors that are in the
selected subset (e.g. sensor A may be useful if combined with
sensor B, but useless if sensor B is not in the selected set
of sensors). The SSS problem has been addressed in many
other works, and many selection techniques and heuristics have
been described [1], [7], [21]–[23], [26], [27] (non-exhaustive).
However, for real-time processing with limited computational
power, a greedy subset selection is usually a good choice
because of its simplicity and sufficient accuracy [1], [7], [22],
[23], [26]. The greedy approach assumes that each sensor has
a utility measure that quantifies its contribution to the overall
estimation, as envisaged in this paper.

2It is noted that sensor removal in the case of LCMV beamforming has been
addressed earlier in [14]. However, we provide a more efficient scheme based
on variables that are readily available in an adaptive LCMV implementation.
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Sensor utility measures are also important in bandwidth
constrained WSNs where each node can only transmit a subset
of its available sensor signals (now assuming a node may have
multiple sensors). This is for instance the case in wireless
binaural hearing aids (HAs) with multiple microphones, where
each hearing aid can only transmit a single microphone
signal to the contra-lateral HA [17], [28]–[30]. Sensor utility
measures can also be used as a source coding tool, to select
signal components that contribute most to the estimation, and
leave out those signal components that have no significant
contribution, to reduce the communication bandwidth over
the wireless links [13]. Sensor utilities can also provide use-
ful cross-layer information for resource allocation in WSNs,
e.g., to determine the transmission bandwidth that should
be allocated to each sensor (assigning more bandwidth for
sensors with a high utility). They can also be used in topology
selection or network clustering. For example, sensors with a
high utility can be placed in the center of the network such that
their observations spread fast, or links can be pruned between
sensors that do not contribute much to each other’s estimation
problem. The latter eliminates redundant transmissions, and
results in (possibly unconnected) clusters containing nodes that
significantly contribute from each other.

C. Outline

The paper is organized as follows. In Section II, we provide
the general problem statement. The sensor removal procedure
and sensor utility calculations for LCMV, LMMSE, DW-
LMMSE and R1-MWF are then derived in Sections III, IV, V
and VI, respectively. In Section VII, we provide a comparison
of the complexity and sensitivity of the derived formulas.
Conclusions are drawn in Section VIII.

II. PROBLEM STATEMENT AND NOTATION

We consider a WSN with K sensors and, without loss of
generality (w.l.o.g.), we assume that all sensor signals are
centralized in a fusion center for processing. However, the
results in this paper can be equally applied to the distributed
case where each sensor node solves a local signal estimation
problem, as in [16]–[20], [31]–[33]. Sensor k ∈ {1, . . . ,K}
collects samples yk[t] of a complex valued sensor signal yk,
where t ∈ N is the discrete time index. For the sake of
an easy exposition, we will mostly omit the discrete time
index t, unless we specifically refer to a particular sample.
Note that, throughout this paper, all signals are assumed to
be complex valued to permit frequency-domain descriptions,
e.g. when using a short-time Fourier transform (STFT). We
assume that all sensor signals are realizations of stationary
and ergodic stochastic processes. However, in practice, the
stationarity and ergodicity assumption can be relaxed to short-
term stationarity and ergodicity, in which case the theory
should be applied to finite signal segments. We define y as
the K-channel signal gathered at the fusion center in which
all signals yk, ∀ k ∈ {1, . . . ,K}, are stacked.

We will consider four different signal estimation or beam-
forming algorithms (LCMV, LMMSE, DW-LMMSE and R1-
MWF), where the goal is to estimate a complex valued desired

signal d from the sensor signals y (we do not impose any data
model3 on y). We consider linear signal estimation, where a
linear estimator w produces an estimate d̂ = wHy, where the
superscript H denotes the conjugate transpose operator. The
four signal estimation algorithms considered here, are based on
different optimization problems with different cost functions
J(w), each one defining a different optimal estimator wopt.

The goal of this paper is to determine the contribution of
each sensor to the estimation process, referred to as sensor
utility. A natural way of defining the utility of a particular
sensor is to evaluate the increase of the cost when this sensor
is removed, after recomputing the new optimal estimator [1],
[7]. For sensor k, the utility is then computed as

Uk , J−k(w
opt
−k)− J(wopt) (1)

where J−k denotes the cost function where sensor k is
removed from the estimation process, and wopt

−k is the corre-
sponding optimal estimator. Note that wopt

−k is not equal to wopt

with the k-th entry removed, i.e., a completely new estimator
has to be computed, based on the cost function J−k.

In all signal estimation or beamforming algorithms con-
sidered here, an inversion of a sample correlation matrix
is required. For example, the computation of an LCMV
beamformer requires the inverse of a sample correlation
matrix corresponding to the sensor signal correlation matrix
Ryy , E{yyH}, where E{.} denotes the expected value
operator. When K is large, computing this matrix inverse4 is
computationally expensive, i.e. O(K3), and should be avoided
in applications with high data rates. Therefore, we assume in
the sequel that the inverse of the sample correlation matrix is
computed recursively. Let Ryy[t] denote the estimate5 of Ryy

at time t. Assuming stationarity and ergodicity, this matrix
estimate can be computed based on temporal averaging. A
common technique is to use an exponential window, in which
case the matrix Ryy[t] is recursively updated based on a
convex combination with a forgetting factor 0 < λ < 1, i.e.

Ryy[t] = λRyy[t− 1] + (1− λ)y[t]y[t]H . (2)

In this case, R−1
yy [t] can be recursively updated by means of

the matrix inversion lemma, a.k.a. the Woodbury identity [34],
i.e.,

R−1
yy [t] =

1
λ

R−1
yy [t− 1]−

R−1
yy [t− 1]y[t]y[t]HR−1

yy [t− 1]
λ2

1−λ + λy[t]HR−1
yy [t− 1]y[t]

(3)
which has a computational complexity of O(K2). It is noted
that, when (3) is used to update R−1

yy [t], the correlation matrix
Ryy[t] itself does not need to be kept in memory.

3Only in Sections V and VI, we use a particular (but still quite general)
data model to describe y.

4In this paper, we assume that the correlation matrix Ryy has full rank,
such that its inverse always exists. This is often a reasonable assumption
in practice, since sensors usually introduce uncorrelated sensor noise. If this
assumption does not hold, the matrix inverse has to be replaced by a (Moore-
Penrose) pseudoinverse.

5For the sake of an easy exposition, we generally do not introduce separate
notations to distinguish between a quantity and its estimate. We assume that it
is clear from the context whether the estimate or the true quantity is referred
to, even when the discrete time index t is omitted.
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III. LCMV BEAMFORMING

Linearly constrained minimum variance (LCMV) beam-
forming is a well-known sensor array processing technique for
signal estimation [9]. Its goal is to minimize the output power
of a multi-channel filter w, under a set of linear constraints,
e.g., to preserve a target source signal d and (fully or partially)
cancel interferers. More specifically, the LCMV beamforming
problem is formulated as

min
w

J(w) , E{|wHy|2} (4)

s.t. CHw = f (5)

where C is a K × Q constraint matrix (with Q ≤ K) and
f is a Q × 1 vector. The entries of f usually consist of ones
and zeros to preserve an undistorted estimate of the target
source signal and fully cancel out the interferers. Assuming
that the correlation matrix Ryy has full rank, the solution to
this problem is given by [9]:

wLCMV = R−1
yy C

(
CHR−1

yy C
)−1

f . (6)

For the sake of an easy expositon, and with a slight abuse of
notation, we will mostly omit the superscript ‘LCMV’ and
simply use w (without superscript) to refer to the LCMV
solution (the same holds in the next sections for the other
beamformers or signal estimators).

In Appendix A, a recursive algorithm is described to adap-
tively update the LCMV solution (6) for each new vector
of incoming sensor signal samples y[t], based on the update
(2). The overall computational complexity of this algorithm is
O(K2), and it is based on a recursive update of the following
variables:

•R−1
yy (K ×K)

• Γ , R−1
yy C (K ×Q)

• L ,
(
CHR−1

yy C
)−1 (Q×Q)

•w (K × 1) (7)

In the sequel, we assume that the above variables are readily
available during operation of the algorithm.

A. Sensor removal

Assume that the fusion center now only has access to the
(K − 1)-channel signal y−k, which is defined as y with yk
removed. In this case, the LCMV solution is

w−k = R−1
yy−kC−k

(
C
H

−kR
−1
yy−kC

H

−k

)−1

f (8)

where Ryy−k , E{y−kyH−k} and C−k is the matrix C with
row k removed. However, computing (8) requires R−1

yy−k,
which is not directly available. If Ryy were available in
memory, it is possible to invert its submatrix Ryy−k to obtain
R−1
yy−k. However, this incurs an O

(
K3
)

complexity which,
when K is large, dominates the overall complexity of the
adaptive beamforming algorithm.

In the sequel, we derive an efficient formula to compute
the LCMV solution w−k without knowledge of Ryy, and
without explicitly computing matrix inversions. It is noted that
the sensor removal for LCMV beamforming has been derived

in [14] with an O(K2 + Q2 + KQ) complexity6. However,
assuming that the variables in (7) are known, we will show
that it is possible to compute this with an O(KQ) complexity
instead.

As explained earlier, we assume that R−1
yy is available. For

the sake of an easy exposition, but w.l.o.g., we assume that
k = K, i.e. the last element of y is removed. We consider a
block partitioning of the inverse correlation matrix

R−1
yy =

[
Ak ak
aHk αk

]
(9)

where Ak is a (K − 1) × (K − 1) matrix, ak is a (K − 1)-
dimensional vector, and αk is a real-valued scalar. Similarly,
we define

w =
[

w−k
Wk

]
(10)

C =
[

C−k
cHk

]
(11)

Γ =
[

Γ−k
gHk

]
. (12)

Remark: Notice that we introduced the overline notation
X−k to denote the matrix X with row k removed. In the
sequel, if we use the notation X−k (without overline), then
we refer to the variable X as it would be computed in the
estimation procedure if sensor k would not be involved. E.g.,
notice that w−k refers to the optimal LCMV beamformer if
sensor k would not exist, whereas w−k refers to the vector
obtained if we remove the k-th entry from w.

Similar to (9), we define the following block partitioning of
the (non-inverted) correlation matrix

Ryy =
[

Ryy−k rk
rHk ρk

]
(13)

where rk is a (K − 1)-dimensional vector, and where ρk is a
real-valued scalar. By using the matrix inversion lemma, the
inverse of this block matrix is obtained as

R−1
yy =

[
R−1
yy−k + αkvkvHk −αkvk
−αkvHk αk

]
(14)

with

vk , R−1
yy−krk (15)

αk ,
1

ρk − rHk vk
. (16)

By comparing (9) and (14), we find that

vk =
−1
αk

ak (17)

and
R−1
yy−k = Ak − 1

αk
akaHk . (18)

By making the block matrix product between (14) and (11),
we find that

Γ = R−1
yy C =

[
Γ−k
gHk

]
6And since Q ≤ K, an overall O(K2) complexity.
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=
[

R−1
yy−kC−k + αkvkvHk C−k − αkvkcHk

−αkvHk C−k + αkcHk

]
. (19)

Let Γ−k , R−1
yy−kC−k, then a comparison between the upper

and lower part in (19) yields

Γ−k = Γ−k + vkgHk . (20)

We define
L−k ,

(
C
H

−kR
−1
yy−kC−k

)−1

. (21)

A formula to compute L−k from L is derived in [14], but we
repeat it here for completeness (and use a slightly different
derivation). Based on the block partitioning (14) and (11), we
find that

CHR−1
yy C =

C
H

−kR
−1
yy−kC−k + αk

(
C
H

−kvk − ck
)(

C
H

−kvk − ck
)H

.

(22)

By using the notation

ṽk ,

[
vk
−1

]
(23)

we find that

L−k =
(
L−1 − αkCH ṽkṽHk C

)−1
. (24)

From (11) and the lower part of (19), we find that

ṽHk C =
−1
αk

gHk (25)

and therefore

L−k =
(

L−1 − 1
αk

gkgHk

)−1

. (26)

The matrix inversion lemma can again be applied to obtain an
O(Q2) update

L−k = L + qkqH
k

αk−gH
k

qk
(27)

where
qk , Lgk . (28)

We define the matrix T as

T , ΓLΓH . (29)

We denote the k-th diagonal element of T by τk , gHk Lgk =
gHk qk. By using (20) and (27), we find that

Γ−kL−k = Γ−kL+vkqHk +
1

αk − τk
(
Γ−kqkqHk + τkvkqHk

)
(30)

and by substituting (17), this can be rewritten as

Γ−kL−k = Γ−kL +
1

αk − τk
(
Γ−kqk − ak

)
qHk . (31)

Note that the matrix T does not have to be computed, since
we only need a single diagonal entry from this matrix. By
multiplying (31) with f , and using the fact that Wk = qHk f ,
we eventually obtain the following expression to compute the
LCMV beamformer without sensor k, based on the current

LCMV solution w with all sensors:

w−k = w−k + Wk

αk−τk

(
Γ−kqk − ak

)
. (32)

All variables are readily available, except for qk and τk, which
can both be computed with O(Q2) complexity. Therefore, and
since Q ≤ K, (32) is an O(KQ) expression.

B. Sensor utility

In the previous subsection, we have derived an efficient
formula to compute the new LCMV solution w−k for the
removal of sensor k, based on the current LCMV solution
w with all sensors. To compute the sensor utility for sensor k,
as defined in (1), we have to evaluate the LCMV cost function
when this new estimator w−k is applied. Even though w−k
can be computed with O(KQ) complexity, the evaluation of
the cost function J−k(w−k) = wH

−kRyy−kw−k is still an
O(K2) procedure. Furthermore, if we want to evaluate all
sensor utilities, this has to be performed K times, yielding an
O(K3) procedure, which dominates the O(K2) complexity of
the adaptive LCMV algorithm considered here.

In this subsection, we explain how all sensor utilities can
be computed simultaneously with only O(KQ) complexity.
Since the number of constraints is usually much smaller than
the number of sensors (Q� K), this is negligible compared to
the O(K2) complexity of the adaptive beamforming algorithm.
First, by substituting (6) in J(w) = wHRyyw, we find that

J(wLCMV) = fHLf . (33)

The sensor utility of sensor k can then be written as

Uk = J−k(wLCMV
−k )− J(wLCMV) = fH (L−k − L) f . (34)

By substituting (27) in this expression, and using the fact that
Wk = qHk f , we find that

Uk =
1

αk − τk
|Wk|2 . (35)

Based on this expression, the sensor utility vector u ,
[U1 U2 . . . UK ]T containing all sensor utilities can be written
as

u = Σ−1|w|2 (36)

where the element-wise operator |x|2 replaces all elements in
the vector x by their squared absolute value, and with

Σ , D{R−1
yy } − D{T} (37)

where D{X} denotes the operator that sets all off-diagonal
elements of the matrix X to zero. The only quantity that is not
readily available is D{T}. Since this only involves computing
the diagonal elements of the matrix T = ΓLΓH , this is an
O(KQ2) procedure since L and Γ are assumed to be available.
However, in Appendix B, a recursive procedure is described
that allows to track D{T} with O(KQ) complexity. It is noted
that Σ is a diagonal matrix, and therefore the matrix inversion
in (36) actually consists of K scalar inversions. Therefore,
the computation of u has an overall O(K) complexity if we
assume that D{T} is readily available. However, since the
latter requires an O(KQ) recursive updating procedure, the
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computational complexity of computing the LCMV sensor
utilities is also O(KQ) (or O(KQ2) if D{T} is computed
without recursion).

IV. LINEAR MMSE SIGNAL ESTIMATION

In this section, we consider linear MMSE (LMMSE) signal
estimation, also often referred to as multi-channel Wiener
filtering (MWF). MWF is often used in signal enhancement,
in particular speech enhancement with microphone arrays or
acoustic sensor networks [10]–[12], [16], [28], [29].

The goal is to estimate a complex valued desired signal d
from the sensor signals y. We consider the general case where
d is not an observed signal, i.e. it is assumed to be unknown
(e.g. in speech enhancement, d is the speech component in
a noisy reference microphone signal [11], [12]). We consider
LMMSE signal estimation, i.e. a linear estimator d̂ = wHy
that minimizes the MSE cost function

J(w) , E{|d−wHy|2} . (38)

The minimizer of (38) is [34]:

wLMMSE = R−1
yy ryd (39)

with ryd , E{yd∗}, where d∗ denotes the complex conjugate
of d. Since d is assumed to be unknown, the estimation of
the correlation vector ryd has to be done indirectly, based
on application-specific strategies, e.g. by exploiting the on-off
behavior of the target signal source (as in speech enhancement
[10]–[12], [16]), by periodic broadcasts of known training
sequences, or by incorporating prior knowledge on the signal
statistics in case of (partially) static scenarios [32].

Based on the solution (39), we assume an adaptive MWF
or LMMSE algorithm that recursively updates the following
variables:

•R−1
yy (K ×K)

• ryd (K × 1)
•w (K × 1) (40)

A. Sensor removal

When sensor k is removed, the optimal LMMSE solution
is

w−k = R−1
yy−kryd−k (41)

where Ryy−k , E{y−kyH−k} and ryd−k , E{y−kd∗}. For
the sake of an easy exposition, but w.l.o.g., we again assume
that k = K. We again use the block partitioning of R−1

yy and
w defined in (9) and (10), respectively.

Similar to (18), which is repeated here for convenience,
R−1
yy−k can be efficiently computed as

R−1
yy−k = Ak − 1

αk
akaHk (42)

and therefore the LMMSE solution with sensor k removed is

w−k =
(

Ak −
1
αk

akaHk

)
ryd−k . (43)

By plugging (9) and (10) into (39) we find that

w−k = Akryd−k + ryd(k)ak (44)

Wk = aHk ryd−k + αkryd(k) (45)

where ryd(k) denotes the k-th element of the correlation vector
ryd. By comparing (43) with (44)-(45), we find that

w−k = w−k − Wk

αk
ak . (46)

Since all variables in (46) are directly available, expression
(46) has only O(K) complexity. Note that this formula is
similar to the LCMV sensor removal formula (32), even
though the definition of the optimal estimator w is very
different in both cases. Indeed, if we set C in the LCMV
formulation to zero, then both sensor removal formulas (32)
and (46) are equivalent.

B. Sensor utility

By plugging (39) into (38), we find that the MMSE cost is

J(wLMMSE) = Pd − rHydR
−1
yy ryd (47)

= Pd − rHydw
LMMSE (48)

with Pd = E{|d|2}. With (48) and the definition of Uk as
introduced in (1), we find that

Uk = rHydw − rHyd−kw−k . (49)

By using (46), and by using the partitioning of w as defined
in (10), we can rewrite (49) as

Uk = Wkryd(k)∗ +
Wk

αk
rHyd−kak . (50)

From (45), we find that

rHyd−kak = W ∗k − αkryd(k)∗ . (51)

By substituting (51) in (50), we find that

Uk =
1
αk
|Wk|2 . (52)

To monitor all the sensor utilities simultaneously, i.e. the utility
vector u = [U1U2 . . . UK ]T , it is thus sufficient to monitor the
squared components of the current estimator w, normalized by
the diagonal elements of the inverted correlation matrix R−1

yy ,
i.e.

u = Λ−1|w|2 (53)

with
Λ , D{R−1

yy } . (54)

Formula (53) has O(K) complexity, which is negligible com-
pared to the complexity of the estimator updates (which is
O(K2) due to the update of the inverse correlation matrix R−1

yy

based on (3)). Again, notice the similarity with the formula of
the LCMV beamformer in (36), i.e., both are the same when
setting C in the LCMV formulation to zero.
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V. DISTORTION-WEIGHTED LMMSE SIGNAL ESTIMATION

In this section, we assume that the sensor signals satisfy the
general additive noise model

y = d + n (55)

where d is a K-channel desired signal vector (containing
different filtered versions of the desired signal d) and n is a
K-channel noise vector, which is assumed to be uncorrelated
with d and d. W.l.o.g., we also assume that all signals are
zero-mean, such that E{dnH} is equal to an all-zero matrix.
We consider the same MSE cost function as in (38), but we
rewrite it as

J(w) = E{|d−wHd|2}+ E{|wHn|2} . (56)

Note that the first term corresponds to distortion of the desired
signal component, whereas the second term corresponds to the
actual noise reduction. To obtain a better noise reduction at the
price of more distortion (or vice versa), a trade-off parameter
µ is introduced in (56) (see also [11]), i.e.:

J(w) = E{|d−wHd|2}+ µE{|wHn|2} . (57)

The estimator minimizing this cost function is the so-called
distortion-weighted LMMSE (DW-LMMSE) estimator given
by

wDW-LMMSE = R̃−1
yy ryd (58)

with
R̃yy , Rdd + µRnn (59)

where Rdd , E{ddH}, Rnn , E{nnH} and ryd ,
E{yd∗}. It is noted that, when µ = 1, this is equal to the
LMMSE or MWF estimator (39). If µ 6= 1, the computation
of DW-LMMSE estimator requires a separate estimate of the
noise correlation matrix Rnn and the desired signal correlation
matrix Rdd. In the sequel, we assume that both can indeed be
estimated7.

Based on the solution (58), we assume an adaptive DW-
LMMSE signal estimation algorithm that updates the follow-
ing variables:

• R̃−1
yy = (Rdd + µRnn)

−1 (K ×K)
• ryd (K × 1)
•w (K × 1) (60)

Note that the adaptation of R̃−1
yy cannot rely on the recursive

update (3) when µ 6= 1, and therefore a full inversion has to be
performed in each iteration, which results in a computational
complexity of O(K3).

A. Sensor removal

The derivation of the sensor removal formula for the DW-
LMMSE estimator is almost identical to the derivation in
Subsection IV-A, and is omitted here. Not surprisingly, the
resulting formula is identical to (46), with Ryy replaced by

7For example, this is possible in speech enhancement applications, where
Rnn can be adaptively estimated during signal segments where the desired
speech source is not active, and Rdd can be computed as Ryy −Rnn.

R̃yy:

w−k = w−k − Wk

α̃k

ãk (61)

with

R̃−1
yy =

[
Ãk ãk
ãHk α̃k

]
. (62)

B. Sensor utility

The derivation is almost identical as in Subsection IV-B,
which results in the utility vector

u = Λ̃−1|w|2 (63)

with
Λ̃ , D{R̃−1

yy } . (64)

VI. RANK-1 DISTORTION-WEIGHTED LMMSE SIGNAL
ESTIMATION

In this section, we assume that the desired component d in
the sensor signals satisfies the rank-1 model

y = d + n = hs+ n (65)

where h is a deterministic steering vector and s is the
target source signal. Such models are often encountered in
beamforming applications with a single target source. It is
noted that the steering vector is not necessarily assumed to
be known. Therefore, the aim is to estimate the signal s as it
impinges on one of the sensors, referred to as the reference
sensor. W.l.o.g. we assume that the reference sensor is the first
sensor, and therefore the desired signal is d = h1s = eT1 d
where h1 denotes the first element of h and e1 is the K-
dimensional all-zero vector except for a one in the first entry.
Note that whenever the steering vector h is known, an LCMV
beamformer (Section III) can be used instead of the estimator
presented in this section.

We consider the same distortion-weighted MSE cost func-
tion as in (57), repeated here for convenience:

J(w) = E{|d−wHd|2}+ µE{|wHn|2} . (66)

It can be shown that, under the rank-1 assumption8 (65),
expression (58) can also be written as [12]

wR1-MWF = R−1
nnRdde1

1
µ+Tr{R−1

nnRdd}
(67)

where Tr{.} denotes the trace operator. We refer to this
implementation as the rank-1 multichannel Wiener filter (R1-
MWF) [12].

Expression (67) has two major advantages over (58). First,
the estimate of the inverse noise correlation matrix can be
recursively updated similarly to (3) during noise-only signal
segments, which again yields an O(K2) algorithm (remember
that this was not possible for the matrix R̃−1

yy in Section
V). Furthermore, although R1-MWF and (DW)-LMMSE are

8It can be shown that, if µ is set to zero, the solution (67) corresponds to
the so-called minimum variance distortionless response (MVDR) beamformer
based on the single constraint hHw = h∗1 so that the beamformer response
is distortionless with respect to the desired signal component in the reference
microphone.
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theoretically equivalent under a rank-1 assumption, (67) is
observed to significantly outperform the LMMSE estimator
(39) or the DW-LMMSE estimator (58) in practical imple-
mentations. A theoretical analysis in [12] has demonstrated
that expression (67) is indeed numerically more favorable than
(39) or (58).

However, with respect to sensor removal and utility in the
R1-MWF, unlike in the DW-LMMSE of Section V, R̃−1

yy

is not used and hence not directly available. Therefore, the
DW-LMMSE expressions for the sensor removal (61) and the
sensor utility vector (63) cannot be used here.

For notational convenience, we define

D , R−1
nnRdd (68)

ΛD , D{D} (69)

λD , ΛD1K (70)

where 1K denotes a K-dimensional vector with all entries
equal to 1. Since only the trace of D is required to compute
(67), we only need its diagonal elements, i.e., the vector λD,
which can be computed in O(K2). Therefore, the overall
complexity of the adaptive algorithm implementing (67) is
O(K2), where we can assume that the following variables
are recursively updated:

•R−1
nn (K ×K)

•Rdd (K ×K)
• λD (K × 1)
•w (K × 1) (71)

Note that Rdd can be computed as Rdd = Ryy−Rnn. Based
on the above variables, we will derive formulas for sensor
removal and to compute the utility vectors with an O(K)
complexity, which is again negligible compared to the O(K2)
complexity of the signal estimation itself.

A. Sensor removal

We again assume that sensor k = K is removed. In this
case, the optimal DW-LMMSE solution is

w−k = R−1
nn−kRdd−ke1

1
µ+ Tr{R−1

nn−kRdd−k}
(72)

where Rnn−k , E{n−knH−k} and Rdd−k , E{d−kdH−k}.
We again use the block partitioning of w defined in (10). We
define the block partitioning of R−1

nn as

R−1
nn =

[
Bk bk
bHk βk

]
. (73)

We define the variable

ν , µ+ Tr{R−1
nnRdd} = µ+ Tr{D} = µ+ λTD1K (74)

which can be computed with O(K) complexity. We also define

D−k , R−1
nn−kRdd−k . (75)

It is noted that

ν w = R−1
nnRdde1 (76)

(µ+ Tr{D−k}) w−k = R−1
nn−kRdd−ke1 . (77)

The righthand parts have a similar form as the LMMSE
estimators (39) and (41), respectively. Therefore, based on the
O(K) formula for the sensor removal in the LMMSE estimator
given in (46), we find that

w−k =
(
w−k − Wk

βk
bk
)

ν
µ+Tr{D−k} . (78)

For notational convenience, we define the following vari-
ables, which will be used in the sequel:

Λnn , D{R−1
nn} (79)

Λdd , D{Rdd} (80)

Λnd , ΛnnΛdd . (81)

In [8], an efficient formula is derived to compute Tr{D−k}
with O(K) complexity, based on the variables in (71): Tr{D−1}

...
Tr{D−K}

 = Tr{D}1K −Λ−1
nd |λD|

2 . (82)

Define the diagonal matrix

Φ , IK − 1
νΛ−1

nd |ΛD|2 (83)

which can be computed with O(K) complexity. We denote φk
as the k-th diagonal element of Φ. Combining (78), (82) and
(83), we find that

w−k = 1
φk

(
w−k − Wk

βk
bk
)
. (84)

Again, note the similarity between this formula and the sensor
removal formulas in the previous sections.

B. Sensor utility

Since the R1-MWF is a special case of the more general
DW-LMMSE signal estimator (58), the sensor utility vector u
of R1-MWF will be equal to the DW-LMMSE utility vector
(63). We can therefore start by stating that

u = Λ̃−1|w|2 =
(
D{R̃−1

yy }
)−1

|w|2 . (85)

However, R̃−1
yy is not explicitly available here. By using the

rank-1 assumption (65), we know that Rdd = PshhH with
Ps , E{|s|2} denoting the power of the target source signal,
and therefore

R̃−1
yy = (Rdd + µRnn)

−1 =
(
PshhH + µRnn

)−1
. (86)

By using the Woodbury identity [34], we can rewrite this as

R̃−1
yy =

1
µ

(
R−1
nn −

PsR−1
nnhhHR−1

nn

µ+ PshHR−1
nnh

)
. (87)

Since

PshHR−1
nnh = Tr{PshHR−1

nnh} (88)

= Tr{R−1
nnPshhH} (89)

= Tr{R−1
nnRdd} (90)
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we can rewrite (87) as

R̃−1
yy =

1
µ

(
R−1
nn −

1
ν
PsR−1

nnhhHR−1
nn

)
. (91)

Let δk denote the k-th diagonal element of D and pk ,
[bTk | βk]T denote the k-th column of R−1

nn , then we know
from the definition of D (68) that

δk = PspHk hh∗k (92)

with hk denoting the k-th entry of h. By multiplying (92) with
its conjugate, we find that

|δk|2 = P 2
s |hk|2pHk hhHpk . (93)

From this, we find that

D{PsR−1
nnhhHR−1

nn} = Λ−1
dd |ΛD|2 (94)

where Λ−1
dd is defined in (80). Plugging (94) into (91), and

using the definitions (79)-(80) yields

D{R̃−1
yy } =

1
µ

(
Λnn −

1
ν

Λ−1
dd |ΛD|2

)
. (95)

Combining this with the definition of the diagonal matrix Φ
given in (83), and using expression (85), we eventually find
that the sensor utility vector can be computed as

u = Ψ−1|w|2 (96)

with
Ψ ,

1
µ

ΛnnΦ . (97)

This is again an O(K) formula since all matrices involved are
diagonal. It is noted that, if the rank-1 assumption (65) holds,
we know by construction that Ψ is equal to Λ̃ as defined in
(64). If, in addition, µ = 1, we know that Ψ = Λ̃ = Λ,
i.e., the utility vectors (53), (63) and (96) will indeed all be
identical.

VII. COMPLEXITY AND SENSITIVITY EVALUATION

A. Analytical complexity analysis

In this subsection, we provide a complexity evaluation,
based on the number of floating point operations (flops)
that are required to compute each formula (i.e., the efficient
formulas derived in the paper, and the direct (straightforward)
computation of the same variables). A flop can be an addition
or a multiplication, i.e., additions and multiplications are
treated equally. Furthermore, we assume in the complexity
analysis that
• the inversion9 of a K ×K matrix requires 2

3K
3 flops

• the multiplication of a K × P with a P × N matrix
requires 2KPN flops.

It is noted that the number of flops as listed above are gen-
eral worst-case values to give a general idea of the complexity
reduction that can be achieved. The algorithms from which
these numbers are derived neither exploit possible structure
in the matrices (such as symmetry or certain case-specific

9We assume the use of an LU decomposition, rather than an explicit
computation of the matrix inverse (see [34]).
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Fig. 1. Number of flops required for sensor removal, as a function of the
number of sensors K.

structures), nor do they exploit advanced techniques such
as Strassen’s method for matrix multiplication. In general,
such efficient implementations only yield a minor reduction
in computational complexity, and the general conclusion that
is drawn from the complexity analysis below remains valid.

Table I shows the required number of flops for the sensor
removal for each of the four signal estimation algorithm. It
compares the number of flops between the efficient formulas,
i.e., (32), (46), (61) and (84), and the direct (straightforward)
computation, i.e., by entirely recomputing the beamformer co-
efficients. Table II shows the same for the utility computation.
The ∗ in Table II should be replaced by the number of flops
given in Table I (at the corresponding row). This reflects the
fact that a straightforward computation of the utility based on
(1) requires the computation of a new estimator where one
of the sensors is removed, and therefore refers to the first
table. The number of flops shown in Table II, for the LCMV
sensor utilities computed with (36), assumes that D{T} is
readily available, e.g., based on the recursive update given in
Appendix B.

To illustrate the computational advantage, Fig. 1 shows the
number of flops required for sensor removal, as a function
of the number of sensors K, for the four signal estimation
algorithms (where Q in LCMV is set to Q = 2). It is noted
that DW-LMMSE signal estimation is omitted since it has the
same complexity as LMMSE signal estimation. Furthermore,
the number of flops in the straightforward computation is
almost identical for all four algorithms, and therefore only
one curve is shown for the sake of intelligibility. Fig. 2 shows
the same for utility computation. It is noted that a significant
computational advantage has been achieved. In particular for
the case of utility computation, the number of computations
(for large K) has been reduced by approximately 7 orders of
magnitude, i.e., from 1010 to 103.

Finally, Fig. 3 shows the number of flops required for
the sensor removal and utility computation in an LCMV
beamformer, as a function of the number of constraints Q
for the case where K = 300. It shows both the case where
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TABLE I
COMPARISON OF THE NUMBER OF FLOPS FOR SENSOR REMOVAL

LCMV (straightforward) 2
3 (K − 1)3 + 2

3 (Q)3 + 2(Q− 1)(K − 1)2 + 2(Q− 1)2(K − 1) + 2Q2

LCMV (with (32)) (2Q+ 3)(K − 1) + 2Q(Q+ 1)
LMMSE (straightforward) 2

3 (K − 1)3 + 2(K − 1)2

LMMSE (with (46)) 2(K − 1)
DW-LMMSE (straightforward) 2

3 (K − 1)3 + 2(K − 1)2

DW-LMMSE (with (61)) 2(K − 1)
R1-MWF (straightforward) 2

3 (K − 1)3 + 2(K − 1)2 + 2(K − 1)(K − 2) + (K − 1)
R1-MWF (with (84)) 3(K − 1) + (K + 1) + 6

TABLE II
COMPARISON OF THE NUMBER OF FLOPS FOR UTILITY COMPUTATION. THE ∗ DENOTE A NUMBER OF FLOPS REQUIRED TO COMPUTE THE SENSOR

REMOVAL OF A SINGLE SENSOR, BASED ON THE CORRESPONDING ROW IN TABLE I.

LCMV (straightforward) K(4Q+ ∗)
LCMV (with (36)) 4K
LMMSE (straightforward) K(2K + 2(K − 1) + ∗)
LMMSE (with (53)) 3K
DW-LMMSE (straightforward) K(2K + 2(K − 1) + ∗)
DW-LMMSE (with (63)) 3K
R1-MWF (straightforward) K(2K + 2(K − 1) + ∗)
R1-MWF (with (96)) 11K
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Fig. 2. Number of flops required for utility computation, as a function of
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D{T} is readily available (e.g., from the recursive update in
Appendix B), or when it has to be computed explicitely. Notice
that the computation of the utility vector is independent of Q
in the former case, i.e., when D{T} is assumed to be readily
available.

B. Simulation-based complexity analysis

Fig. 4 compares the average Matlab calculation time for the
utility computation, as a function of the number of sensors
K, for the four signal estimation algorithms (where Q in
LCMV is set to Q = 2). The results are averaged over 200
Monte Carlo (MC) trials. The calculation times shown in Fig.
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Fig. 3. Number of flops required for utility computation in LCMV, as a
function of the number of constraints Q.

4 only incorporate the calculation of the utility vectors, i.e.,
they do not incorporate the calculations required by the actual
beamformer or signal estimators. It is noted that Fig. 4 only
gives a rough comparison of the practical calculation time, i.e.,
it does not necessarily reflect the computation time in fully-
optimized implementations on dedicated platforms. The differ-
ence between Fig. 4 and Fig. 2 may be explained by overhead
in the Matlab environment and because certain assumptions
were made in the complexity analysis which may not hold in a
Matlab implementation (cfr. Section VII-A). Furthermore, the
numbers given in Table VII-A and Table VII-A are based on
a worst-case analysis without exploiting structure or efficient
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Fig. 4. Utility calculation time as a function of the number of sensors K,
averaged over 200 MC trials.

matrix manipulation algorithms (cfr. Section VII-A).

C. Simulation-based sensitivity analysis

We have demonstrated that the utility vectors can be com-
puted in an efficient way by using the techniques in Sections
III to VI. Even though these techniques are theoretically
equivalent to the straightforward utility computations based on
the utility definition in (1), they may have a different accuracy
in case of finite-precision calculations. In this subsection,
we provide simulation results that compare the sensitivity to
round-off errors of both approaches. For practical reasons,
we use a simplistic and inaccurate model to simulate finite-
precision (fixed-point) calculations. Therefore, the results only
provide a rough comparison, i.e., they do not perfectly reflect
the true behavior in finite-precision implementations.

The round-off errors are modeled by quantizers with quan-
tization level δ, i.e., Qδ (x) = δ(xδ )round, where (.)round is
the operator that replaces its argument by the closest inte-
ger number. To model finite-precision calculations, we have
introduced such a quantizer before and after each operation
that is performed in the utility calculation. For example, a
finite-precision implementation for the inversion of matrix X
is modeled by performing the following operations in Matlab:

1) Each element of X is quantized, yielding the quantized
matrix Qδ (X).

2) Qδ (X) is inverted with Matlab accuracy, yielding
(Qδ (X))−1.

3) The resulting matrix (Qδ (X))−1 is again quantized,
yielding Qδ

(
(Qδ (X))−1

)
.

Similar procedures are used to model finite-precision imple-
mentations of other high-level operators. It is noted that practi-
cal finite-precision implementations will also apply quantizers
in each elementary operation inside the operator. Therefore,
the total round-off error as provided by our simulations is
underestimated. Nevertheless, the simulations provide at least
a rough comparison.
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Fig. 5. Average relative error er of the utility computations, as a function
of the (log-transformed) quantization level δ, averaged over 4000 MC trials.

We have performed 4000 MC trials, where the
geometrically-averaged condition number of Ryy was
equal to 9111. We define the average relative error er
between the finite-precision utility UFP and the ground-truth
utility U (which is computed with Matlab accuracy) as

er =
∑

MC trials |UFP − U |∑
MC trials U

. (98)

It is noted that the ground-truth utility U assumes perfect
knowledge of the signal statistics (Ryy , ryd, Rnn, and Rdd),
whereas the finite-precision utility UFP also contains estima-
tion errors due to practical estimation of the signal statistics, in
addition to the round-off errors in its calculations. To estimate
ryd and Rdd, we used similar techniques as in [11], [12].

Fig. 5 shows the relative error er as a function of the (log-
transformed) quantization level δ, for the four signal estimation
algorithms. Since µ = 1, LMMSE and DW-LMMSE are
equivalent. It is observed that the utility of the LCMV beam-
former is less sensitive to quantization than the other signal
estimation algorithms. This is because LCMV does not require
the estimation of either ryd or Rdd, which is error-prone
since these cannot be computed directly by means of temporal
averaging, as the signals d and d are not observed. In fact, for
small δ, the estimation errors on ryd or Rdd in the (DW-
)LMMSE and R1-MWF algorithms dominate the round-off
errors, which explains the flat curves for small δ. In general, it
can be observed that the straightforward computation of utility
is significantly more sensitive to round-off errors compared
to the efficient formulas. This is not unexpected, since the
straightforward approach involves more operations, including
matrix inversions, yielding a longer accumulation of round-
off errors. It is noted that, in these simulations, the order of
magnitude of the ground-truth utility U is approximately 10−6,
hence the error er will become very large if δ > 10−6.

VIII. CONCLUSIONS

In this paper, we have derived efficient formulas for the
computation of sensor utilities in four different adaptive signal
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estimation and beamforming algorithms: LCMV (including
MVDR), LMMSE (or MWF), DW-LMMSE and R1-MWF.
We have shown that the sensor utilities can be computed
with hardly any increase in memory usage and computational
complexity compared to the signal estimation or beamforming
algorithm already in place. This allows for on-line tracking
of all the sensor utilities at almost no additional cost. Fur-
thermore, we have derived efficient formulas that allow to
quickly update the signal estimators or beamformers when
a sensor signal is removed. Based on numerical simulations,
we have made a comparison between the derived formulas
and the (direct) straightforward computation, in terms of
computational complexity and sensitivity to round-off errors.

APPENDIX

A. Recursive LCMV

Assume that, at time t, we want to incorporate the new
sensor signal observation y[t], and we have access to the
following variables from the previous time step t− 1:

•R−1
yy [t− 1]

• Γ[t− 1] = R−1
yy [t− 1]C

• L[t− 1] =
(
CHΓ[t− 1]

)−1
.

Define

• z[t] , R−1
yy [t− 1]y[t]

• z̃[t] , CHz[t]
• x[t] , L[t− 1]z̃[t]
• η[t] , λ2

1−λ + λy[t]Hz[t]
• ξ[t] , z̃[t]Hx[t] (99)

where λ denotes the forgetting factor as in (3). The recursive
update of R−1

yy given in (3) can then be written as

R−1
yy [t] = 1

λR−1
yy [t− 1]− 1

η[t]z[t]z[t]H . (100)

Using this with the fact that Γ[t] = R−1
yy [t]C, we find that

Γ[t] = 1
λΓ[t− 1]− 1

η[t]z[t]z̃[t]H . (101)

By left-multiplying both sides of (101) with CH , we find that

L−1[t] =
1
λ

L−1[t− 1]− 1
η[t]

z̃[t]z̃[t]H . (102)

By applying the Woodbury identity, we find that

L[t] = λL[t− 1] + λ2

η[t]−λξ[t]x[t]x[t]H . (103)

The new LCMV solution can then be computed as

w[t] = Γ[t] (L[t]f) . (104)

It is noted that the computational complexity of (100), (101),
(103) and (104) is O(K2), O(KQ), O(Q2) and O(KQ),
respectively. Therefore, and since Q ≤ K, the overall com-
plexity of the recursive algorithm is O(K2).

B. Recursive computation of D{T}
Denote T[t] = Γ[t]L[t]Γ[t]H as the value of the matrix T

at sample time t. Using (103), we obtain

T[t] = λΓ[t]L[t− 1]Γ[t]H +
λ2

η[t]− λξ[t]
Γ[t]x[t]x[t]HΓ[t]H .

(105)
We define

•m[t] , Γ[t]x[t]
• m̃[t] , Γ[t− 1]x[t] . (106)

Substituting (101) in (105), and using the notation (106), we

obtain

T[t] = λT[t− 1]− 1
η[t]

(
m[t]z[t]H + z[t]m[t]H

)
+
λξ[t]
η[t]2

z[t]z[t]H +
λ2

η[t]− λξ[t]
m̃[t]m̃[t]H .

(107)

Let τk[t] denote the k-th diagonal element of T[t], then it
follows from (107) that

τk[t] = λτk[t− 1]− 2
η[t]
R{mk[t]zk[t]∗}+

λξ[t]
η[t]2

|zk[t]|2

+
λ2

η[t]− λξ[t]
|m̃k[t]|2 (108)

where R{.} takes the real part of its argument. Note that
computing τk[t] has O(Q) complexity, since mk[t] and m̃k[t]
can be computed with O(Q) complexity, and since all other
variables are directly available from the recursive LCMV
beamformer implementation based on (99). Therefore, the
computation of all diagonal entries of T[t], i.e., the computa-
tion of D{T}, has O(KQ) complexity.
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