140,823 research outputs found

    Quality-Aware Learning to Prioritize Test Cases

    Get PDF
    Software applications evolve at a rapid rate because of continuous functionality extensions, changes in requirements, optimization of code, and fixes of faults. Moreover, modern software is often composed of components engineered with different programming languages by different internal or external teams. During this evolution, it is crucial to continuously detect unintentionally injected faults and continuously release new features. Software testing aims at reducing this risk by running a certain suite of test cases regularly or at each change of the source code. However, the large number of test cases makes it infeasible to run all test cases. Automated test case prioritization and selection techniques have been studied in order to reduce the cost and improve the efficiency of testing tasks. However, the current state-of-art techniques remain limited in some aspects. First, the existing test prioritization and selection techniques often assume that faults are equally distributed across the software components, which can lead to spending most of the testing budget on components less likely to fail rather than the ones highly to contain faults. Second, the existing techniques share a scalability problem not only in terms of the size of the selected test suite but also in terms of the round-trip time between code commits and engineer feedback on test cases failures in the context of Continuous Integration (CI) development environments. Finally, it is hard to algorithmically capture the domain knowledge of the human testers which is crucial in testing and release cycles. This thesis is a new take on the old problem of reducing the cost of software testing in these regards by presenting a data-driven lightweight approach for test case prioritization and execution scheduling that is being used (i) during CI cycles for quick and resource-optimal feedback to engineers, and (ii) during release planning by capturing the testers domain knowledge and release requirements. Our approach combines software quality metrics with code churn metrics to build a regressive model that predicts the fault density of each component and a classification model to discriminate faulty from non-faulty components. Both models are used to guide the testing effort to the components likely to contain the largest number of faults. The predictive models have been validated on eight industrial automotive software applications at Daimler, showing a classification accuracy of 89% and an accuracy of 85.7% for the regression model. The thesis develops a test cases prioritization model based on features of the code change, the tests execution history and the component development history. The model reduces the cost of CI by predicting whether a particular code change should trigger the individual test suites and their corresponding test cases. In order to algorithmically capture the domain knowledge and the preferences of the tester, our approach developed a test case execution scheduling model that consumes the testers preferences in the form of a probabilistic graph and solves the optimal test budget allocation problem both online in the context of CI cycles and offline when planning a release. Finally, the thesis presents a theoretical cost model that describes when our prioritization and scheduling approach is worthwhile. The overall approach is validated on two industrial analytical applications in the area of energy management and predictive maintenance, showing that over 95% of the test failures are still reported back to the engineers while only 43% of the total available test cases are being executed

    Quality-Aware Learning to Prioritize Test Cases

    Get PDF
    Software applications evolve at a rapid rate because of continuous functionality extensions, changes in requirements, optimization of code, and fixes of faults. Moreover, modern software is often composed of components engineered with different programming languages by different internal or external teams. During this evolution, it is crucial to continuously detect unintentionally injected faults and continuously release new features. Software testing aims at reducing this risk by running a certain suite of test cases regularly or at each change of the source code. However, the large number of test cases makes it infeasible to run all test cases. Automated test case prioritization and selection techniques have been studied in order to reduce the cost and improve the efficiency of testing tasks. However, the current state-of-art techniques remain limited in some aspects. First, the existing test prioritization and selection techniques often assume that faults are equally distributed across the software components, which can lead to spending most of the testing budget on components less likely to fail rather than the ones highly to contain faults. Second, the existing techniques share a scalability problem not only in terms of the size of the selected test suite but also in terms of the round-trip time between code commits and engineer feedback on test cases failures in the context of Continuous Integration (CI) development environments. Finally, it is hard to algorithmically capture the domain knowledge of the human testers which is crucial in testing and release cycles. This thesis is a new take on the old problem of reducing the cost of software testing in these regards by presenting a data-driven lightweight approach for test case prioritization and execution scheduling that is being used (i) during CI cycles for quick and resource-optimal feedback to engineers, and (ii) during release planning by capturing the testers domain knowledge and release requirements. Our approach combines software quality metrics with code churn metrics to build a regressive model that predicts the fault density of each component and a classification model to discriminate faulty from non-faulty components. Both models are used to guide the testing effort to the components likely to contain the largest number of faults. The predictive models have been validated on eight industrial automotive software applications at Daimler, showing a classification accuracy of 89% and an accuracy of 85.7% for the regression model. The thesis develops a test cases prioritization model based on features of the code change, the tests execution history and the component development history. The model reduces the cost of CI by predicting whether a particular code change should trigger the individual test suites and their corresponding test cases. In order to algorithmically capture the domain knowledge and the preferences of the tester, our approach developed a test case execution scheduling model that consumes the testers preferences in the form of a probabilistic graph and solves the optimal test budget allocation problem both online in the context of CI cycles and offline when planning a release. Finally, the thesis presents a theoretical cost model that describes when our prioritization and scheduling approach is worthwhile. The overall approach is validated on two industrial analytical applications in the area of energy management and predictive maintenance, showing that over 95% of the test failures are still reported back to the engineers while only 43% of the total available test cases are being executed

    Microservices Validation: Methodology and Implementation

    Full text link
    Due to the wide spread of cloud computing, arises actual question about architecture, design and implementation of cloud applications. The microservice model describes the design and development of loosely coupled cloud applications when computing resources are provided on the basis of automated IaaS and PaaS cloud platforms. Such applications consist of hundreds and thousands of service instances, so automated validation and testing of cloud applications developed on the basis of microservice model is a pressing issue. There are constantly developing new methods of testing both individual microservices and cloud applications at a whole. This article presents our vision of a framework for the validation of the microservice cloud applications, providing an integrated approach for the implementation of various testing methods of such applications, from basic unit tests to continuous stability testing

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations
    corecore