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Zusammenfassung

Softwareanwendungen entwickeln sich aufgrund von kontinuierlichen Funktionserweiterungen,
sich ändernden Anforderungen, Code-Optimierungen und Fehlerkorrekturen schnell weiter.
Außerdem besteht moderne Software oft aus Komponenten, die von verschiedenen internen
oder externen Entwickler-Teams in unterschiedlichen Programmiersprachen entwickelt werden.
Während dieser Entwicklung ist es entscheidend, eingeschlichene Fehler kontinuierlich zu erken-
nen und ständig neue Funktionen zu liefern. Das Testen von Software zielt darauf ab, dieses
Risiko zu verringern, indem eine bestimmte Menge von Testfällen regelmäßig - oder wenn der
Quellcode geändert wird - ausgeführt wird. Aufgrund der großen Anzahl von Testfällen ist es
jedoch nicht möglich, alle Testfälle auszuführen. Automatisierte Techniken zur Priorisierung
und Auswahl von Testfällen wurden untersucht, um die Kosten zu senken und die E�zienz
der Testaufgaben zu verbessern. Die heutigen Techniken sind jedoch in mehrfacher Aspekten
eingeschränkt. Erstens gehen die vorhandenen Techniken zur Priorisierung und Auswahl von
Testfällen oft davon aus, dass die Fehler gleichmässig über die Softwarekomponenten verteilt
sind, was dazu führen kann, dass der größte Teil des Testbudgets für Komponenten ausgegeben
wird, bei denen die Wahrscheinlichkeit eines Fehlers geringer ist als bei denen, die mit hoher
Wahrscheinlichkeit Fehler enthalten. Zweitens haben die vorhandenen Techniken ein Skalier-
barkeitsproblem, nicht nur in Bezug auf die Größe der ausgewählten Testsuite, sondern auch in
Bezug auf die Umlaufzeit zwischen den Code-Commits und der Rückmeldung des Entwicklers
über fehlgeschlagene Testfälle im Kontext von Continuous Integration (CI). Schliesslich ist es
schwierig, das Wissen der menschlichen Tester algorithmisch zu erfassen, das für die Test- und
Release-Zyklen entscheidend ist.

DieseArbeit ist eine neueHerangehensweise an das alte Problem, das die Kosten für das Software-
Testing in dieser Hinsicht reduziert, indem sie einen datengesteuerten, leichtgewichtigen Ansatz
für die Auswahl und Priorisierung von Testfällen vorstellt, der (i) während der CI-Zyklen für
schnelles und Ressourcen optimalen Rückmeldung an die Entwicklern und (ii) während der Release-
Planung durch Erfassung des Fachwissens der Tester und der Release-Anforderungen verwendet
wird. Unser Ansatz kombiniert Software-Qualitätsmetriken mit Code-Churn-Metriken, um ein
regressives Modell zu erstellen, das die Fehlerdichte jeder Komponente vorhersagt, sowie ein
Klassi�zierungsmodell zur Unterscheidung zwischen fehlerhaften und nicht fehlerhaften Kom-
ponenten. Beide Modelle werden verwendet, um den Testaufwand auf die Komponenten zu
richten, die wahrscheinlich die größte Anzahl von Fehlern enthalten. Die Vorhersagemodellen
wurden an acht industriellen Automobilsoftwareanwendungen bei Daimler validiert und zeigten
eine Klassi�zierungsgenauigkeit von 89% und eine Genauigkeit von 85, 7% für das Regression-
smodell. In dieser Arbeit wird ein Modell zur Priorisierung von Testfällen entwickelt, das auf
den Merkmalen der Codeänderung, der Ausführungshistorie der Tests und der Entwicklung-
shistorie der Komponenten basiert. Das Modell reduziert die Kosten der CI, indem es vorher-
sagt, ob eine bestimmte Codeänderung die einzelnen Testsuiten und ihre entsprechenden Test-
fälle auslösen sollte. Um das Fachwissen und die Präferenzen der Tester algorithmisch zu er-
fassen, hat unser Ansatz ein Testfallauswahlmodell entwickelt, das die Präferenzen der Tester
in der Form eines probabilistischen Graphen aufnimmt und das Problem der optimalen Testbud-
getzuweisung sowohl online im Kontext von CI-Zyklen als auch o�ine bei der Planung eines
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Releases löst. Schließlich wird ein theoretisches Kostenmodell vorgestellt, welches beschreibt,
wann unser Priorisierungs- und Auswahlansatz sinnvoll ist. Der Gesamtansatz wird an zwei
industriellen analytischen Anwendungen im Bereich des Energiemanagements und der prädik-
tiven Instandhaltung validiert. Dabei zeigt sich, dass über 95% der Testfehler an die Entwickler
zurückgemeldet werden, während nur 43% der insgesamt verfügbaren Testfälle ausgeführt wer-
den.
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Abstract

Software applications evolve at a rapid rate because of continuous functionality extensions,
changes in requirements, optimization of code, and �xes of faults. Moreover, modern software is
often composed of components engineered with di�erent programming languages by di�erent
internal or external teams. During this evolution, it is crucial to continuously detect uninten-
tionally injected faults and continuously release new features. Software testing aims at reducing
this risk by running a certain suite of test cases regularly or at each change of the source code.
However, the large number of test cases makes it infeasible to run all test cases. Automated test
case prioritization and selection techniques have been studied in order to reduce the cost and
improve the e�ciency of testing tasks. However, the current state-of-art techniques remain lim-
ited in some aspects. First, the existing test prioritization and selection techniques often assume
that faults are equally distributed across the software components, which can lead to spending
most of the testing budget on components less likely to fail rather than the ones highly to contain
faults. Second, the existing techniques share a scalability problem not only in terms of the size
of the selected test suite but also in terms of the round-trip time between code commits and en-
gineer feedback on test cases failures in the context of Continuous Integration (CI) development
environments. Finally, it is hard to algorithmically capture the domain knowledge of the human
testers which is crucial in testing and release cycles.

This thesis is a new take on the old problem of reducing the cost of software testing in these
regards by presenting a data-driven lightweight approach for test case prioritization and execu-
tion scheduling that is being used (i) during CI cycles for quick and resource-optimal feedback
to engineers, and (ii) during release planning by capturing the testers domain knowledge and
release requirements. Our approach combines software quality metrics with code churn metrics
to build a regressive model that predicts the fault density of each component and a classi�ca-
tion model to discriminate faulty from non-faulty components. Both models are used to guide
the testing e�ort to the components likely to contain the largest number of faults. The predic-
tive models have been validated on eight industrial automotive software applications at Daimler,
showing a classi�cation accuracy of 89% and an accuracy of 85.7% for the regression model.
The thesis develops a test cases prioritization model based on features of the code change, the
tests execution history and the component development history. The model reduces the cost of
CI by predicting whether a particular code change should trigger the individual test suites and
their corresponding test cases. In order to algorithmically capture the domain knowledge and
the preferences of the tester, our approach developed a test case execution scheduling model that
consumes the testers preferences in the form of a probabilistic graph and solves the optimal test
budget allocation problem both online in the context of CI cycles and o�ine when planning a
release. Finally, the thesis presents a theoretical cost model that describes when our prioritiza-
tion and scheduling approach is worthwhile. The overall approach is validated on two industrial
analytical applications in the area of energy management and predictive maintenance, showing
that over 95% of the test failures are still reported back to the engineers while only 43% of the
total available test cases are being executed.
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1. Introduction

This is an introductory chapter. Section 1.1 presents the motivation for the problem handled in
this thesis, followed by an illustrative scenario in Section 1.2 and the description of the problem
statement in Section 1.3. The contributions of this thesis are discussed in Section 1.4. Finally,
Section 1.5 presents the outline of this thesis.

1.1 Motivation
Software applications evolve rapidly because of continuous functionality extensions, changes in
requirements, code optimization, and �xes of faults. Moreover, modern software is often com-
posed of components engineered with di�erent programming languages by di�erent internal or
external teams. During this evolution, it is crucial to detect unintentionally injected faults while
continuously releasing new features.

Therefore many industries use a Continuous Integration (CI) strategy, a common agile tech-
nique in which engineers frequently commit their latest code changes to the mainline code base,
enabling them to quickly and cost-e�ectively verify that their code could indeed pass tests in
multiple system environments. Developers commonly need to know that unmodi�ed code has
not been a�ected after such code changes, and regression testing is a crucial technique to ensure
that these changes do not introduce new bugs at each CI cycle.

The most straightforward strategy for regression testing is to re-execute all existing test cases.
This method is easy to implement, but it could be unnecessarily expensive because �rst, changes
occur frequently and tests should be run on every code change, and second, changes often a�ect
only a small part of the software project. Moreover, regression testing could consume 80% of
the overall testing budget and require weeks to run all test suites [Kan97]. For example, Google
reported high testing costs, running on the order of 150 million tests per day [BX16]. Facebook
reported that they make around 60K code changes per day, and they run on the order of 10K
tests per change [MSPC19]. These facts introduce new challenges for the testing activities due
to (i) the dynamic environment resulting from frequent code changes and (ii) time constraints
since testing should be fast enough to enable frequent builds and test the source code.

In order to reduce the cost of testing, several techniques, such as the test case minimization,
selection and prioritization techniques, have been developed [EMR01, LHH07, MHZ+12, MB16,
MB17, RUCH99, SZKP15, TAS06, YH12]. Test case minimization aims to eliminate the redun-
dancy in the test suites or remove obsolete test cases to reduce the size and thus the cost. Test
case selection aims at identifying the test cases that execute the changed areas of the source
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2 1. Introduction

code. However, selecting the test cases most likely to detect faults for early execution is hard.
Test case prioritization is popularly used as an optimization mechanism for ranking tests by their
likelihood of revealing failures without eliminating any test case from the test suites.

However, existing prioritization techniques are usually time and resource-intensive to be ap-
plied within CI cycles. Moreover, existing techniques do not allow to capture algorithmically
the testers’ domain knowledge and requirements which are essential to speed up and control the
expensive testing and release process.

This thesis is a new take on the old problem of reducing the cost of software testing in these
regards by presenting a data-driven lightweight approach for test case prioritization that is being
used (i) during CI cycles for quick and resource-optimal feedback to engineers, and (ii) during
release planning by capturing the testers domain knowledge and release requirements.

1.2 An Illustrative Scenario

Assume you are a tester responsible for a software application. This software application is com-
posed of a set of components. The software components are developed in di�erent programming
languages by di�erent internal or external teams. It is a mature software product with multiple
previous versions that are already launched on the market. Consider that you have a large pool
of test cases used to test the previous versions of the software. The test cases for each component
are executed on speci�c testing machines which are pre-con�gured based on the components’
programming language. A new version of the software is due to be released soon with some new
features. The software application faces new changes in the source code by adding these new
features and test cases might be added or modi�ed. As a tester, one of your tasks is to ensure
that the newly developed features do not a�ect the functionality of the previous versions of the
software application. Unfortunately, you have a limited testing budget, and the existing set of
test cases is too large to be processed thoroughly. As software components evolve, the number
of test cases grows, making it practically impossible to execute all test cases. So, you decide to
execute a test case prioritization technique to reduce, as possible, the round-trip time between
code commits and the feedback about failing test cases and to enable quick �x and integration
of the newly added code within the mainline source code base. Meanwhile, you recognize that
the order generated by the test case prioritization technique is not adequate, as you know that
certain test cases belonging to components that are highly to be executed or highly to contain
faults should be considered �rst. However, the test case prioritization technique prioritizes these
test cases at the end of the order. Consequently, given a time limit, it can lead to a sub-optimal
allocation of test cases; meaning that test cases could be executed in some of the components,
neglecting other components that are more critical (e.g., highly to contain faults, highly to be
executed). Furthermore, you have a very crucial business agreement, and a particular feature or
functionality is expected to be more used than other features; thus, it must be tested �rst. Un-
fortunately, it is not possible to incorporate the new requirements and your domain knowledge
into the existing test case prioritization techniques. Such information is essential to speedup
and control the expensive testing and release process. Therefore, you are facing the following
challenges:

• How to �nd the most e�ective and e�cient subset of test cases to execute on the avail-
able test execution machines while satisfying your preferences within a given budget con-
straint? (the third contribution is described in Chapter 6, where we solve the test case
scheduling challenge across all software components)

• Which test cases should you run �rst in each component? (the second contribution is
described in Chapter 5, where a rank is given for each test case in each software component)
and,
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• In which code-part should you focus the testing and run the test cases? (the �rst contri-
bution, as described in Chapter 4, is to direct the testing in areas in the software that are
most likely to be failed)

1.3 Problem Statement
Continuous Integration (CI) is a cost-e�ective and common software development practice to
allow developers frequently integrate their work. Regression testing is a crucial technique to
ensure that the changes do not introduce new bugs at each CI. Testing in CI involves test case
prioritization and execution at each cycle with the goal to accelerate detecting faults and the
release of new features. Automated test case prioritization and selection techniques have been
studied in order to reduce the cost and improve the e�ciency of testing tasks. However, the cur-
rent state-of-art techniques remain limited in some aspects which de�nes the di�erent problem
statements of this thesis:

1. the existing test prioritization techniques often assume that faults are equally distributed
across the software components, which can lead to spending most of the testing budget on
components less likely to fail rather than the ones highly to contain faults,

2. in CI environments, traditional test prioritization techniques can be di�cult to apply. Most
traditional techniques require gathering code coverage data or performing static analysis
which makes such techniques (i) time intensive and cannot be executed within CI cycles
and (ii) limited from a practicality point of view as modern software is often written in
di�erent programming languages.

3. existing techniques do not allow to capture algorithmically the testers’ domain knowledge
and requirements which are essential to speedup and control the expensive testing and
release process.

In summary, the existing test prioritization techniques are time and resource-intensive to be
executed within CI cycles in an online and dynamic fashion, and do not allow to capture algo-
rithmically the testers’ domain knowledge and preferences. In addition, they ignore the modular
architecture of software applications and the relationships between their components. In fact, a
seasoned tester might have knowledge about which components are more error-prone. More-
over, the testing activities might sometimes require prioritizing some components over others
because of release requirements (e.g., a particular feature or functionality is expected to be more
used than other features).

In order to tame these problems, we propose a new lightweight test case prioritization in CI en-
vironments. Our approach combines software quality metrics with code churn metrics to build
a regressive model that predicts the fault density of each component and a classi�cation model
to discriminate faulty from non-faulty components. Both models are used to guide the testing
e�ort to the components likely to contain the largest number of faults. Moreover, our approach
minimizes the test prioritization overhead. It continuously adapts to the changing environment
as new code and new test cases are added in each CI cycle through formulating the test prior-
itization problem as a computational e�cient online learn-to-rank model using reinforcement
learning techniques. In addition, our approach developed a test case execution scheduling model
that consumes the testers’ preferences in the form of a probabilistic graph, allowing to capture
the tester’s domain knowledge and the preferences algorithmically and solves the optimal test
budget allocation problem both online in the context of CI cycles and o�ine when planning a
release.

In more details, Figure 1.1 illustrates the whole approach where a software application is com-
posed of a set of components. The software components are developed in di�erent languages (e.g
Python for the data engineering components, JavaScript for the User Interfaces, Java for backend
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Figure 1.1: Test Case Scheduler across Software Components based on Ranked Test Cases and
with Human in the Loop

work�ows, C ++ for some compressing algorithms, etc). For each software component, a set of
test cases has been created, and test cases might be added or modi�ed after each change of the ap-
plication’s source code. For each component a prioritized test cases is computed 2 , as described
in Chapter 5. The test cases for each component are executed on speci�c testing machines which
are pre-con�gured based on the components programming language and setup requirements. A
probability of failure is assigned for each software component based on a nightly build where
quality metrics are computed 1 , as described in Chapter 4. Moreover, the software tester can
add probabilities of execution on the edges connecting the components. Such probabilities can
be extracted (i) after pro�ling how the application’s clients are using the application, or (ii) based
on preferences and domain expertise of the testers 3 , as described in Chapter 6. The overall
approach describes more thorough the three following main steps:

1 Predict probability of failure for each component: mining software quality and code
churn metrics to predict the fault density of each component during a nightly build to
guide testing to the software component likely to fail. In an exploratory study, described
in Chapter 4 in Section 4.4, we show that the combination of code complexity metrics to-
gether with static analysis and with churn metrics results allows accurate prediction of
fault density and build classi�ers discriminating faulty from non-faulty software compo-
nents. The experiments were carried out using eight software projects of an automotive
head unit control system (Audio, Navigation, Phone, etc.). Each project, in turn, is com-
posed of a set of components. The total number of components is 54. These components
have a collective size of ⇠ 24MLOC (million LOCs without comments and spaces). All
components use the object oriented language C + +. In experiments to separate fault-
prone from non-fault-prone components, the developed approach achieved a classi�cation
accuracy of 89%, and the regressor predicted the fault density of software components
with an accuracy of 85.7%
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2 Compute test cases ranks: a lightweight test case prioritization technique in CI based
on foundational results of learning-to-rank from the �eld of information retrieval and re-
inforcement learning is developed. The prioritization of the test cases is executed in each
software component. In particular, the developed approach used historical test results to
learn a ranking model used to predict rankings for all test cases in each software com-
ponent. The model is based on reinforcement learning principles allowing us to design
an adaptive method capable of learning from the execution environment. Adaptiveness
means in the context of this thesis, that the developed approach can progressively im-
prove its e�ciency after each test case’s execution cycle. Unlike other test prioritization
approaches, the developed technique is able to adapt to situations where test cases are
added or deleted, or when testing priorities change because of changing failure indications
in di�erent code regions as the code matures or as the requirements change. Moreover,
our technique does not require computationally intensive operations during the ranking
process. It uses knowledge about the execution history of the test cases at each CI cycle
and updates this knowledge from feedback provided by a reward function. The developed
approach is validated, as described in Chapter 5, Section 5.3, on eight open source projects
and on four industrial case studies shows that over 95% of the test failures are still reported
back to the software engineers while only 40% of the total available test cases are being
executed,

3 Test cases scheduler: formulation of the test case prioritization problem across all soft-
ware components as a sequential decision-making process using reinforcement learning
to capture the testers’ requirements. The developed technique uses graph neural networks
to represent the states of the reinforcement learning problem and capture the structure of
the software application as well the domain knowledge and requirements of the testers.
The goal of the developed technique is to schedule the test cases of the software compo-
nents for execution on the available test execution machines while satisfying the tester’s
preferences and the time constraint for each CI cycle. The developed approach is validated
on two industrial case studies, showing that over 95% of the test failures are still reported
back to the software engineers while only 43% of the total available test cases are being
executed, as in Chapter 6, Section 6.6.

Finally, the thesis presents a theoretical cost model that describes when our prioritization and
scheduling approach is worthwhile. The overall approach is validated on two industrial analytical
applications in the areas of energy and asset management, showing over 95% of the test failures
are still reported back to the engineers, while only 43% of the total available test cases are being
executed.

1.4 Contributions
The contributions of this thesis are as follows:

1. this thesis guides the testing to the software components likely to fail by proposing a re-
gressive model that predicts the fault density of each component based on quality metrics
and code churn metrics,

2. a lightweight test cases prioritization technique based on foundational results of learning-
to-rank from the �eld of information retrieval and reinforcement learning is developed.
The prioritization of the test cases is executed in each software component,

3. in order to capture the testers requirements, this thesis formulates the test prioritization
problem across all software components as a sequential decision-making process using re-
inforcement learning. The developed technique uses graph neural networks to represent
the states of the reinforcement learning problem and capture the testers’ domain knowl-
edge and requirements.
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4. this thesis also presents a theoretical cost model that describes when the developed prior-
itization and scheduling approach is worthwhile.

1.5 Outline
According to the stated main goals, the remainder of this thesis is structured as outlined in the
following:

• Chapter 2 introduces the foundations which are considered as necessary and important
to understand this thesis.

• Chapter 3 presents the related work and their relationship to this work.

• Chapter 4 describes how mining software quality metrics and code churn metrics helps
to predict components failures, as mentioned in the �rst contribution in Section 1.4.

• Chapter 5 formulates the test case prioritization as an online learning-to-rank problem
within each software component based on reinforcement learning principles, as described
in the second contribution in Section 1.4.

• Chapter 6 formulates the test prioritization problem as a sequential decision-making pro-
cess using reinforcement learning, as mentioned in the third contribution in Section 1.4.

• Chapter 7 presents the validation of the overall approach combining the contributions
(described in Section 1.4) on two industrial applications.

• Chapter 8 concludes the thesis by summarizing the contributions, and outlines planned
future work.
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2. Background

This section presents basic de�nition and principles related to our approach. This background
section is organized as follows: Section 2.1 provides de�nitions of both software quality metrics,
test metrics and their di�erent techniques. The code quality metrics presented in Section 2.1.1
are used in our �rst contribution in Chapter 4 to de�ne the inputs and outputs metrics of the
regressive model and the classi�cation models. Section 2.1.2 provides notations and de�nitions
of the di�erent regression testing techniques. It introduces necessary notations and presents
the addressed problem in a formal way. It also includes a formalization of the test prioritization
problem addressed in our work. Section 2.2 presents the statistical and mathematical techniques
used in all three contributions which are discussed in Chapter 4, 5 and 6. It also describe the
main elements of reinforcement learning and introduces basic concepts such as arti�cial neural
network, agent, policy and reward functions. Finally, in order to compare the performance of the
di�erent methods addressed in our approach, Section 2.3 presents the evaluation metrics used to
validate our approach for both software fault prediction in Chapter 4 and test case prioritization
in Chapter 5 and in Chapter 7.

2.1 Software Test Cases Management Techniques

The test cases management process depends on both software quality metrics, test metrics and
their di�erent techniques:

2.1.1 Code Quality Metrics

2.1.1.1 Failures and Faults

In this work, we use the term fault to refer to an error in the source code. We refer to an observable
error at program run-time as failure. We assume that, every failure can be traced back to a fault,
but a fault does not necessarily result in a failure.

Faults which have been identi�ed before a software release, typically during software testing,
are referred to as pre-release faults. If faults are identi�ed after a software release as a result of
failures in the �eld (by the customer), then such faults are referred to as post-release faults. The
focus of this work is on pre-release faults to obtain an early estimate of software component’s
fault-proneness in order to guide software quality assurance towards inspecting and testing the
components most likely to contain faults.
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8 2. Background

Fault-proneness is de�ned as the probability of the presence of faults in the software [DMP02].
Such probability is estimated based on previously detected faults using techniques such as soft-
ware testing. The research on fault-proneness has focused on (i) the de�nition of code complexity
and testing thoroughness metrics, and (ii) the de�nition and experimentation of models relating
metrics with fault-proneness.

2.1.1.2 Code Complexity Metrics

Software complexity metrics were initially suggested by Chidamber and Kemerer [CK94]. Basili
et al. [BBM96], and Briand et al. [BWIL99] were among the �rst to use such metrics to vali-
date and evaluate fault-proneness. Subramanyam and Krishnan [SK03], and Tang et al. [TKC99]
showed that these metrics can be used as early indicators of external software quality. In this
work, the studied code metrics (e.g., relevant Lines of Code(LOC), complexity, nesting, state-
ments, paths, parameters) are presented in Table 4.2 in Chapter 4.

Nagappan et al. [NBZ06] empirically con�rmed that code complexity metrics can predict post-
release faults. Based on a study on �ve large software systems, they showed that (i) for each
software, there exists a set of complexity metrics that correlates with post-release faults, (ii) there
is no single set of metrics that �ts all software projects, (iii) predictors obtained from complexity
metrics are good estimates of post-release defects, and (iv) such predictors are accurate onlywhen
obtained from the same or similar software projects. Our work builds on the study of Nagappan
et al. [NBZ06], and focuses on pre-release faults while taking into consideration not only the
code complexity metrics but also the faults detected by static analysis tools to build accurate
pre-release fault predictors.

2.1.1.3 Static Analysis

In this work, we used the faults detected by static analysis tools to predict the pre-release fault
density. Our basic hypothesis is that while static analysis tools only �nd a subset of the actual
faults in the program’s code, it is highly likely that these detected faults, combined with code
complexity metrics would be a good indicator of the overall code quality. This is explained by
the fact that static analysis tools can �nd faults that occur on paths uncovered by testing. On
the other hand, testing has the ability to discover deep functional and design faults, which can
be hardly discovered by static analysis tools. In other words, code complexity metrics would
complement the static analysis fault detection capabilities to account for the type of faults that
cannot be detected by static analysis tools, and hence such a combination can form accurate
predictors of pre-release faults.

Nagappan et al. [NWH+04] showed at Nortel Networks on an 800 KLOC commercial software
system, that automatic inspection faults detected by static analysis tools were a statistically sig-
ni�cant indicator of �eld failures and is e�ective to classify fault-prone components. Nagappan
et al. [NB05a] applied static analysis at Microsoft on a 22MLOC commercial system and showed
that the faults found by static analysis tools were a statistically signi�cant predictor of pre-release
faults and can be used to discriminate between fault-prone and non fault-prone components.
Again, our approach does not only make use of the faults detected by static analysis, but also
uses code complexity metrics; it goes beyond the works of Nagappan et al. by not only using
the faults detected by static analysis tools as an indicator of pre-release faults, but also combines
these faults with code complexity metrics in a mathematical model which delivers a more ac-
curate predictor and classi�er of pre-release faults. It is important to note that the focus of our
work as well as the related works [NB05a, NWH+04] is on the application of non-verifying static
analysis tools. The study of the impact of using verifying static analysis tools on the prediction
accuracy of pre-release fault densities goes beyond the scope of this work and is planned as a
future work.
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2.1.1.4 Code Churn Metrics

The amount of code change that occurs within a software unit over time is measured as code
churn. It can be easily extracted from a system’s change history, which is automatically recorded
by a version control system. Most version control systems employ a �le comparison utility (such
as di�) to estimate how many lines were added, deleted, or changed by a programmer in order to
create a new version of a �le from an old version. These distinctions serve as the foundation for
churn measures. Di�erent recent works have used past changes as indicators for faults because
the more changes are done to a part of the source code, the more likely it will contain faults
[KZWJZ07, KWZ08]. Thus, we mine the git repositories databases to extract several code churn
metrics (e.g., added LOC, removed LOC, etc., see Table 4.2) used in our �rst contribution to predict
software fault density and described in Chapter 4. For example, Total Lines of Code (LOC) is the
number of lines of non-commented executable lines in the �les, Churned LOC is the sum of
the added and changed lines of code between a baseline version and a new version of the �les,
Deleted/Added LOC is the number of lines of code deleted/added between the baseline version
and the new version, Files churned is the number of �les that churned, etc.

2.1.2 Regression Testing Techniques

This section introduces the basic concepts and de�nitions of regression testing andminimization,
selection and prioritization techniques.

2.1.2.1 Test Suite Minimization

Test suite minimization techniques aim to reduce the size of a test suite by removing redundant
test cases. Rothermel et al. [GR02] de�ne the minimization problem as a "test suite reduction".
More formally, following Rothermel et al. [GR02], the test suite minimization is de�ned as fol-
lows:

De�nition 1. Test Suite Minimization Problem.
Let T be a test suite. A test suite is a collection of test cases organized in a logical order (i.e.,
es case for registration will precede the test case for login) to test a software application or its
speci�c functionality. Given a test suite T , a set of test requirements {r1, ..., rn} that must be
satis�ed to provide the "adequate" testing of the program, and subsets of T , {T, T1, ..., Tn}, one
associated with each of the ris such that any one of the test cases tj 2 Ti can be used to test ri .
The goal is to �nd a representative set T 0 of test cases from T that satis�es all ris.

The testing criterion is ful�lled when every test requirement in {r1, ..., rn} is satis�ed. The
ris can represent various test case requirements, such as source code statements, decisions or
speci�cation items [GR02].

2.1.2.2 Test Case Selection

While most test case selection techniques aim to reduce the size of a test suite, the majority of
them are modi�cation-aware. The test cases are chosen because they are relevant to the changed
parts of the system, which usually requires a white-box static analysis of the program code. More
formally, following Rothermel and Harrold [RH98], the selection problem is de�ned as follows:

De�nition 2. Test Case Selection Problem.
Given a program P , a modi�ed version P

0 and a test suite T . The goal is to reduce the size of
the test suite by �nding T

0 a subset of T , with which to test the modi�ed version P
0.
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10 2. Background

2.1.2.3 Test Case Prioritization

Test case prioritization refers to the ordering of test cases in order to maximize some speci�c
properties, such as the rate of fault detection, as soon as possible. It attempts to �nd the best
permutation of the test case sequence. It does not involve test case selection and assumes that all
test cases may be executed in the order of the permutation it generates, but that testing may be
terminated at any time during the testing process. The prioritization problem is more formally
de�ned as follows:

De�nition 3. Test Case Prioritization Problem.
Given a test suite T , PT the set of permutations of T , and a function from PT to real numbers,
f : PT �! R. The goal is to �nd T

0 2 PT such that (8T 00 2 PT ) (T 00 6= T
0)[f(T 0) � f(T 00)].

2.2 StatisticalModeling andMathematicalOptimizationTechniques
2.2.1 Statistical Techniques

A number of statistical techniques have been used to analyze software quality. Khoshgoftaar
et al. [KML93], and Larus et al. [MK90] used multiple linear regression analyses to model the
software quality as a function of softwaremetrics. The coe�cient of determination,R2, is usually
used to quantify how much variability in the software quality can be explained by a regression
model. A major di�culty when using regression models to combine several metrics is the issue
of multicollinearity among the metrics, which is explained by the existence of inter-correlations
between the metrics. Multicollinearity can lead to an overestimation of the regression estimate.
For example, high cyclomatic complexity usually correlates with a high amount of code lines
[NBZ06].

One approach to overcome multicollinearity is applying Principal Component Analysis (PCA)
[Jac03, JC16b] on the metrics before applying regression modeling. Using PCA, a subset of un-
correlated linear combinations of metrics, which account for the maximum possible variance, is
selected for use in regression models. Denaro et al. [DMP02] used PCA on a study that con-
sidered 38 software metrics for the open source projects Apache 1.3 and 2.0 to select a subset
of nine principal components which explained 95% of the total data variance. Nagappan et al.
[NBZ06] used PCA to select a subset of �ve principal components out of 18 complexity metrics
that account for 96% of the total variance in one of the studied commercial projects.

2.2.2 Reinforcement Learning

Reinforcement learning is de�ned as learning through interaction with the environment and
receiving feedback based on the taken actions. It is the nature of learning when we think about
how the learning process works [SB18]. Reinforcement learning, in other words, is the process
of making decisions based on prior experience [SB18]. Interacting with the environment aids in
the accumulation of experience. A decision is made, an action is taken, and feedback is received
at each state. The received feedback can be either a reward or a punishment. When the same or a
very similar state is observed later, the previous experience can be used to make a more informed
decision, maximizing reward and minimizing punishment. The learner must investigate and
determine what actions can be taken in light of the current situation. A fundamental part of
reinforcement learning is mapping the current situation into action in order to maximize the
reward [SB18].

We de�ne in the following the fundamental elements of reinforcement learning. The agent in-
teracts with the environment, as shown in Figure 2.1. The interaction between the agent and
the environment occurs in discrete steps, one at a time. The agent makes an action in exchange
for a set of new states and a reward. The agent-environment interaction naturally divides into
sub-sequences, which we refer to it as episodes (such as plays of a game, trips through a maze, or
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any sort of repeated interaction) [SB18]. Each episode concludes in a special state known as the
terminal state, which is then reset to a starting state or a sample from a distribution of starting
states.

Figure 2.1: The agent-environment interaction in reinforcement learning; adapted from [SB18]

The objective of reinforcement learning is through learning to obtain a behavior policy:
⇡ : S ! A where ⇡ is the policy. The agent selects one action to get the largest rewards under
this policy. The long-term e�ects of agent behavior must be considered when studying practical
problems [SB18]. As a result, the state value function or state-action pair value function is used
to de�ne an objective function:

V
⇡(st) =

1X

i=0

�
i
rt+i (2.1)

where rt+i is the expected reward for the action at in each step from state st to st+1 and � is the
discount factor. Based on Eq. 2.1, we can derive the best policy of a behavior:

⇡
⇤ = argmax

⇡
V

⇡(s) (2.2)

A single agent can be learned using Q-learning, a simple and well-understood algorithm [WD92],
described as follows.

For each state s and action a, Q-value Q(s, a) is de�ned as follows:

Q(s, a) = r(s, a) + �

X

s0

p(s, a, s0)V ⇤(s0) (2.3)

where p is the transition probability: when action a is executed, a transition is made from its
current state s to a succeeding state s

0. Moreover, V ⇤(s0) = maxa0 Q⇤(s0, a0). We can get the
following equation:

Q(s, a) = (r(s, a) + �

X

s0

p(s, a, s0)⇥ max
a02A(s0)

Q
⇤(s0, a0)) (2.4)
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whereA(s0) is a set of possible actions in the state of s0. From theQ-value above, we get a greedy
strategy according to:

⇡
⇤(s) = arg max

a2A(s)
Q(s, a) (2.5)

However, as the transition function is unknown in reinforcement learning, Eq. 2.4 cannot be
used to calculate the value function Q. Thus, an approximation method is adopted to estimate
the value function. Specially, the Monte Carlo method and dynamic programming technology
can be integrated to solve the above problem.

According to the predicted deviations [SB18] and a Q-value Q(s, a) that provides an estimation
of the value of performing an individual action or a joint action, the learner updates its estimation
Q(s, a) as follows:

Q(s, a) = (1� ↵)⇥Q(s, a) + ↵⇥ (r + � ⇥maxQ(s0, a0)) (2.6)

where r is consistent with r(s, a), a is the action chosen by the learner at state s and r is the
reward resulted from a and � is the discount factor. ↵(0 < ↵ < 1) is the learning rate, which
decides to what extent the reward and future estimation replacing the current estimation. s0 is
the resulting state of action a, and a

0 is the action performed at state s0. If ↵ decreases slowly
during learning and all actions are sampled in�nitely, which are labeled as GLIE (greedy in the
limit, in�nite exploration),Q-learning will converge to trueQ-values for all actions in the single
agent scenario [SJLS00].

2.2.2.1 Exploration versus Exploitation

The Exploration/Exploitation dilemma is often brought up in the Multi-armed bandit problem in
the existing literature [Yog12]. The training process of reinforcement learning requires explo-
ration of the action space to collect data and to update the reward. The iteration and collection
of data help to learn about the environment, and gain experience about actions and their ex-
pected rewards, which leads to choose the next actions based on the developer experience from
the past which means exploiting his knowledge. However, when it comes to a highly dynamic
environment (e.g., stock trading), the knowledge of the environment is not complete. Therefore,
it is crucial to keep exploring during the training process for as long as possible [SB18]. To com-
bat the Exploration/Exploitation dilemma several methods can be utilized. A few of the most
common methods may include [SB18]:

• ✏-greedy and its variations,

• Upper Con�dence Bound,

• Gradient Bandit Algorithms,

• Thompson Sampling.

Only ✏-greedy and its variations are utilized in the learning process. ✏-greedy is a simple approach
to choose between exploration and exploitation. In each iteration of the learning process at time
t, the algorithm takes a random action with the probability of ✏ with 0  ✏  1. This means,
taking a random action a from the action space, the probability of exploration is P (a) = ✏ and
the probability of exploitation is 1 � ✏. Two extensions of ✏-greedy are Decaying Epsilon, and
Optimistic Initial Values [SB18].

Decaying Epsilon is a variation of ✏-greedy where ✏ is not constant. Instead, the value decreases
as the developer proceed with the learning. The only di�erence here is that in each iteration at
time t, the developer take a random action a with probability of f(t)which is a decaying function.
For instance, a popular choice is f(t) = 1

t [SB18].
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Optimistic Initial Values only contains the greedy part but not the epsilon part of the regu-
lar ✏-greedy. The mean rewards of each action in this method are optimistically initialized to
encourage exploration. In each step the action with the highest mean reward is selected, i.e.,
At = argmaxQt(a). The reward is then calculated and updates the mean reward. The means
will eventually converge to the true values of the rewards [SB18].

2.2.2.2 Reward, Returns and Episodes

A reward is the signal that the environment returns to the agent after taking an action. The
goal of the agent is to maximize the expected cumulative value of the rewards in the long run
[Cum15]. The cumulative sum of rewards is called Return, de�ned as Gt, at time t [SB18]:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (2.7)

where Rt is reward at time t and T is the �nal time step, also referred to as the terminal state.

An episode is an agent’s interaction [AMS09] or a sequence of actions [Cum15] with the envi-
ronment that always starts from the initial state and ends in the terminal state.

2.2.2.3 Markov Decision Process

Markov Decision Problems (MDPs) can be traced back all the way to the �fties to the work
of Richard Bellman in stochastic control theory [Bel57]. They are sequential decision-making
processes where an action has to be chosen in each state by the system [SB18].

De�nition 4. Markov Decision Process (MDP).
A MDP is a 4-tupleM =< S,A(.), P,R >, where

• S: a �nite set of states. When an agent arrives at a state, the agent can observe the complete
state.

• A(s): a �nite set of actions. The set of available actions depends on the current state s 2 S.

• P : when an action a 2 A is performed, the environment makes a probabilistic transi-
tion from its current state s to a resulting state s0 according to a probability distribution
P (s0|s, a).

• R: similarly, when action a is performed and the environment makes its transition from s

to s0 , the agent receives a real-valued (possibly stochastic) reward r, whose expected value
is r = R(s0|s, a).

In an MDP, the state and the reward at step t+1 only depend on the state at step t and the action
taken then and the previously observed states, taken actions and received rewards have no e�ect
on what the state and the resulting reward would be in the following step. An MDP on a �nite
action space and a �nite state space should satisfy the following two de�nitions [Cum15]:

Transition Probabilities: the transition probabilities (Pa
ss0 ) of a �nite MDP give the probability of

transitioning from the initial state st with action at to the subsequent state st+1 [Cum15]:

Pa
ss0 = P(st+1 = st | st = s, at = a) (2.8)

Expected Reward. Expected reward for state st, action at, subsequent state st+1 is the expectation
of the reward function given the triplet of (at, st, st+1) [Cum15]:

Ra
ss0 = E(rt+1 | st+1 = s

0
, st = s, at = a) (2.9)

13



14 2. Background

2.2.2.4 Dynamic Programming

Dynamic Programming (DP) refers to a series of algorithms and methods to derive optimal policy
for an environment using MDP [SB18]. DP assumes it can gain knowledge of the entire envi-
ronment and can compute an exact, deterministic solution. This assumption implies that the
environment, its state, action, and reward sets are �nite [SB18].

The Bellman equation [Bel57] is used to recursively update the value functions of each state by
starting at the terminal state. Values of states are calculated based on the expectation of the
reward and the estimation of the subsequent state’s value. When the value function is close
to the optimal one, the policy can be improved by making it greedy with respect to the value
function [Cum15]. Then the state (or state-action) value functions are re-evaluated until the
policy converges closer to the optimal policy.

A major drawback of a DP is that the entire environment must be known and be �nite, so it is
not performant when it comes to tackling environments with large or continuous action space.

2.2.2.5 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an e�cient search algorithm for sequential decision making
problems with a win or loss outcome; it has been used in many Chess AIs [DS17] and Go AIs
[SD17]. Therefore in case, MCTS keeps a state tree in which each node represents a distinct set
of actions and the edges represent individual actions. In addition, each node contains a value
that summarizes how bene�cial that state is in relation to the objective. Once exploring the
search space, MCTS uses this value in conjunction with prior search path information to achieve
a good balance of exploiting known information and exploring unknown states. The search tree
is expanded by MCTS in four steps: Selection, Expansion, Simulation and Backpropagation, shown
in Figure 2.2. When making a decision, MCTS will empirically build a tree of states and values
by repeating these four steps based on the amount of budget available. The decision will then be
made by selecting the action that will result in the child with the highest value.

Figure 2.2: The Outline of Monte Carlo Tree Search (adapted from [SB18])

Selection:

MCTS will select a path of interest (sequence of moves) that will be searched further in this
step, as shown in Figure 2.2. This step is critical for MCTS because it aims to select the most
promising subtree for further investigation. The selection process tries to strike a good balance
between exploration and exploitation as it moves down the tree. Exploration entails selecting
nodes that have not been extensively explored with the goal of discovering new search paths that

14
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may be more e�ective. Exploitation entails selecting high-value nodes in order to obtain more
information about promising moves. In general, the Upper Con�dence Bound(UCB) equation is
used to select nodes when traversing down the tree [HTL19].

wi

ni
+ c

r
lnn

ni
(2.10)

where ni is the number of visits the i-th node has received andwi is the number of wins through-
out all of simulations during the visits. Furthermore, n represents the total number of parent node
visits, and c represents an exploration factor that balances exploration and exploitation [HTL19].
The �rst term in the equation is the exploitation score, which describes the win rate from com-
puted simulations. The second term is the exploration score, which decreases as the number of
visits increases; this encourages exploring nodes that have not been explored as much.

Expansion:

After selecting the desired path and stopping at a node, the next step is to create a new child node
by performing an action from the current state [HTL19]. After that, the new node is appended
to its parent and added to the search tree. The action to take is randomly selected in a traditional
MCTS approach.

Simulation:

After expansion, a new node is added to the search tree with no information about its value,
making it impossible to determine how desirable the new state is. As a result, in this step, MCTS
will perform a quick rollout, simulating the game to the end and obtaining the outcome. During
the rollout process, actions are chosen at random using a traditional MCTS approach [HTL19].

Backpropagation:

The simulation step’s results are then backpropagated up the search tree. The values of all ances-
tor nodes will be updated based on the results of the simulation. To summarize, when choosing
an action in a game, MCTS will iterate through these four steps based on the budget available,
building a search tree with information on how favorable each state is[HTL19]. MCTS will then
select the action with the highest wi

ni
value as the next move.

2.2.2.6 On-Policy and O�-Policy Methods

On-policy and o�-policy methods are used to ensure that an agent visits all of the states in an
environment on a regular basis and continues to select them. An on-policy method attempts to
update the policy based on the data that resulted in the most recent action, whereas an o�-policy
method updates the policy based on data obtained at any point [Cum15].

On-policy methods are in general soft with respect to policy improvement. For example, when
they follow an ✏-greedy policy, the probability of an action being chosen at random is ✏. However,
an on-policy method continually moves towards a more deterministic optimal policy [SB18].

O�-policymethods are typically more di�cult to implement than on-policy counterparts because
they require additional concepts, models, and data. Furthermore, they are slower to converge and
may have more variance. O�-policy methods have a target policy (the one being learned) and
a behavior policy (the policy that generates behavior). The optimal policy is determined by the
target policy, and the behavior policy investigates the environment to generate the behavior
[SB18]. As a result, they are more general and, in most cases, more e�ective. When both the
behavior and the target policies are the same, on-policy methods become a subset of o�-policy
methods.

15



16 2. Background

2.3 Evaluation Metrics

This section presents the evaluation metrics used to validate our approach for both software fault
prediction and test case prioritization.

2.3.1 Evaluation Metrics for Prediction and Classi�cation Analysis

The process of software fault prediction is shown in Figure 2.3, the �rst step is to collect source
code repositories from software archives. The second step is to extract features from the source
code repositories and the commits contained therein. There are many traditional features de�ned
in past studies, which can be categorized into two kinds: code metrics (e.g., McCabe features and
CK features) and process metrics (e.g., change histories). The extracted features represent the
train and test dataset. To select the best-�t defect prediction model, the most commonly used
method is called k-fold cross-validation that splits the training data into k groups to validate the
model on one group while training the model on the k � 1 other groups, all of this k times. The
error is then averaged over the k runs and is named cross-validation error.

Figure 2.3: Software Defect Prediction Process

The diagnostics of the model is based on these features: (1) Bias: A model’s bias is the di�erence
between the expected prediction and the correct model that we attempt to predict for given data
points. (2) Variance: A model’s variance is the variability of the model’s prediction for given
data points. (3) Bias/variance tradeo� : the simpler the model, the higher the bias, and the more
complex the model, the higher the variance [Ami18]. Figure 2.4 shows a brief summary of how
under�tting, over�tting and a suitable �t looks like for the three commonly used techniques
regression, classi�cation and deep learning. After selecting a model, it is trained on the entire
dataset and tested on the test dataset. Most approaches to defect prediction treat defect prediction
as a binary classi�cation problem. After the models have been �tted, the test data is fed into the
trained classi�er (the best-�t prediction model), which can predict whether the �les are buggy
or clean. Afterwards, in order to assess the performance of the selected model, quality metrics
are computed. To have a more complete picture when assessing the performance of a model, a
confusion matrix is used. It is de�ned as shown in Figure 2.5. We summarize the metrics for the
performance of classi�cation models in Table 2.1.

Regression Model Evaluation Methods

After developing a number of di�erent regression models, we have a lot of criteria to evaluate
and compare them against each other:

16
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Figure 2.4: Fitting Model Diagnostics [Ami18]

Figure 2.5: Confusion Matrix [Ami18]

Table 2.1: Common metrics used to assess the performance of classi�cation models
Metric Formula Interpretation

Accuracy TP+TN
TP+TN+FP+FN

Overall performance
of model

Precision TP
TP+FP

How accurate the positive
predictions are

Recall TP
TP+FN

Coverage of actual
positive sample

F1 score 2TP
2TP+FP+FN

Hybrid metric useful for
unbalanced classes

17



18 2. Background

De�nition 5. Root Mean Square Error: The root mean square error (RMSE) is a popular for-
mula for calculating the error rate of a regression model. However, we can only compare models
whose errors are measurable in the same units [Ami18]

RMSE =

sPn
i=1 (ŷi � yi)

2

n
(2.11)

where ŷi is the prediction and yi is the true value.

De�nition 6. Mean Absolute Error: The Mean Absolute Error is the average of the di�erence
between the Actual and Predicted Values. It tells us how far the predictions were o� from the ac-
tual output. They do not, however, give us any indication of the direction of the error, i.e. whether
we are underestimating or overestimating the data [Ami18]. Mathematically, it is represented as:

MAE =

rPn
i=1 |ŷi � yi|

n
(2.12)

where ŷi is the prediction and yi is the true value.

De�nition 7. Coe�cient of Determination: The coe�cient of determination (R2) summarizes
the explanatory power of the regression model and is computed from the sums-of-squares terms
[Ami18].

A data set has n values marked y1, ..., yn (collectively known as yi), each associated with a �tted
(or modeled, or predicted) value f1, ..., fn (known as fi, or sometimes ŷi, as a vector f ).

De�ne the residuals as ei = yi � fi (forming a vector e).

If ȳ is the mean of the observed data:

ȳ =
1

n

nX

i=1

yi (2.13)

then the variability of the data set can be measured with two sums of squares formulas [Ami18]:

The total sum of squares (proportional to the variance of the data):

SStot =
X

i

(yi � ȳ)2 (2.14)

The sum of squares of residuals, also called the residual sum of squares:

SSres =
X

i

(yi � fi)
2 =

X

i

e
2
i (2.15)

The most general de�nition of the coe�cient of determination is

R
2 = 1� SSres

SStot
(2.16)

In the best case, themodeled values exactlymatch the observed values, which results inSSres = 0
and R

2 = 1. A baseline model, which always predicts ȳ, will have R2 = 0. Models that have
worse predictions than this baseline will have a negative R2.

18
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Classi�cation Model Evaluation Methods

Accuracy is most likely the most well-known metric for evaluating machine learning models. It
multiplies the number of correctly predicted samples by the sample size. In terms of classi�cation
models, model accuracy can be de�ned as the ratio of correctly classi�ed samples to total number
of samples [Ami18]. For binary classi�cation models, the accuracy can be de�ned as described
in Table 2.1, where

• True Positive (TP): A true positive is an outcome where the model correctly predicts the
positive class.

• True Negative (TN): A true negative is an outcome where the model correctly predicts the
negative class.

• False Positive (FP): A false positive is an outcome where the model incorrectly predicts the
positive class.

• False Negative (FN): A false negative is an outcome where the model incorrectly predicts
the negative class.

2.3.2 Speci�c Evaluation Metrics for Test Case Prioritization

Our approach learns priority ranks for all test cases. Test case selection techniques, however,
might omit test cases that might have exposed faults if they were executed. Our approach, when
applied in the CI context, might terminate before all test cases are executed. This behavior is
similar to the behavior of test case selection techniques. We used the following standard com-
monly used metrics in software test selection to assess the e�ectiveness of our approach when
not all test cases are executed [PP21, BX16, MSPC19]:

Test recall:

Intuitively, the test recall approximates the empirical probability of a particular test selection
strategy catching an individual failure.

testRecall =

P
c2C

| Tc \ TFc |
P
c2C

| TFc |
(2.17)

where C = {c1, c2, ..., cM} a set of CI cycles, and such that for the failed tests TFc, 9c2CTFc 6= 0,
and Tc are the selected test cases from a test suite T S .

For the evaluation of the e�ectiveness of our test case prioritization approach, we use the standard
evaluation metric:

Average Percentage of Faults Detected (APFD):

APFD was introduced in [RUCH99] to measure the e�ectiveness of test case prioritization tech-
niques. It measures the quality via the ranks of failure-detecting test cases in the test execution
order. It ranges from 0 to 1, with higher numbers implying faster fault detection. Let T S be a test
suite of n test cases, the APFD of a prioritized test suite T S 0 is calculated using the following
formula:

APFD = 1�

P
t2TFi

rank(t)

nm
+

1

2n
(2.18)

where m refers to the total number of faults, n refers to the total number of test cases, rank(t)
returns the rank of the �rst test case that reveals the ith fault in test suite T S 0.

Furthermore, we used an extension of the APFD metric:
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Normalized Average Percentage of Faults Detected (NAPFD):

NAPFD is the ratio between detected and detectable failures within the test suite T S . The
NAPFD of a prioritized test suite T S 0 is calculated using the following formula:

NAPFD = p�

P
t2TFi

rank(t)

nm
+

p

2n
(2.19)

wherem refers to the total number of faults, n refers to the total number of test cases, TFi is the
set of failed test cases, rank(t) returns the rank of the �rst test case that reveals the ith fault in
test suite T S 0, and p is the number of faults detected by t divided bym.
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3. Related Work

This chapter highlights existing approaches and addresses the relationship to our work.

Test Case Prioritization in Continuous Integration:

In this section, we provide an overview of the existing research in relation to our whole approach,
which is test case prioritization in the context of continuous integration. A detailed description
and analysis of the related works of each contribution is explored in Chapter 4 Section 4.6 for the
�rst contribution, in Chapter 5 Section 5.4 for the second contribution, and in Chapter 6 Section
6.7 for the third contribution.

We summarize in Table 3.1 the studies related to our work and categorize them related to the
considered information to prioritize test cases and to the evaluation metric considered to validate
their works.

Research on test case prioritization in continuous integration environment is very active today.
Various techniques have been proposed to identify test cases that exercise change code during
CI cycles [GEM15, KSM+15] using machine learning techniques. Pan et al. [PXN13] showed
that techniques such as k-means based on coverage information can be used with good results.
Mirarab et al. [MAT12] proposed a prioritization approach based on Integer Linear Program-
ming (ILP) and greedy method and using coverage metrics. Zhang et al. [Zha19] proposed time-
aware prioritization using ILP. Similarly, Walcott et al. [WSKR06] presented a genetic algorithm
for time-aware regression test suite prioritization for frequent code rebuilding. Strandberg et
al. [SSA+16] apply a novel prioritization method with multiple factors in real-world embedded
software and show the improvement over industry practice. Busjaeger and Xie [BX16] used Sup-
port Vector Machine (SVM) map [YFRJ07] that ranks by training a model based on training data
labeled as ’relevant’ or ’non-relevant’. They used coverage data, test �le path similarity and test
content similarity, failure history, and test age. These ranking-based approaches used machine
learning techniques, assuming that before training, the full data is available, and thus incremental
learning is not supported (i.e., integrating new data into already constructed models); however,
new models are constructed from scratch [PBGB21]. Especially in CI environments, this can lead
to potentially outdated models, which are very ine�cient and time-consuming. There are var-
ious approaches for test case prioritization; however, most of them are challenging to apply in
practice and especially in a CI context due to the complexity and computational overhead typi-
cally required to collect and analyze di�erent parameters such as test coverage, mapping between
code changes and test executions, etc. In fact, it is frequent to remove test cases from some CI
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cycles as they test obsolete features, or to add new test cases to test new features. Moreover,
some test cases might be important at some point of time because they test features important
for the customers and later loose their prevalence because of a testing focus shift. To summarize,
non-adaptive techniques might miss changes in the importance of test cases over others because
they are based on systematic prioritization approaches (i.e., they do not consider the test case
volatility as described in Table 3.3).

In comparison, our approach is a lightweight method that uses only historical execution results
from previous CI cycles. In addition, our approach adaptively learns new ranks for the test cases
in each software component as code changes and test suites evolve. The prioritization of the
test cases is executed in each software component by applying reinforcement learning to make
the ranking approach adaptive and suitable to our CI context. Our approach minimizes the test-
ing overhead and continuously adapts to the changing environment as new code and new test
cases are added in each CI cycle. Adaptiveness means in our context that our approach can
progressively improve its e�ectiveness after each test case’s execution cycle. Unlike other test
prioritization approaches, our technique is able to adapt to situations where test cases are added
or deleted, or when testing priorities change because of changing failure indications in di�er-
ent code regions as the code matures or as the requirements change. Moreover, our approach
developed a test case scheduling model that consumes the testers’ preferences in form of a prob-
abilistic graph and solves the optimal test budget allocation problem both online in the context
of CI cycles and o�ine when planning a release across all software components as a sequential
decision-making process using reinforcement learning.

The two works closest to ours are [SGMM17] and [PLV20], as described in Table 3.3. Spieker et
al. [SGMM17] were among the �rst that used RL in the context of test case prioritization and se-
lection in continuous integration. However, the approach presented by Spieker et al. [SGMM17]
is implicitly building a classi�er which would put all likely to fail test cases in the same prior-
ity and the same for the non-faulty ones. So if, for example, out of 20, 000 test cases, 5000 are
classi�ed as likely to fail, then all 5000 test cases would have similar priority leaving the sys-
tem to select randomly out of them. Nevertheless, our approach continuously learns a rank for
each test case, where a rank corresponds to the failure likelihood of a test for a given CI cycle.
This allows executing test cases by descending priority until a CI time-limit is reached or all test
cases are executed. Lima et al. [PLV20] used a Multi-Armed Bandit (MAB) approach for test case
prioritization and showed that they outperform Spieker et al.’s approach [SGMM17]. Lima et al.
[PLV20] used the test case rewards in a sliding window based on the approach’s idea of Elbaum
et al. [ERP14] where they use sliding time window to select test suites to be applied during pre-
submit testing by tracking their history, then prioritizes test suites based on such window to be
performed subsequent post-submit testing.

However, all these recent works consider the software application as one single component when
executing test cases, as described in Table 3.3 (i.e. they do not consider the diversi�cation chal-
lenge, which is test case scheduling across all software components). Unfortunately, though,
modern applications are composed of di�erent components, which lead to sub-optimal alloca-
tion of test cases (i.e. test cases could be executed only in some of the components, neglecting
other components that could be more important for testing). Furthermore, the software compo-
nents of one application have di�erent probability of failure and di�erent probability of execution
that are added from the testers either after pro�ling how the application’s client are using the
application or based on their preferences and their domain knowledge. Thus, recent works do
not consider the testers’ domain expertise, as described in Table 3.3.

Our approach rank the test cases in each software component from the highest likely to fail to
the lowest ones and then schedule the test cases across all software components for execution
on the available test execution machines while satisfying the tester’s preferences and the time
constraint for each CI cycle.
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Table 3.1: Summary of Studies in the Context of Test Case Prioritization in Continuous Integra-
tion (CI)

Considered Information Evaluation Metric
Coverage-based History-based APFD APFDc NAPFD FD Time Stmt

Jiang et al. [JZTC09] 3(3),(4) � 3 � � � � 3

Jiang et al. [JC10] 3(3),(4) � � � � � � 3

Jiang et al. [JCT11] 3(3),(4) � � � � � � 3

Yoo et al. [YNH11] 3(5) 3(1),(2) � � � � 3 �
Jiang et al. [JZC+12] 3(3),(4) � � � � � � 3

Marijan et al. [MGS13] � 3(1),(2) � 3 � 3 3 �
Elbaum et al. [ERP14] � 3(1),(2) � � � � 3 �
Marijan et al. [Mar15] 3(5) 3(1),(2) � 3 � � � �
Knauss et al. [KSM+15] � 3(1) � � � � � �
Marijan [ML16] � 3(1),(2) 3 � � 3 � �
Busjaeger et al. [BX16] 3 3(1) 3 � � � � �
Cho et al. [CKL16] � 3(1) 3 � � � � �
Strandberg et al. [SSA+16] � 3(1),(2) � � � 3 3 �
Jiang et al. [JC16a] 3(3),(4) � � � � � � 3

Spieker et al. [SGMM17] � 3(1),(2) � � 3 � � �
Kim et al. [KJL17] � 3(1) 3 � � � � �
Marijan et al. [MLG+17] 3(5) 3(1),(2) � � � 3 � �
Marijan et al. [ML17] 3(5) 3(1),(2) � � � 3 3 �
Strandberg et al. [ESAO+17] � 3(1),(2) � � � 3 3 �
Kwon et al. [KK17] � 3(1),(2) � � � � 3 �
Xiao et al. [XMZ18] � 3(1),(2) � � 3 3 � �
Liang et al. [LER18] � 3(1),(2) � 3 � � � �
Zhu et al. [ZSR18] � 3(1) � � � 3 � �
Haghighatkhah et al. [HMOK18] � 3(1) 3 � � � 3 �
Chen et al. [CLZ+18] 3(5) 3(2) 3 3 � 3 3 �
Alegroth et al. [AKR18] � 3(1),(2) � � � � 3 �
Marijan et al. [MLS18] � 3(1),(2) � � � � 3 �
Wen et al. [WYY18] � 3(1),(2) � � 3 � � �
Marijan et al. [MGL19] 3 3(1) � � � 3 3 �
Naja� et al. [NSR19] � 3(1),(2) � � � � 3 �
Pradhan [PWA+19] � 3(1),(2) � 3 � � 3 �
Yu et al. [YFM+19] � 3(1) � 3 � � 3 �
Lima and Vergilio [PLV20] � 3(1) � 3 � � 3 �

Remark.

Studies in the category History-based consider:
(1) Failure History: information about which test cases failed previously, and
(2) Execution History: the time to execute the test cases.

Studies in the category Coverage-based consider the total number of:
(3) Statements covered (or not covered)
(4) Functions covered (or not covered)
(5) Test coverage

Table 3.2 represents the most common evaluation metrics considered in the previous Table 3.1.
The De�nition of each metric and their formula are described in the Background Chapter 2 under
Section 2.3.2.
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Table 3.2: Evaluation Metrics for the Test Case Prioritization
Evaluation Metrics

APFD Average Percentage of Faults Detected
APFDc Average Percentage of Faults Detected per Cost
NAPFD Normalized Average Percentage of Faults Detected
FD Percentage of Faults Detected
Time Time spent to execute the Prioritized Test Cases

Stmt Minimum Percentage of Statements that must
be considered to locate the Fault

Table 3.3: The Studied Challenges versus Recent Works
Challenges

Tester’s Domain
Knowledge &
Requirements1

Test
Volatility2 Diversi�cation3

Jiang et al. [JZTC09] 7 7 7
Jiang et al. [JC10] 7 7 7
Jiang et al. [JCT11] 7 7 7
Yoo et al. [YNH11] 7 7 7
Jiang et al. [JZC+12] 7 7 7
Marijan et al. [MGS13] 7 7 7
Elbaum et al. [ERP14] 7 3 7
Marijan et al. [Mar15] 7 7 7
Knauss et al. [KSM+15] 7 7 7
Marijan [ML16] 7 7 7
Busjaeger et al. [BX16] 7 7 7
Cho et al. [CKL16] 7 7 7
Strandberg et al. [SSA+16] 7 7 7
Jiang et al. [JC16a] 7 7 7
Spieker et al. [SGMM17] 7 3 7
Kim et al. [KJL17] 7 7 7
Marijan et al. [MLG+17] 7 7 7
Marijan et al. [ML17] 7 7 7
Strandberg et al. [ESAO+17] 7 7 7
Kwon et al. [KK17] 7 7 7
Xiao et al. [XMZ18] 7 7 7
Liang et al. [LER18] 7 7 7
Zhu et al. [ZSR18] 7 7 7
Haghighatkhah et al. [HMOK18] 7 7 7
Chen et al. [CLZ+18] 7 7 7
Alegroth et al. [AKR18] 7 7 7
Marijan et al. [MLS18] 7 7 7
Wen et al. [WYY18] 7 7 7
Marijan et al. [MGL19] 7 7 7
Naja� et al. [NSR19] 7 7 7
Pradhan [PWA+19] 7 7 7
Yu et al. [YFM+19] 7 7 7
Lima and Vergilio [PLV20] 7 3 7
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Remark.

1 Tester’s Domain Knowledge and Requirements
2 Test Volatility
3 Diversi�cation: test case scheduling across all software components

In the following sections, we will discuss in details the numerous studies related to our work that
have examines the realm of test case prioritization and selection.

Test Case Prioritization and Selection in Regression Testing:

Test case prioritization is de�ned and explained more in details in the Background Chapter 2.
Existing works can be divided into two categories: heuristic-based and machine learning-based
test prioritization.

Heuristic-Based TCP: This category group has mainly focused on information such as history,
code coverage, models, and requirements. Pan et al.[PBGB21] conducts a systematic literature
review and analyze 29 primary studies about test case selection and prioritization researches.

Code coverage information was widely used in several studies to prioritize test cases. Thus, tech-
niques that are based on structural code coverage are able to increase the chances of increasing
fault detection early [KP02]. Several approaches were introduced for prioritizing test cases using
structural coverage measures. Rothermel et al. [RUCH99] presented empirical results assessing
the e�cacy of these approaches. Among the structural coverage measures are statement cover-
age [RUCH99], methods coverage [RUCH01], and modi�ed condition coverage [JH03]. The code
coverage information can be gathered using either static analysis or dynamic analysis. Static
analysis techniques, as discussed by Je�rey et al. [JG06], are inaccurate and overestimate the
coverage data. Furthermore, Je�rey et al. [JG06] presented that static analysis with re�ection
support can enhance the accuracy of coverage information signi�cantly, however they are ine�-
cient because of their high computation cost. Dynamic analysis techniques are also challenging
and several studies discussed the reasons. We can summarized in three main reasons: (1) Main-
tainability: both Lima et al. [PLV20] andMemon et al. [MGN+17] presented that, inmost actively
developed projects, high code changes rates quickly make code coverage data obsolete, usually
requires frequent updates [PBGB21]. (2) Computation Overhead: several works, such as Elbaum
et al.[ERP14], Lima et al. [PLV20] and Memon et al. [MGN+17] showed that when dealing with
a large code-base, code analysis and instrumentation can take a long time to complete. Memon
et al. [MGN+17] con�rmed that having to run a code instrumentation tool on Google’s code-
base at each milestone and collecting code coverage data, might impose excessively operational
costs to be feasible. (3) Applicability: the non machine leaning based techniques leads to more
e�orts and customization, because they are often dependent on the language and on the plat-
form [PBGB21]. Moreover, the extraction of code coverage requires traceability between code
and test cases, such information is not easily accessible with system tests (i.e., black-box testing)
[LMVAa20], [PBGB21].

System models were, on the other hand, also used from other researchers [KTH05] to select and
generate test cases for the system’s modi�ed parts. Models are representations of the actual
system. When compared to the execution of the actual system, Korel et al. [KK09] showed such
abstractions help in making model execution for the entire test suite low cost and fast. Since the
source code continuously evolves as developers make changes (e.g., adding new features, �xing
bugs, refactoring existing code, etc.), updating the models to re�ect the changes is necessary.
When using model-based approaches, such updates create overhead [PBGB21]. Furthermore,
because models are frequently extracted using source code analysis, they acquire the drawbacks
of code-based approaches. Korel et al. [KTH05] described a model-based prioritization approach
in which test cases are prioritized using the original and modi�ed system models, as well as
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information about the system model and its behavior. Whereas code-based coverage approaches
are more accurate compared to model-based approaches, they lead to practical challenges in
terms of complexity and computational e�ort in terms of coverage.

Srikanth et al. [SWO05] introduced a value-driven approach for prioritizing system-level test
cases based on software requirement speci�cations. They prioritized the test cases based on four
factors after mapping test cases to software requirements. The four factors consist of fault-
proneness of the requirements, customer priority, implementation complexity, and requirement
volatility. In another work of Srikanth et al. [SW05], they also proposed a system-level technique
for prioritization based on requirements according to the same factors. Their works are based on
the idea that coverage-based white-box prioritization techniques can be time-consuming and are
harder to apply on complex systems. Arafeen and Do [AD13] prioritized test cases based on the
importance of the requirements to the clients. They clustered the requirements based on mining
the texts and then utilizes the speci�cation of the requirements test cases to cluster test cases.
The test cases are prioritized in each cluster based on code metrics (e.g. McCabe Cyclomatic
Complexity) and then based on the requirements.

History-based approaches is used to prioritize tests based on data from previous test runs. They
are based on the assumption that previous test case failures are a good predictor of test cases with
a high likelihood of failure in new releases. Kim and Porter [KP02] introduced a history-based
method for ranking tests based on the average of previous execution results. According to Noor
and Hemmati [NH15], a class of quality metrics that estimate test case quality based on their
similarity to previously failing test cases from previous releases is de�ned. Park et al. [PRB08]
formulated a history-based approach for analyzing the impact of test costs. Approaches based
on history are less cost-e�ective than coverage-based and model-based approaches. Learning
optimal test case prioritization policies solely based on test execution history, on the other hand,
appears di�cult, especially for complex software systems. They may also be unsuitable for con-
stantly changing testing environments with frequent changes in code and test suites [PBGB21].

Fault-proneness and bug history-based approacheswere proposed from several studies for test case
prioritization. Anderson et al. [ASD14] and Engstroem et al. [ERL11] were among the studies
that used the failure history information in software repositories to improve the e�ectiveness
of testing process. Laali et al. [LLH+16] studied a new online test case prioritization approach.
Their method uses the location of previously identi�ed faults in the source code to prioritize
test cases. Marijan et al. [MGS13] proposed a case study of a test prioritization approach for
continuous regression testing, called ROCKET. ROCKET prioritizes the set of test cases based
on historical failure data, test execution time, and domain-speci�c heuristics. Kim et al. [106]
[KB10] incorporates a fault localization technique to prioritize test cases by giving lower priority
to test cases covering previous faults because they expect that faults are �xed after being detected,
and thus those test cases will have lower fault detection probability. Wang et al. [WNT17] pro-
posed a quality-aware test case prioritization method (QTEP) and addressed the limitation of
existing coverage-based methods. They used static bug �nders and unsupervised methods to
identify fault-prone code units and then adapt existing coverage-based algorithms by consider-
ing the weight of fault-prone source code. Similar to Wang et al. work [WNT17], Paterson et
al. [PCA+19] proposed a test case prioritization strategy based on defect prediction. Another
similar work to Wang et al. [WNT17] and Paterson et al. [PCA+19], Mahdieh et al. [MMHM21]
used the bug history to estimate the fault-proneness of code units, and prioritize test cases based
on test case diversi�cation and fault-proneness estimations.

These approaches have one major drawback, namely that they are not adaptive to rapidly chang-
ing environments, particularly when it comes to continuous integration environments.

Machine Learning-Based Test Case Prioritization: Applications of machine learning (ML)
techniques to prioritize test cases are explored in this section. Many researchers apply ML tech-
niques to test case prioritization in order to integrate data from various sources into predictive

26



27

models [DDB+19]. It has been shown thatML approaches can signi�cantly improve test selection
and prioritization [DDB+19].

The literature on the selected papers is divided into three categories based on the used machine
learning methods: Clustering, Ranking-based Models, and Natural Language Processing Models.

Clustering-based Test Case Prioritization: Clustering is an unsupervised machine learning tech-
nique. Clustering tends to group similar data points into groups (clusters). These clusters are then
relatively easy to understand and to manipulate. A variety of clustering algorithms is currently
available but their primary di�erence revolves around the number of con�guration parameters
and methods they require to calculate the distance between data instances (e.g. Euclidean Dis-
tance, Hamming Distance) [PBGB21]. In the context of test case prioritization, clustering is used
to identify similar test cases based on their characteristics (e.g. coverage, fault detection, etc.). It
guides then the prioritization of test cases.

Yoo et al. [YHTS09] were among the researchers that investigated the e�ectiveness of clustering
method for prioritizing test cases. The method that Yoo et al. [YHTS09] developed combines
clustering with Analytic Hierarchy Process. According to code coverage, they then clustered
the test cases. The second step was to prioritize the test cases throughout each cluster based on
code coverage and expert knowledge, and choose the test case with the highest priority from each
cluster as the cluster’s representative. Lastly, their representative test cases were used to perform
inter-cluster prioritization. The �nal cluster priority assignment was then performed based on
the assigned priorities from the third step, rearranging the clusters in a circular order. In Carlson
et al.’s [CDD11] test prioritization strategy, code coverage, code complexity, and the test case’s
execution history determine the priority of test cases in each cluster. In the beginning, only code
coverage was used to cluster test cases. Next, test cases were prioritized by code coverage, com-
plexity, and history of executions features, separately. After that, they determined the priority
based on the combination of code complexity and execution history. Lenz et al. [RPR13] used
the execution of few examples of test cases to generate functional clusters of test cases. There
are several researchers that used the K-means algorithm, which requires a prede�ned number of
clusters in the beginning, among them are Chen et al.[CCZ+11], Wang et al. [WCF+12], Kandil
et al. [KMB17] and Zumar et al. [KQ19]. Others used a hierarchical clustering algorithm, that
also need the number of clusters as input, such as the above discussed works of Carlson et al.
[CDD11] and Yoo et al. [YHTS09]. Other works such as Chen et al. [CCZ+11], Wang et al.
[WCF+12], Kandil et al. [KMB17] and Zumar et al. [KQ19] used the K-means algorithm, which
requires a prede�ned number of clusters in the beginning. Both algorithms require extensive ex-
periments and tuning to decide on the right number of clusters. Carlson et al. [CDD11], Chen et
al. [CCZ+11] and Wang et al. [WCF+12] used Euclidean Distance to calculate distance between
data instances. In contrast, Kandil et al. [KMB17] and Yoo et al. [YHTS09] used the Hamming
Distance.

These approaches showed that clustering algorithms could be bene�cial for test prioritization.
However, we believe that those algorithms have some drawbacks [PBGB21]: �rst, the e�ective-
ness of clustering algorithms depends on the number of clusters and distance metrics, which
must be adjusted accordingly. Second, it is extremely di�cult to �nd the optimal solution to
most clustering algorithms as they are NP-hard problems. With a large test suite, this can be a
scalability concern. Third, the e�ectiveness of clustering algorithms is not as strong as it seems,
particularly compared with other machine learning based test prioritization techniques

NLP-based Test Case Prioritization Natural Language Processing (NLP) techniques are being used
to exploit information that is found in textual software development artifacts (e.g., defect descrip-
tions) or sources of code that is considered as text information [PBGB21]. Thomas et al. [Tho14]
generated vectors from test cases using an NLP topic modeling technique, and later calculated
the distance between test cases. By using a greedy algorithm, the test cases were prioritized by
maximizing their distance from already prioritized cases. Lachmann et al. [LSN+16] transformed
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test case descriptions into vectors based on word occurences, which they created of commonly
occurring words in the description of all test cases. They employed a ranked Support Vector
Machine (SVM) to prioritize test cases using the transformed textual data with code coverage
and execution history. Other researchers, Aman et al. [AAYK20] used used three di�erent kinds
of NLP techniques, including topic modeling, Doc2Vec (PV-DM), and Doc2Vec (PV-DBoW) to
vectorize test cases. They calculated the distance between pairs of test cases using 3 distance
metrics; Angular Distance, Manhattan Distance, and Euclidean Distance. They gave the high-
est priority to the case which was most distant. Afterwards, they prioritized the remaining test
cases in accordance with their distance from the prioritized testing set. Medhat et al. [MMBT20]
used LSTM algorithm [HS97] to classify speci�cations, that are preprocessed using NLP. Those
speci�cations describe the components of the system under test. Then, search-based approaches
(genetic algorithms) are used to prioritize the test cases. Overall, despite its potential, the current
use of Natural Language Processing is still not widely used in the context of test prioritization
[PBGB21].

Test case selection is choosing a subset of test cases from the test suite, it aims to eliminate
redundant or unnecessary test data. Test case selection is de�ned and explained more in details
in the Background Chapter 2. We can divide the existing works into two categories: static test
selection and dynamic test selection.

Static Test Selection: Many techniques have been proposed for selecting tests based on static
analysis at di�erent levels of granularity of source code. Kung et al. [KGH+93] were among
the �rst that proposed static regression test selection based on class �rewall, i.e., the statically
computed set of classes that may be a�ected by a change. Ryder and Tip [RT01] proposed a call-
graph-based static change-impact analysis technique and evaluated only one call-graph analysis
on 20 revisions of one project [RST+04]. Skoglund and Runeson [SR05, SR07] performed a case
study of class �rewall, but they used dynamic coverage information together with class �rewall
to perform regression test selection, whereas Machalica et al. [MSPC19] apply on a Facebook
project the class �rewall purely statically. Despite the presence of many static regression test
selection techniques in the literature, there are few systematic studies of these methods, and
evaluations onmodern open-source projectswere lacking. Legunsen et al. [LHS+16] represent all
all prior work on class-�rewall-based analyses [KGH+93] and call-graph-based analyses [RT01].
Zhang [ZKK12] presented a test selection strategy based onmethod- and �le-level analysis of test
dependency and change information. In cases where a program’s control �ow crosses language
boundaries, the given techniques are not easily extensible. Furthermore, scaling code dependency
analysis in �les with million lines of code presents scalability challenges.

Dynamic Test Selection: Several research studied the use of dynamic analysis for test selection
strategies. Rothermel et al. [RH97] were among the �rst that dynamically collected coverage
on old revision and investigated test selection using a control-�ow graph analysis for C pro-
grams. Harrold et al. [HJL+01] extended Rothermel et al. [RH97] work and investigate test
selection on Java programs. Other researchers, proposed a two-phase analysis, such as Harrold
et al. [HJL+01], because control-�ow graph could be time-consuming for large software sys-
tems. Some works like Gligoric et al. [GEM15] presented a method based on the granularity of
�les. Gligoric et al. [GEM15] proposed a method operating at the granularity of �les. Celik et al.
[CVMG17] described a technique whereby test execution may be traced across languages. The
dynamic techniques described above require su�ciently �ne-grained execution traces, which
are not feasible at Facebook’s scale as presented in Machalica et al. work [MSPC19]. Facebook’s
method is most closely related to Memon et al. [MGN+17] technique, which was developed
from a similar industrial context. They analyzed build metadata and structural changes in code
bases with an empirical observation that failing tests and changed parts of the code have small
distances in build dependency graphs. In Facebook’s approach, Machalica et al. [MSPC19] pro-
posed a strategy for selecting tests, where they used distance as one of the features. They found
that while distance is an important feature, it is not su�cient to select accurate tests.
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Despite various approaches to test optimization for regression testing, the challenge of apply-
ing most of them in practice lies in their complexity and the computational overhead typically
required to collect and analyze di�erent test parameters needed for prioritization, such as age,
test coverage, etc. By contrast, our approach based on RL is a lightweight method, which only
uses historical results and its experience from previous CI cycles. Furthermore, our approach is
adaptive and suited for dynamic environments with frequent changes in code and testing, and
evolving test suites.
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4. Quality Metrics for Fault Prediction

This chapter aims to direct the testing in areas in the software that are most likely to be failed
since software testing consumes a considerable e�ort during software production. To raise the
e�ectiveness and e�ciency of this e�ort, it is wise to direct the testing to the code areas which
need it most. Therefore, we need to identify those pieces of software that are the most likely
to fail and require most of the developers’ attention. This chapter presents a methodology that
provides prediction models; a combined approach to create accurate failure predictors, to predict
the probability of failure of each software component.

4.1 Problem De�nition
Overall, software quality assurance is the most expensive activity in the development of safety-
critical embedded software [RSHN14, HOBK17, OMS18]. As a result, given the size, complexity,
time, and cost constraints in automotive development projects, increasing the e�ectiveness and
e�ciency of software quality assurance is becoming increasingly important. As a result, in order
to improve the e�ectiveness and e�ciency of software quality assurance tasks, we must �rst
identify problematic code areas that are most likely to contain program �aws and then focus
quality assurance tasks on such code areas. An early estimate of fault-proneness aids in making
decisions on testing, code inspections, and design rework, as well as �nancially planning for
potential delayed releases, and a�ordably guide corrective actions to the quality of the software
[SPVV17, OMS18].

There are several sources to estimate fault-proneness of software components extracted from our
research works [OMS18, OSM19]. It can be:

1. their failure history, that can be extracted from bug databases; a software component likely
to fail in the past is likely to fail in the future [NBZ06]. Unfortunately, a long failure his-
tory is required in order to get accurate predictions. Such a long failure history, however,
is usually not available. Moreover, maintaining long failure histories is usually avoided
altogether [NBZ06],

2. the program code itself. Several case studies [BWIL99, TKC99, SK03, MBdNS17] have
shown that static code analysis and code complexity metrics correlate with fault density.
Static analysis evaluates software programs at compile time by exploring all possible exe-
cution paths [FMB+16, ARB17]. In addition, static analysis tools can detect low-level pro-
gramming faults such as potential security violations, run-time errors and logical incon-
sistencies [SSSJ17]. Code complexity metrics have been proposed in di�erent case studies
to assess software quality [NBZ06, RSHN14, YY17].
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3. mining the software repositories to develop an accurate fault prediction model. Software
repositories contain historical and valuable information about the overall development of
software systems [OMS18, OSM19]. By mining the software git repositories, we can ex-
tract and analyze data about the system, such as code churn metrics, which represent the
system’s change history, and the bug �xes information [OSM19].

4.2 Research Goals

The major question in this approach is whether or not we can use code complexity metrics com-
bined with static analysis fault density to predict pre-release fault density, that is: is combining
static analysis metrics with code complexity metrics and code churn metrics a leading indicator
of faulty code? The research questions that we want to con�rm in this chapter are:

RQ1: Can static analysis fault density combined with code complexity metrics be used to predict
pre-release fault density at statistically signi�cant levels?;

RQ2: Can static analysis fault density combined with code complexity metrics be used to dis-
criminate between fault-prone and not fault-prone components?

RQ3: Can the history of code changes between di�erent releases enhance our prediction and
classi�cation models?

4.3 Approach

In this chapter, we apply a combined approach, represented in Figure 4.1, to create accurate fault
predictors. Our process can be summarized in the following three steps:

4.3.1 Data Pre-Processing

First, we collect the data required to train and test the fault prediction models (the regressor and
the classi�er) for all software releases. The data required to train our fault prediction models are:

1. Independent variables: The independent variables are the input variables to the predic-
tion models. (a) Static analysis faults: we execute static code analysis on each component
for each release. We de�ne the static analysis fault density of a software component as
the number of faults found by static analysis tools, after reviewing and eliminating false
positives, per KLOC (thousand lines of code). (b) Code complexity metrics: we compute
di�erent code complexity metrics for each component and for each release as describes in
Table 4.2. (c) Code churn metrics: we mine the git repositories databases to extract several
code churn metrics (e.g., added LOC, removed LOC, etc., see Table 4.2) for each component
in each release.

2. Dependent variable: The dependent variable is the output that our prediction models
will predict. We validate our approach within two experiments based on two di�erent
dependent variables:

a) Pre-release faults: we mine the archives of several major software systems at Daimler
and map their pre-release faults (faults detected during development) back to their
individual components. We de�ne the pre-release fault density of a software compo-
nent as the number of faults per KLOC found by other methods (e.g., testing) before
the release of the component, as we did not have access to the source code and git
repositories at the beginning of our �rst experiment, described in Section 4.4.2.1.
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Table 4.1: Software Projects Researched
Projects # Components Code Size
Project 1 8 2.026 MLOC
Project 2 4 1.762 MLOC
Project 3 9 4.795 MLOC
Project 4 3 3.555 MLOC
Project 5 21 5.070 MLOC
Project 6 2 1.664 MLOC
Project 7 4 2.215 MLOC
Project 8 3 2.710 MLOC

b) Bug Fix: We mine the git repositories using natural language processing techniques
to parse and analyze commit messages mentioning bug �xes keywords (e.g., bug �x,
bug �xing, etc.). The source code of the implemented tool "pygitminer" is available
for peer review 1. . Such bug �x commits are the indicator of the true known fault
density of the software components for each release, described in Section 4.4.2.1.

4.3.2 Model Training

We train di�erent machine learning models to learn the fault densities of each software compo-
nent based on the independent variables: (a) static analysis faults densities, (b) code complexity
metrics, and (c) code churn metrics. We use the standard statistical principal component analysis
(PCA) technique on the static analysis fault densities, code complexity metrics, and code churn
metrics to overcome the issue of multicollinearity associated with combining several metrics as
input variables of the statistical models [OMS18, OSM19]. We split our data into two parts: (1)
train data which accounts for three successive releases of all software components, and (2) test
data representing the fourth release (the last release).

4.3.3 Model Prediction

The trained statistical models are used to (i) predict pre-release fault densities of software com-
ponents (Regression) and (ii) discriminate fault-prone software components from the not fault-
prone software components (Classi�cation).

4.4 Study Design
This chapter aims to come upwith fault predictors that evaluate our research questions, described
in Section 4.2.

4.4.1 Researched Projects

Our experiments were carried out using eight software projects of an automotive head unit con-
trol system (Audio, Navigation, Phone, etc.) [OMS18, OSM19]. In the remainder of the work,
we will be referring to these eight projects as Project 1 to 8. For reasons of con�dentiality, we
cannot disclose which number stands for which project. Each project, in turn, is composed of
a set of components. The total number of components is 54. These components have a collec-
tive size of 23.797MLOC (million LOCs without comments and spaces). All components use the
object-oriented language C++. Table 4.1 presents a high-level outline of each project.

4.4.2 Data Collection

The data required to build our fault predictors are:
1Implementation available at https://github.com/so1188/gitrepomining
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Figure 4.1: Overview of the fault prediction process
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4.4.2.1 Faults Data

During our experiment, we identi�ed and validated our work in two kinds of faults:

• Daimler systematically records all problems that occur during the entire product life cycle.
In this work, we are interested in pre-release faults, that is, faults that have been detected
before the initial release. For each component of the eight projects (Project 1 to Project 8
from Table 4.1), we extracted all bugs detected for the latest release from an internal fault
database. The fault database is continuously updated from testing teams, integration teams,
external teams, or third-party testers. Such faults do not include problems submitted by
customers in the �eld, which are only found in post-release scenarios. The faults extracted
from the fault database are then used to compute the pre-release fault density.

• Faults that have been detected during the development and mentioned as bug �xes in git
commits. For each component, we extracted all detected bugs throughmining the git repos-
itories. The extracted faults are then used to compute the fault density.

4.4.2.2 Static Analysis Fault Density

We executed static analysis tools on each component and extracted the identi�ed faults. These
faults were then used to compute the static analysis fault density. We used commercial verifying
and non-verifying static analysis tools (Astrée, Coverity, Polyspace, etc.).

4.4.2.3 Code Complexity Metrics

We compute several code complexity metrics for each of the components. The code complexity
metrics are represented in Table 4.2. We limit our study to a set of selected metrics that have
shown to provide signi�cant quality indicators over a long period of time by the software quality
assurance team at Daimler. Code complexity metrics have been shown to correlate with fault
density in several case studies [SK03, TKC99, BWIL99], and they have been proposed in di�erent
case studies to assess software quality [RSHN14, NBZ06].

4.4.2.4 Code Churn Metrics

Software repositories contain historical information regarding the overall development of soft-
ware program systems. Mining software databases is nowadays considered one of the most in-
triguing expanding areas within software engineering. Di�erent recent works have used past
changes as indicators for faults because the more changes are done to a part of the source code,
the more likely it will contain faults [KZWJZ07, KWZ08]. Thus, we mine the software reposito-
ries databases to extract the churn metrics. We use the extracted code churn metrics, as described
in Table 4.2 to predict software fault density.

4.4.2.5 Relative Code Churn Metrics

We compute a number of relative code churn metrics for each component, as described in Table
4.2. We show in this study that using relative code churn as a fault predictor is better than using
(absolute) code churn predictors. Furthermore, combining relative code churn metrics with code
complexity metrics and static analysis faults can accurately predict the fault density with a high
degree of sensitivity.
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Table 4.2: Metrics used for the study
Metrics Description

Static Analysis Fault Density # faults found by static analysis tools
per KLOC (thousand lines of code).

Code Churn Metrics
Added LOC # lines of code added
Removed LOC # lines of code deleted
Modi�ed Files # �les modi�ed
Files count # �les compiled to create a software component
Developers # developers

Relative Code Churn Metrics

Added LOC / Relevant LOC

We expect the larger the proportion of
added code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Removed LOC / Relevant LOC

We expect the larger the proportion of
removed code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Modi�ed Files / Files count

We expect the larger the proportion of
�les in a component that get modi�ed,
the higher is the probability of these
�les introducing faults.

Code Complexity Metrics

Relevant LOC # relevant LOCs without comments,
blanks, expansions, etc.

Complexity cyclomatic complexity of a method
Nesting # nesting levels in a method
Statements # statements in a method
Paths # non-cyclic paths in a method
Parameters # function parameters in a method
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4.5 Study Validation

The case study below details the experiments we executed to validate our research questions.
Table 4.3 de�nes abbreviations used in this section. First, we introduce the evaluation metrics
used in this experiment to validate both regression and classi�cation models in Section 4.5.1.
Second, the results and analysis of the studied research questions are discussed in Section 4.5.2
(RQ1 and RQ2) and in Section (RQ3) 4.5.3. Finally, we discuss in Section 4.5.4 the threats to
validity.

Table 4.3: Nomenclature
Abbreviations Description

PCA
Principal component analysis (PCA) is a standard statistical procedure to convert
a set of possibly correlated variables into a (typically smaller) set of linearly
uncorrelated variables by using a coordinate transformation.

R
2

R squared: coe�cient of determination, measures the variance in the predicted
variable that is accounted by the regression built using the predictors
(code metrics combined with static analysis fault density).

MSE Mean squared error (MSE) is a measure of the unbiased error estimate
of the error variance.

ROC curve
Receiver operating characteristic (ROC) curve, is a popular measure for evaluating
classi�er performance. The ROC curve is created by plotting the true positive rate
against the false positive rate at various threshold settings.

AUC
Area under curve (AUC) equals the probability that the classi�er predicts a randomly chosen
true positive higher than a randomly chosen false negative.
The larger the AUC, the more accurate is the classi�cation model.

4.5.1 Evaluation Metrics

All de�ned metrics in this section are discussed in detail in the Background Chapter 2 in Section
2.3.

As a measure of the regression �ts, we compute R2. R2 measures the variance in the predicted
variable that is accounted by the regression built using the predictors. For evaluating and report-
ing the performance of our regression model, we use the commonly used error metric; the mean
squared error (MSE) to measure the unbiased error estimate of the error variance.

As evaluation measures for the classi�cation models, we use the accuracy, where a confusion
matrix in Table 4.4 is used to store the correct and incorrect decisions made by a classi�cation
model. In order to compare the actual observed and predicted classes for each component, we
categorized each predicted class into four individual categories, as shown in Table 4.4.

We compute precision and recall as (i) precision = TP ÷ (TP + FP ) and (ii) recall = TP ÷
(TP + FN), as described in Chapter 2 in Section 2.3. All two measures are values between
zero and one. A precision of one indicates that the classi�cation model does not report any
false positives. A recall of one implies that the model does not report any false negatives. The
F-measure can be interpreted as a weighted average of the precision and recall, where an F-
measure reaches its best value at one and worst at zero. The intuition behind precision, recall,
and F-measure is:

• Precision: how many of the components classi�ed by our classi�ers as fault-prone are
actually fault-prone.

• Recall: how many fault-prone components our classi�ers were able to identify correctly as
fault-prone.

• F-measure: measures the weighted harmonic mean of the precision and recall.
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In order to evaluate the classi�er output quality, we used the Receiver Operating Characteristic
(ROC) metric. In binary classi�cation, ROC curves are commonly used to investigate the output
of a classi�er. To apply the ROC curve and ROC area to multi-class or multi-label classi�cation,
the output must be binarized [ROC]. Therefore we binarize our output, that is, the pre-release
defects density.

Table 4.4: Comparing observed and predicted component classes in a confusion matrix. Used to
compute precision and recall values of classi�cation model

Observed class
fault prone non-fault prone
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False negative
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False positive
(FP)

True positive
(TP)

4.5.2 Static Analysis and Code Complexity Metrics as Early Indicators of Soft-
ware Defects

In this section, we validate the two following research questions:

RQ1: Can static analysis fault density combined with code complexity metrics be used to predict
pre-release fault density at statistically signi�cant levels?;

RQ2: Can static analysis fault density combined with code complexity metrics be used to dis-
criminate between fault-prone and not fault-prone components?

4.5.2.1 Correlation Analysis

In order to con�rm that static analysis fault density combined with code complexity metrics can
be used as an early indicator of pre-release fault density, we investigate the possible correla-
tions between the pre-release fault density and the code complexity metrics as well as the static
analysis fault density. We applied a robust correlation technique, Spearman rank correlation.
Spearman rank correlation has the advantage over other correlation techniques such as Pearson
correlation to detect also non-linear correlations between elements [Wis05], [JCFdW16]. Table
4.5 summarizes the correlation results. It shows a statistically signi�cant positive correlation
between the static analysis fault density and the pre-release fault density. It also shows a statisti-
cally signi�cant positive correlation between the pre-release fault density and some of the code
complexity metrics. The correlations between the code complexity metrics (row 1 to row 6), as
well as between the code complexity metrics and the static analysis fault density (row 7), are an
early indicator of the existence of the multicollinearity problem when using both code complex-
ity metrics and static analysis fault density as input parameters of statistical prediction models.
The negative correlations are to be explained that the complex modules we are considering in
this study are already in an advanced development stage and have been intensively tested.

In this work, we assume statistical signi�cance at 99% con�dence. Furthermore, all metrics are
normalized before computing the correlations.
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Table 4.5: Correlation results of pre-release fault density with code metrics and static analysis
fault density (All correlations are signi�cant at the 0.01 level (2-Tailed))

Metric Statements Parameters Nesting Paths Complexity R_LOC Static Analysis
Fault Density

Pre-Release
Fault Density

Statements 1
Parameters 0.55 1
Nesting -0.32 0,042 1
Paths -0.079 0.33 0.84 1
Complexity 0.3 0.42 -0.13 -0.055 1
Relevant_LOC -0.3 - 0.13 0.79 0.46 -0.13 1
Static Analysis
Fault Density -0.22 0.13 0.37 0.067 0.31 0.52 1

Pre-Release
Fault Density 0.7 0.82 -0.15 0.079 0.55 -0.13 0.69 1

4.5.2.2 Predictive Analysis

In order to estimate the pre-release fault density, we applied statistical regression techniques
where the dependent variable is the pre-release fault density, and the independent variables are
the code complexity metrics combined with the static analysis fault density. However, one dif-
�culty associated with combining several metrics is the issue of multicollinearity. For instance,
(see Table 4.5) the Statement, Parameters and Complexity metrics not only correlate with pre-
release fault density, but they also strongly correlated with each other. To overcome the problem
of multicollinearity between the independent variables (see Table 4.5 where correlations between
code metrics have been identi�ed), we used the standard statistical principal component analysis
(PCA) technique. Multicollinearity might lead to an in�ated variance in the estimation of the
dependent variable, that is the pre-release fault density.

Figure 4.2: Extracted Principal Components

We extracted the principal components out of the 7 independent variables which include the six
complexity metrics and the static analysis fault density. Fig. 4.2 shows that 4 principal com-
ponents result in variance close to 98%. Therefore, in this study, we selected the number of
principal components as 4, which we used to model our prediction model. We split our data into
two parts: (i) train data which accounts for 70% of the available data, and (ii) test data repre-
senting the remaining 30%. We �rst transform both train and test data into 4 components which

39



40 4. Quality Metrics for Fault Prediction

explained 98% of the total data variance using PCA. Then, we �t several models to the code
complexity data, and the static analysis fault density separately as predictors and the pre-release
fault density as the dependent variable. We then combined both code metrics and static analysis
fault density as predictors for the pre-release fault density. The models we tested include linear,
exponential, polynomial regression models, as well as support vector regressions and random
forest. As a measure of the regression �ts, we compute R

2. R2 measures the variance in the
predicted variable that is accounted by the regression built using the predictors. As a measure
of the unbiased error estimate of the error variance, we use the mean squared error (MSE), as
described in Section 4.5.1.

Table 4.6 shows that when using both the code complexity metrics and the static analysis fault
density as predictors, we obtain the best �t using the random forest model; theR2 value increases
to 0.783, and the MSE decreases to 0.216. Therefore, we conclude that combining code metrics
and static analysis is more bene�cial to explain pre-release faults. We do not present the regres-
sion equations to protect proprietary data. The validation of the model goodness is repeated 10
times using the 10-fold cross-validation technique.

Table 4.6: Regression Fits
Predictors R

2
MSE

Static Analysis Fault Density
alone 0.676 0.323

Complexity Metrics
alone 0.507 0.493

Both Complexity Metrics
and the Static Analysis
Fault Density

0.783 0.216

In order to address the fact that the above results are not by chance, we repeated the data split
(train: 70% and test: 30% of the data) as well as the model �tting several times. To quantify the
sensitivity of the results, we applied the Spearman rank correlation between the predicted and the
actual pre-release fault densities. Table 4.7 reports the correlations as well as the accuracy (R2) of
the prediction when applied on three random splits of the data. The Spearman correlation shows
a strong positive correlation, always stronger when both complexity metrics and static analysis
are combined.

Table 4.7: Summary of �t and correlation results of random model sampling
R

2 Correlation Results (Spearman) MSE

Complexity
Metrics

Static
Analysis

Both
(Proposed
Model)

Complexity
Metrics

Static
Analysis

Both
(Proposed
Model)

Complexity
Metrics

Static
Analysis

Both
(Proposed
Model)

Split 1 0.485 0.694 0.895 0.842 0.935 0.946 0.514 0.306 0.104
Split 2 0.625 0.838 0.915 0.791 0.918 0.957 0.374 0.161 0.084
Split 3 0.506 0.590 0.729 0.847 0.789 0.880 0.493 0.409 0.270

4.5.2.3 Classi�cation Analysis

In this section, we discuss the experimental results showing how well the combination of code
complexity metrics with static analysis fault density performs with respect to categorizing soft-
ware components based on their fault-proneness.

In order to classify software components into fault-prone and not fault-prone components, we
applied several statistical classi�cation techniques. The classi�cation techniques include random
forest classi�ers, logistic regression, passive aggressive classi�ers, gradient boosting classi�ers,
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K-neighbors classi�ers and support vector classi�ers. The dependent variables for the classi�ers
are the code complexity metrics and the static analysis fault density, the independent variable
is the result of binarizing (i.e. fault-prone vs. not fault-prone) the pre-release fault density. We
binarized the pre-release fault-density to create a binary classi�cation problem (i.e. fault-prone
vs. not fault-prone). We split the overall data into 2/3 training and 1/3 testing instances using
strati�ed sampling. In order to address the fact that the classi�cation results were not by chance
we repeated the data splitting experiments. Our experiments showed that logistic regressions
delivered the most accurate classi�ers. Table 4.8 shows the accuracy results of the classi�cation
based on four data splits when using the logistic regression.

Table 4.8: Precision and recall values for the classi�cation model on four random data splits
Precision Recall

Split 1 0.739 0.375
Split 2 0.717 0.358
Split 3 0.723 0.357
Split 4 0.725 0.365

We nowwant to determine the quality of our classi�cationmodel. The accuracy of a classi�cation
model is characterized by misclassi�cation rates. In this work, a Type I misclassi�cation, also
called false positive is when the model predicts that a module is not fault-prone when it is. Type
II misclassi�cation, also called false negative is when the model predicts that a module is fault-
prone when it is not. In order to compare the actual observed and predicted classes for each
component, we categorized each predicted class into four individual categories as shown in Table
4.4 in Section 4.5.1. As evaluation measures, we compute precision and recall de�ned in Section
4.5.1. The intuition behind precision and recall is the following:

• Recall: how many fault-prone components our classi�ers were able to identify correctly as
fault-prone.

• Precision: how many of the components classi�ed by our classi�ers as fault-prone are
actually fault-prone

All two measures are values between zero and one. Table 4.8 reports the recalls and precisions
for the classi�cation model on four random data splits. The mean precision over all splits lies at
0.726, the mean recall lies at 0.419 . High precision relates to a low false positive rate, meaning
(according to Table 4.4) the probability to classify true fault prone components as non-fault prone
ones is low. Conversely, high recall relates to a low false negative rate; meaning low probability
to classify true non-fault prone components as fault prone. The recall value of our classi�cation
model is modest and needs to be further improved. Nevertheless, our model still delivers a safe
classi�cation; non-fault prone components would get more software quality assurance attention,
while these components are truly non-fault prone. A visual representation of the performance of
the classi�cation model is provided in Fig. 4.3, which plots the Receiver Operating Characteristic
(ROC) metric. The area under the ROC curve (AUC) equals the probability that the classi�ers
predicts a randomly chosen true positive higher than a randomly chosen false negative. The
larger the AUC, the more accurate is the classi�cation model. As shown in Fig. 4.3, the accuracy
of the classi�cation model lies at 79% (AUC).

Extended Validation

The validation of our study is based on the metrics validation methodology proposed by Schnei-
dewind [Sch92]. Following the Schneidewind’s validation scheme, the quality indicator is the
pre-release fault density (F) and the metric suite (M) is the combination of the static analysis
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Figure 4.3: ROC curve for logistic regression using code complexity metrics and static analysis
fault density to classify software components

fault density together with the code complexity metrics. The six validation criteria are the fol-
lowing:

1. Association: "This criterion assesses whether there is a su�cient linear association be-
tween F and M to justify using M as an indirect measure of F" [Sch92]. We identi�ed a
linear correlation between the pre-release fault density and the combination of the static
analysis fault density with the code complexity metrics at a statistically signi�cant level
warranting the association between F and M.

2. Consistency: "This criterion assesses whether there is su�cient consistency between the
ranks of F and the ranks of M to warrant using M as an indirect measure of F" [Sch92].
We demonstrated the consistency between the pre-release faults and the combination of
static analysis fault density and code complexity metrics in Section 4.5.2.2 in Table 4.6.

3. Discriminative Power: "This criterion assesses whether M has su�cient discriminative
power to warrant using it as an indirect measure of F" [Sch92]. This is satis�ed based
on the results in Section 4.5.2.3, where we showed that discriminant analysis can classify
e�ectively fault-prone from not fault-prone components.

4. Tracking: "This criterion assesses whetherM is capable of tracking changes in F (e.g., as a
result of design changes) to a su�cient degree to warrant using M as an indirect measure
of F" [Sch92]. Table 4.7 justify the ability of M to track F.

5. Predictability: "This criterion assesses whether M can predict F with required accuracy"
[Sch92]. The correlation analysis results as well as the prediction analysis results in Section
4.5.2.2.

6. Repeatability: "This criterion assesses whether M can be validated on a su�cient per-
centage of trials to have con�dence that it would be a dependable indicator of quality in
the long run" [Sch92]. We demonstrated the repeatability criterion by using random split-
ting techniques in Section 4.5.2.2. A limitation of our study with respect to repeatability is
that all data used are from one software system.
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4.5.3 An Enhanced Fault Prediction Model Based on Code Churn, Complexity
Metrics, and Static Analysis Results

We validate in this section the following research question:

RQ3: Can the history of code changes between di�erent releases enhance our prediction and
classi�cation models?

4.5.3.1 Experimental Setup

Our experiment is composed of two steps: data pre-processing and model training. First, we col-
lect the data required to train and test the fault predictionmodels (the regressor and the classi�er)
out of a git versioned software project. Git versioning allows us to capture the required data for
all software releases. The data required to train our fault prediction models is:

• Independent variables which are the input variables to the studied prediction models: (a)
Static analysis faults: we execute static code analysis on each component for each release.
We de�ne the static analysis fault density of a software component as the number of faults
found by static analysis tools, per KLOC (thousand lines of code). (b) Code complexity
metrics: we compute di�erent code complexity metrics for each of the components and for
each release as describes in Table I. (c) Code churn metrics: we mine the git repositories
databases to extract several code churn metrics (e.g, added LOC, removed LOC, etc., see
Table I) for each release.

• Dependent variable which is the output that will be predicted by our prediction models.
We mine the git repositories using natural language processing techniques to parse and
analyze commit messages mentioning bug �xes keywords (e.g, bug �x, bug �xing, etc.).
Such bug �x commits are the indicator of the true known fault density of the software
components for each release.

All studied metrics are discussed in details in the Data Collection Section 4.4.2 in 4.4 and they
are represented in Table 4.2.

Second, We train di�erent machine learning models to learn the fault densities of each software
component based on the independent variables: (a) static analysis faults densities, (b) code com-
plexity metrics, and (c) code churn metrics. We split our data into two parts: (1) train data which
accounts for 3 successive releases of all software components, and (2) test data representing the
fourth release (the last release). We split our data into two parts: 1) train data which accounts for
80% of the available data, and 2) test data representing the remaining 20%. We tested our data
on the four main regression models families (Generalized Linear models, Deep Learning Models,
Random Forest Models and Boosted Models). The boosted models include RGBoost (also known
as regularized gradient boosting), Distributed Random Forests (DRF) as well as Gradient Boosting
Machines (GBM). We will shortly explain the model that we used in this study to predict the fault
density. RGBoost is a supervised learning algorithm that implements a process called boosting to
yield accurate models [CBH+16]. Boosting refers to the ensemble learning technique of building
many models sequentially, with each new model attempting to correct for the de�ciencies in the
previous model [Zho21]. In tree boosting, each new model that is added to the ensemble is a
decision tree. RGBoost provides parallel tree boosting that solves many data science problems
in a fast and accurate way. For many problems, RGBoost is one of the best gradient boosting
machine frameworks today [CBH+16]. Both RGBoost and GBM follows the principle of gradi-
ent boosting. There are, however, di�erences in modeling details. Speci�cally, RGBoost uses a
more regularized model formalization to control over-�tting, which gives it better performance,
especially when the correlation between the independent variables is non-linear. Distributed
Random Forest (DRF) is a powerful classi�cation and regression tool. When given a set of data,
DRF generates a forest of classi�cation or regression trees, rather than a single classi�cation or
regression tree [GBT18]. The validation of the model goodness is repeated 10 times using the
10-fold cross-validation technique.
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Table 4.9: Regression Fits of three Predictors and their Combination
RGBoost DRF GBM

R
2 MSE R

2 MSE R
2 MSE

Pr
ed
ic
to
rs

Absolute Code
Churn Metrics
alone

0.473 0.235 0.325 0.337 0.592 0.195

Relative Code
Churn Metrics
alone

0.730 0.113 0.651 0.267 0.694 0.221

Relative Code
Churn Metrics
Combined With
Code Complexity
Metrics
and Static Analysis
Fault Density

0.857 0.015 0.683 0.103 0.784 0.067

4.5.3.2 Model Fitting and Regression Analysis

In this section we compare predictive models built using the di�erent metrics presented in Table
4.2 in order to �nd the best model for accurate fault prediction to enhance the ourmodel described
in Section 4.5.2. We �t several models to the absolute code churn data as well as the relative code
churn data separately as predictors, with the fault density as the dependent variable. We tested
our data on the four main regression models families (Generalized Linear models, Deep Learning
Models, Random ForestModels and BoostedModels). The experiment shows that boostedmodels
are showing the best �tting and generalized accuracy. This result can be explained by the fact that
the relation between the independent variables is highly non-linear. The boosted models include
RGBoost (also known as regularized gradient boosting), Distributed Random Forests (DRF) as
well as Gradient Boosting Machines (GBM). As a measure of the regression �ts, we compute R2

and as a measure of the unbiased error estimate of the error variance, we use the mean squared
error (MSE). The evaluation measures are introduced in Section 4.5.1 and discussed in more
details in the Background Chapter 2. The regression model �t for absolute code churn metrics
has an R

2 value of 0.473, an MSE value of 0.235. Nevertheless, using the relative code churn
metrics as fault predictors shows a better �t; theR2 value increases to 0.730, theMSE decreases
to 0.113. We then combined relative code churn metrics with code complexity metrics and with
static analysis fault density as predictors for the fault density.

Table 4.9 shows that when using the combination relative code churn metrics with code com-
plexity metrics and with static analysis fault density as fault predictors, we obtain the best �t
using the Regularized Gradient Boosting (RGBoost) model; the R2 value increases to 0.857, the
MSE decreases to 0.015. Therefore, we conclude that it is more bene�cial to combine rela-
tive code churn metrics with code complexity metrics and static analysis fault density to explain
software faults. The validation of the model goodness is repeated 10 times using the 10-fold
cross-validation technique. A bene�t of using ensembles of decision tree methods like regular-
ized gradient boosting is that they can automatically provide estimates of feature importance
from a trained predictive model, as presented in Figure 4.4.

4.5.3.3 Fault-Proneness Analysis

In order to classify software components into fault-prone and not fault-prone components, we ap-
plied several statistical classi�cation techniques. The classi�cation techniques include the same
techniques that we considered for the regression; RGBoost, DRF and GBM. The independent vari-
ables for the classi�ers are the relative code churn metrics combined with the code complexity
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Figure 4.4: Variable Importance

Table 4.10: Classi�cation Performance for Our Approach using RGBoost, DRF and GBM Models
RGBoost DRF GBM

Precision 0.94 0.33 0.45
Recall 0.91 1 0.96
F-measure 0.92 0.496 0.613
AUC 0.88 0.6 0.73

metrics and the static analysis fault density. The dependent variable is the result of binarizing
(i.e., fault-prone vs. not fault-prone) the fault density. A confusion matrix, as de�ned in Table
4.4 in Section 4.5.1, is used to store the correct and incorrect decisions made by a classi�cation
model.

For instance, if a component is classi�ed as fault-prone when it is truly fault-prone, the classi�-
cation is true positive (TP). If the component is classi�ed as fault-prone when it is actually clean
(not fault-prone), then the classi�cation is a false positive (FP). If the �le is classi�ed as clean
when it is in fact fault-prone, the classi�cation is a false negative (FN). Finally, if the issue is clas-
si�ed as clean and it is, in fact, clean, the classi�cation is true negative (TN). In order to compare
the actual observed and predicted classes for each component, we categorized each predicted
class into four individual categories as shown previously in Table 4.4. As evaluation measures,
we compute precision, recall, and F-measure de�ned in Section 4.5.1 as:

• Precision: how many of the components classi�ed by our classi�ers as fault-prone are
actually fault-prone.

• Recall: how many fault-prone components our classi�ers were able to identify correctly as
fault-prone.

• F-measure: measures the weighted harmonic mean of the precision and recall.

Furthermore, we investigate the use of the area under the receiver operating characteristic (ROC)
curve (AUC) as a performance measure for our approach. The area under the ROC curve (AUC)
equals the probability that the classi�ers predict a randomly chosen true positive higher than
a randomly chosen false negative. The larger the AUC, the more accurate is the classi�cation
model, as de�ned in Section 4.5.1.

As shown in Table 4.10 and in Figure 4.5, the classi�cation model which uses RGBoost as the
classi�er produced an impressive result with all four performance indicators (Precision, Recall,
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F-measure and AUC) being well above 0.9. Using DRF or GBM achieved very high recall, but at
the same time it appeared to produce many false positives, and thus their precision is much lower
than the precision produced by RGBoost. All studied classi�ers achieved an AUC well above the
0.5 threshold; 0.89 for RGBoost, 0.6 for DRF and 0.73 for GBM.

Figure 4.5: Classi�cation Performance of Our Approach

Summary:

We veri�ed in this study whether the faults detected by static analysis tools combined with code
complexity metrics can be used as software quality indicators and to build pre-release fault pre-
diction models. The combination of code complexity metrics with static analysis fault density
was used to predict the pre-release fault density with an accuracy of 78.3%. This combination
was also used to separate high and low quality components with a classi�cation accuracy of 79%.
Moreover, we extends this study, where we demonstrated that the combination of code complex-
ity metrics together with static analysis results allows accurate prediction of fault density and
to build classi�ers discriminating faulty from non-faulty components. The extension presented
in this study augments our predictor and classi�er with code churn metrics. We applied our
methodology to C + + projects from Daimler’s head unit development. In experiments to sep-
arate fault-prone from non-fault-prone components, our new approach achieved a classi�cation
accuracy of 89%, and the regressor predicted the fault density with an accuracy of 85.7%. This
is an improvement of 7.5% with respect to the accuracy of fault density prediction, and an im-
provement of 10% to the accuracy of fault classi�cation compared to our previous approach that
did not take code churn metrics into account.

4.5.4 Threats to Validity

The results reported in our study (i) are heavily dependent on the quality of the static analysis
tools used at Daimler as well as the quality of the manual reviews executed to eliminate false
positives, and (ii) might not be repeatable with the same degree of con�dence with other tools.
The defects detected by static analysis tools might be false positive. In our study, an internal
review of the faults identi�ed by static analysis tools has been executed, and only true positive
faults have been used in this study. Moreover, it is possible that static analysis tools do not detect
all faults during the development process. Such missed faults can be found by testing, which
would increase the pre-release fault density and consequently might perturb the correlation. In
order to mitigate possible skewness of the correlation, our hypothesis was that combining the
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static analysis fault density with code complexity metrics and code churn metrics would account
for faults not identi�ed by static analysis tools.

4.6 Related Work
This section presents the existing works related to our �rst contribution described in this Chapter
4. Software code complexity metrics were initially suggested by Chidamber and Kemerer [CK94].
Basili et al. [BBM96], and Briand et al. [BWIL99] were among the �rst to use such metrics
to validate and evaluate fault-proneness. Subramanyam and Krishnan [SK03], and Tang et al.
[TKC99] showed that these metrics can be used as early indicators of external software quality.
Nagappan et al. [NBZ06] empirically con�rmed that code complexity metrics can predict post-
release faults. Based on a study on �ve large software systems, they showed that 1) for each
software, there exists a set of complexity metrics that correlates with post-release faults, 2) there
is no single set of metrics that �ts all software projects, 3) predictors obtained from complexity
metrics are good estimates of post-release defects, and 4) such predictors are accurate only when
obtained from the same or similar software projects. Our work builds on the study of Nagappan
et al. [NBZ06], and focuses on pre-release faults while taking into consideration not only the
code complexity metrics but also the faults detected by static analysis tools to build accurate
pre-release fault predictors.

In this work, we used the faults detected by static analysis tools to predict the pre-release fault
density. Our basic hypothesis is that while static analysis tools only �nd a subset of the actual
faults in the program’s code, it is highly likely that these detected faults, combined with code
complexity metrics would be a good indicator of the overall code quality. This is explained by
the fact that static analysis tools can �nd faults that occur on paths uncovered by testing. On
the other hand, testing has the ability to discover deep functional and design faults, which can
be hardly discovered by static analysis tools. In other words, code complexity metrics would
complement the static analysis fault detection capabilities to account for the type of faults that
cannot be detected by static analysis tools, and hence such a combination can form accurate
predictors of pre-release faults.Nagappan et al. [NWH+04] showed at Nortel Networks on an 800
KLOC commercial software system, that automatic inspection faults detected by static analysis
tools were a statistically signi�cant indicator of �eld failures and is e�ective to classify fault-
prone components. Nagappan et al. [NB05a] applied static analysis at Microsoft on a 22 MLOC
commercial system and showed that the faults found by static analysis tools were a statistically
signi�cant predictor of pre-release faults and can be used to discriminate between fault-prone
and non fault-prone components. Again, our approach does not only make use of the faults
detected by static analysis, but also uses code complexity metrics; it goes beyond the works of
Nagappan et al. by not only using the faults detected by static analysis tools as an indicator of
pre-release faults, but also combines these faults with code complexity metrics in a mathematical
model which delivers a more accurate predictor and classi�er of pre-release faults.

Furthermore, faults are closely related to changes made in the software systems and studying
the changes that take place during software evolution via code churn is also important. Khosh-
goftaar et al. [KAG+96] were among the �rst to use past changes for bug prediction. Their
objective was to classify the modules as fault-prone or not. Therefore, they identi�ed modules
where debug code churn exceeded a threshold. They showed, by studying the change history of
two consecutive releases of a large legacy software system of telecommunications, that a high
code churn, i.e., a high amount of lines added and removed, is a good indicator of fault-prone
modules. The system studied contain over 38, 000 procedures in 171 modules. Ohlsson et al.
[OvMMW], Graves et al. [GKMS00] studied the evolution of changes in the software systems to
understand their relationship with software quality. Based on a study on eight large-scale open
source systems (Eclipse, Postgres, KOFFICE, gcc, Gimp, JBOSS, JEdit and Python), Zimmermann
et al. [ZPZ07] mined the version histories and predicted the location of future changes in systems
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with an accuracy of 70%. Closely related to our study is the work performed by Nagappan and
Ball [NB05b] on predicting defect density in software systems using relative code churn metrics,
i.e., code churn weighted by lines of code. They analyze di�erent code churn measures in iso-
lation, and show that relative code churn is better than absolute code churn values to predict
defects at statistically signi�cant levels. Their approach is similar to ours in the sense that we
are also considering relative churn variables to predict fault potential. However, we focus on
predicting fault density on an extended number of variables including code complexity metrics
and the faults detected by static analysis tools.

To the best of our Knowledge, this work is the �rst to combine code churn metrics with code
complexity metrics and with static analysis results to predict software defect density for each
software component.

In the following sections, we will discuss in details the numerous studies that have examined the
realm of software fault prediction in the recent decades.

Software Fault Prediction

Fault prediction is an active research area in the �eld of software engineering. Many techniques
and metrics have been developed to improve fault prediction performance. Figure 4.6 brie�y
shows the history of software fault prediction studies in about the last 20 years.

Figure 4.6: History of Software Defect Prediction

Within-Project Defect Prediction uses training data and test data that are from the same project.
Many machine learning algorithms have been adopted for within-project defect prediction, in-
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cluding Support Vector Machines (SVM) [EE08], Bayesian Belief Networks [ATMK03], Naive
Bayes (NB) [WL], Decision Trees (DT) [GSR10], [KS02], [WSC], Neural Networks (NN) [EMG12],
or Dictionary Learning [JYZ+14]. Elish et al. [EE08] evaluated the feasibility of SVM in predict-
ing defect-prone softwaremodules, and they compared SVM against eight statistical andmachine
learning models on four NASA datasets. Their results showed that SVM is generally better than,
or at least competitive with other models, e.g., Logistic Regression, Bayesian techniques, etc.
Amasaki et al. [ATMK03] used a Bayesian Belief Network to predict the �nal quality of a soft-
ware product. They evaluated their approach on a closed project, and the results showed that
their proposed method can predict bugs that the Software Reliability Growth Model (SRGM) can-
not handle. Wang et al. [WSC] and Khoshgoftaar et al. [KS02] examined the performance of tree-
based machine learning algorithms on defect prediction. Their results indicate that tree-based
algorithms can generate good predictions. Tao et al. [WL] proposed a Naive Bayes based defect
prediction model, and they evaluated the proposed approach on 11 datasets from the PROMISE
defect data repository. Their experimental results showed that the Naive Bayes based defect
prediction models could achieve better performance than J48 (decision tree) based prediction
models. Jing et al. [JYZ+14] introduced the dictionary learning technique to defect prediction.
Their cost-sensitive dictionary learning based approach could signi�cantly improve defect pre-
diction in their experiments. Wang et al. [WLT16] used a Deep Belief Network (DBN) to generate
semantic features for �le-level defect prediction tasks. In Wang et al.’s work [WLT16], to eval-
uate the performance of DBN-based semantic features as well as traditional features, they built
prediction models by using three typical machine learning algorithms, i.e., ADTree, Naive Bayes,
and Logistic Regression. Their experimental results show that the learned DBN-based seman-
tic features consistently outperform the traditional defect prediction features on these machine
learning classi�ers. Most of the above approaches are designed for �le-level defect prediction.
For change-level defect prediction, Mockus and Weiss [MW00] and Kamei et al. [KSA+13] pre-
dicted the risk of a software change by using change measures, e.g., the number of subsystems
touched, the number of �les modi�ed, the number of added lines, and the number of modi�ca-
tion requests. Kim et al. [KWZ08] used the identi�ers in added and deleted source code and
the words in change logs to classify changes as being fault-prone or not fault-prone. Jiang et al.
[JTK13] and Xia et al. [XLWY16] built separate prediction models with characteristic features
and meta features for each developer to predict software defects in changes. Tan et al. [TTDM15]
improved change classi�cation techniques and proposed online defect prediction models for im-
balanced data. Their approach uses time sensitive change classi�cation to address the incorrect
evaluation introduced by cross-validation. McIntosh et al. [MK18] studied the performance of
change-level defect prediction as software systems evolve. Change classi�cation can also predict
whether a commit is buggy or not [PDS+15], [PP14], [HP19]. InWang et al.’s work [WLT16], they
also compare the DBN-based semantic features with the widely used change-level defect predic-
tion features, and ther results suggest that the DBN-based semantic features can also outperform
change-level features. However, su�cient defect data is often unavailable for many projects and
companies. This raises the need for cross-project bug localization, i.e., the use of data from one
project to help locate bugs in another project.

Cross-Project Fault Prediction: Due to the lack of data, it is often di�cult to build accurate
models for new projects. Recently, more and more papers studied the cross-project defect predic-
tion problem, where the training data and test data come from di�erent projects.

Some studies ([KMT07], [MMT+10], [ZNG+09]) have been done on evaluating cross-project de-
fect prediction against within-project defect prediction and show that cross-project defect pre-
diction is still a challenging problem. He et al. [HPMY13] showed the feasibility to �nd the best
cross-project models among all available models to predict defects on speci�c projects. Turhan
et al. [TMBDS09] proposed a nearest-neighbor �lter to improve cross-project defect prediction.
Zimmermann et al. [ZNG+09] evaluated the performance of cross-project defect prediction on
12 projects and their 622 combinations. They found that the defect prediction models at that time
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could not adapt well to cross-project defect prediction. Li et al. [LHZL17] proposed defect predic-
tion via convolutional neural networks (DP-CNN). Their work di�ers from the above-mentioned
approaches in that they utilize deep learning technique (i.e., CNN) to automatically generate dis-
criminative features from source code, rather than manually designing features which can cap-
ture semantic and structural information of programs. Their features lead to more accurate pre-
dictions. The state-of-the-art cross-project defect prediction is proposed by Nam et al. [NPK13],
who adopted a state-of-the-art transfer learning technique called Transfer Component Analysis
(TCA). They further improved TCA as TCA+ by optimizing TCA’s normalization process. They
evaluated TCA+ on eight open-source projects, and the results show that their approach signif-
icantly improves cross-project defect prediction. Xia et al. [XLWY16] proposed HYDRA, which
leverages a genetic algorithm and ensemble learning (EL) to improve cross-project defect predic-
tion. HYDRA requires massive training data and a portion (5%) of labeled data from test data
to build and train the prediction models. TCA+ [NPK13] and HYDRA [XLWY16] are the two
state-of-the-art techniques for cross-project defect prediction. However, in Wang et al.’s work
[WLNT18], they only use TCA+ as baseline for cross-project defect prediction. This is because
HYDRA requires that the developers manually inspect and label 5% of the test data, while in
real-world practice, it is very expensive to obtain labeled data from software projects, which re-
quires the developers’ manually inspection, and the ground truth might not be guaranteed. Most
of the above existing cross-project approaches are examined for �le-level defect prediction only.
Recently, Kamei et al. [KFM+16] empirically studied the feasibility of change level defect predic-
tion in a cross-project context. Wang et al. [WLNT18] examines the performance of Deep Belief
Network (DBN)-based semantic features on change-level cross-project defect prediction tasks.
The main di�erences between this and existing approaches for within-project defect prediction
and cross-project defect prediction are as follows. First, existing approaches to defect predic-
tion are based on manually encoded traditional features which are not sensitive to the programs’
semantic information, while Wang et al.’s approach automatically learns the semantic features
using a DBN and uses these features to perform defect prediction tasks. Second, since Wang et
al.’s method requires only the source code of the training and test projects, it is suitable for both
within-project and cross-project defect prediction. The semantic features can capture the com-
mon characteristics of defects, which implies that the semantic features trained from one project
can be used to predict a di�erent project, and thus is applicable in cross-project defect prediction.
Deep learning-based approaches require only the source code of the training and test projects,
and are therefore suitable for both within-project and cross-project defect prediction. In the next
session, we explain, based on recent research, how e�ective and accurate fault-prediction models
developed using deep learning techniques are.

Deep Learning in So�ware Fault Prediction: Recently, deep learning algorithms have been
adopted to improve research tasks in software engineering. The most popular deep learning
techniques are: Deep Belief Networks (DBN), Recurrent Neural Networks, Convolutional Neural
Networks and Long Short Term Memory (LSTM), see Table 4.11. Yang et al. [YLX+15] pro-
pose an approach that leverages deep learning to generate new features from existing ones and
then use these new features to build defect prediction models. Their work was motivated by
the weaknesses of logistic regression (LR), which is that LR cannot combine features to generate
new features. They used a Deep Belief Network (DBN) to generate features from 14 traditional
change level features, including the following: number of modi�ed subsystems, modi�ed direc-
tories, modi�ed �les, code added, code deleted, lines of code before/after the change, �les before
and after the change, and several features related to developers’ experience [YLX+15]. The work
of Wang et al. [WLNT18] di�ers from the above study mainly in three aspects. First, they use a
DBN to learn semantic features directly from source code, while Yang et al. use relations among
existing features. Since the existing features cannot distinguish between many semantic code
di�erences, the combination of these features would still fail to capture semantic code di�er-
ences. For example, if two changes add the same line at di�erent locations in the same �le, the
traditional features cannot distinguish between the two changes. Thus, the generated new fea-
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Table 4.11: Common machine learning and deep learning techniques used in software defect
prediction

Techniques De�nition Advantages Drawbacks Ref.

RNN

RNNs are called recurrent because
they perform the same task for
every element of a sequence,
with the output being depended on
the previous computations.

- Possibility of processing
input of any length
- Model size not increasing
with size of the input
- Computation takes into
account historical information

- Slow computation
- Di�culty of accessing
information from a
long time ago
- Cannot consider any future
input for the current state

[WZ18]

LSTM

A long short-term memory (LSTM)
network is a type of RNN model
that avoids the vanishing gradient
problem by adding ’forget’ gates.

- Remembering information
for a long periods of time

- It takes longer to train
- It requires more memory
to train

[DPN+19], [DPN+18]

CNN

CNN is a class of deep neural network,
it uses convolution in place of general
matrix multiplication in at least one
of their layers.

- It automatically detects the
important features without any
human supervision.

- need a lot of training data.
- High computational cost. [LHZL17], [MLZ+16], [PNB18]

Stacked
Auto-Encoder

A stacked autoencoder is a neural
network consist several layers of sparse
autoencoders where output of each hidden
layer is connected to the input of the
successive hidden layer.

- Possible use of pre-trained layers
from another model, to apply
transfer learning
- It does not require labeled inputs
to enable learning

- Computationally expensive
to train
- Extremely uninterpretable
- The underlying math is more
complicated
- Prone to over�tting, though
this can be mitigated
via regularization

[MF19], [TLW17]

DBN DBN is an unsupervised probabilistic
deep learning algorithm.

- Only needs a small labeled dataset
- It is a solution to the
vanishing gradient problem

- It overlooks the structural
information of programs [WLT16]

Logistic
Regression

LR is used to describe data and
to explain the relationship between
one dependent binary variable and
independent variables.

- Easy to implement
- Very e�cient to train

- It cannot combine di�erent
features
to generate new features.
- It performs well only when
input features and output
labels are in linear relation

[KSA+13]

SVM
SVM is a supervised learning model.
It can be used for both regression
and classi�cation tasks.

- Using di�erent kernel function it
gives better prediction result
- Less computation power

- Not suitable for large number
of software metrics [EE08]

Decision Tree
DT is a decision support tool that uses a
tree-like graph or model of decisions
and their possible consequences.

Tree based methods empower
predictive models with high
accuracy, stability and
ease of interpretation.

- Construction of decision tree
is complex [GSR10], [KS02], [WSC]

tures, which are combinations of the traditional features, would also fail to distinguish between
the two changes.

How to explain deep learning results is still a challenging question in the AI community. To
interpret deep learning models, Andrej et al. [KJL15] used character level language models as an
interpretable testbed to explain the representations and predictions of a Recurrent Neural Net-
work (RNN). Their qualitative visualization experiments demonstrate that RNN models could
learn powerful and often interpretable long-range interactions from real-world data. Radford et
al. [RJS17] focus on understanding the properties of representations learned by byte-level recur-
rent languagemodels for sentiment analysis. Their work reveals that there exists a sentiment unit
in the well-trained RNNs (for sentiment analysis) that has a direct in�uence on the generative
process of the model. Speci�cally, simply �xing its value to be positive or negative can generate
samples with the corresponding positive or negative sentiment. The above studies show that
to some extent deep learning models are interpretable. However, these two studies focused on
interpreting RNNs on text analysis. Wang et al. [WLNT18] leverages a di�erent deep learning
model, Deep Belief Networks (DBN), to analyze the ASTs of source code. The DBN adopts dif-
ferent architectures and learning processes from RNNs. For example, an RNN (e.g., LSTM) can,
in principle, use its memory cells to remember long-range information that can be used to inter-
pret data it is currently processing, while a DBN does not have such memory cells. Thus, it is
unknown whether DBN models share the same properties (w.r.t interpretability) as RNNs. Many
studies used a topic model [BNJ03] to extract semantic features for di�erent tasks in software
engineering ([CTNH12], [NNP11], [XZYW12]). Nguyen et al. [NNP11] leveraged a topic model
to generate features from source code for within-project defect prediction. However, their topic
model handles each source �le as an unordered token sequence.

Thus, the generated features cannot capture structural information in a source �le. A just-in-
time defect prediction technique was proposed by Kamei et al. which leverages the advantages
of Logistic Regression (LR) [KSA+13]. However, logistic regression has two weaknesses. First,
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in logistic regression, the contribution of each feature is calculated independently, which means
that LR cannot combine di�erent features to generate new ones. For example, given two features
x and y, if x⇥y is a highly relevant feature, it is not enough to input only x and y because logistic
regression cannot generate the new feature x⇥y. Second, logistic regression performs well only
when input features and output labels are in linear relation. Due to these two weaknesses, the
selection of input features becomes crucial when using logistic regression. The bad selection of
features may result in a non-linear relation for output labels, leading to bad training performance
or even training failure. This severe problem leads some studies to adopt Deep Belief Network
(DBN), which is one of the state-of-the-art deep learning approaches. The biggest advantage of
DBN, as shown in Table 4.11, over logistic regression is that DBNs can generate a more expressive
feature set from the initial feature set. We summarizes in Table 4.11 the most commonly used
machine learning and deep learning techniques in software defect prediction.
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5. Learning to Rank Test Case Prioritization

In Continuous Integration (CI) environments, the productivity of software engineers depends
strongly on the ability to reduce the round-trip time between code commits and feedback on
failed test cases. Test case prioritization is popularly used as an optimization mechanism for
ranking tests by their likelihood in revealing failures. However, existing techniques are usu-
ally time and resource intensive making them not suitable to be applied within CI cycles. This
chapter formulates the test prioritization problem as an online learn-to-rank model based on
foundational results of learning-to-rank from the �eld of Information Retrieval (IR), as de�ned
by Li [Li14] and described in Figure 5.1, and applying reinforcement learning to make the ranking
approach adaptive and suitable to our CI context. Our approach minimizes the testing overhead
and continuously adapts to the changing environment as new code and new test cases are added
in each CI cycle.

Figure 5.1: The test case prioritization problem modeled as a contextual bandit problem with IR
terminology in black, test case prioritization in bold and RL terminology in blue italics.
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5.1 Motivation
Continuous Integration (CI) environments automate the process of building and testing software
where software engineers integrate their code changes at frequent time intervals with the main-
line code base. CI reduces integration problems and shortens release time signi�cantly. However,
CI environments are facing scalability challenges; Amazon is conducting 136, 000 builds per day
[LER18], and Google engineers wait 45 minutes to 9 hours to receive testing results [MGN+17].
These facts introduce new challenges for the testing activities due to (i) the dynamic environ-
ment resulting from frequent code changes and (ii) time constraints since testing should be fast
enough to enable frequent builds and testing of the source code.

In order to reduce the cost of testing, di�erent test optimization techniques such as test priori-
tization and selection have been developed. Test selection aims at reducing testing to the set of
tests a�ected by code changes. However, test selection techniques often underestimate or overes-
timate the needed set of tests making such techniques not attractive because they omit test cases
that could have exposed faults if they were executed [KP02]. Test prioritization aims to reorder
the test cases to maximize early fault detection and can be used for test selection in resource
constrained environments by running the top k ranked tests.

In CI environments, traditional test prioritization techniques can be di�cult to apply. Most tra-
ditional techniques require gathering code coverage data or performing static analysis which
makes such techniques (i) time intensive (e.g., not applicable within CI cycles) and (ii) limited
from a practicality point of view as modern software is often written in di�erent programming
languages.

To address such challenges, existing approaches have to be improved to deal with the dynamic
nature and timing constraints of CI and the heterogeneity of modern software applications. Ap-
plicable test prioritization techniques must be fast enough to avoid delays in the quick build
cycles that justi�es CI.

Recent test prioritization approaches shifted to using historical data about failures and successes
of test cases based on the hypothesis that test cases that have failed in the past are more likely
to fail in the future [KP02, MGS13]. Such techniques are based on machine learning techniques
which do not allow incremental learning but regularly construct new models from scratch mak-
ing them (i) time consuming, (ii) leading to potentially outdated models, and (iii) not well adapted
to changes in the execution environment. In fact, it is frequent to remove test cases from some
CI cycles as they test obsolete features, or to add new test cases to test new features. Moreover,
some test cases might be important at some point of time because they test features important
for the customers and later loose their prevalence because of a testing focus shift. To summarize,
non-adaptive techniques might miss changes in the importance of test cases over others because
they are based on systematic prioritization approaches.

In order to address these challenges, we propose a new test case prioritization approach in CI
based on foundational results of learning to rank from the �eld of information retrieval (IR)
[SMPB11] and reinforcement learning. In particular, we use historical test results and information
about each code change to learn a ranking model used to predict rankings for all test cases. The
model is based on reinforcement learning principles allowing us to design an adaptive method
capable of learning from the execution environment. Adaptiveness means in our context that our
approach can progressively improve its e�ectiveness after each test case’s execution cycle. Unlike
other test prioritization approaches, our technique is able to adapt to situations where test cases
are added or deleted, or when testing priorities change because of changing failure indications
in di�erent code regions as the code matures or as the requirements change. Moreover, our
technique does not require computationally intensive operations during the ranking process. It
uses knowledge about the execution history of the test cases at each CI cycle and updates this
knowledge from feedback provided by a reward function.
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The contributions of this chapter are:

1. Formulation of test prioritization as an online learning-to-rank problem based on rein-
forcement learning principles.

2. Implementation of an online prioritization model without any previous training phase into
the continuous integration process showing that our approach can learn to prioritize test
cases better than traditional techniques after only around 150CI cycles (which corresponds
to around �ve month of data if there is only one CI cycle per day).

3. An empirical evaluation of our approach on an industrial data set from a web-based asset
management software applications gathered from more than three years of continuous
integration. This shows that our technique is applicable in real-world industrial settings.

5.2 Approach

In this section, we introduce our approach for the test case prioritization problem using an online
learning-to-rank method based on reinforcement learning, called Learning-to-Rank Test Cases
(LeaRnTeC).

5.2.1 Problem Formulation

We formulate the test prioritization problem as an online learn-to-rank model using reinforce-
ment learning techniques. The following problem formulation for test prioritization is based on
foundational results of learning-to-rank from the �eld of Information Retrieval (IR) as de�ned by
Li [Li14], and applying reinforcement learning to make the ranking approach adaptive and suit-
able to our CI context. We �rst introduce necessary notations used in the rest of the chapter and
then present the addressed problem in a formal way. Let T be a set of test cases {t1, t2, ..., tN}
to be prioritized at a CI cycle, and C = {c1, c2, ..., cM} a set of CI cycles. In IR, C corresponds
to queries, and T corresponds to documents. For each CI cycle c 2 C the task is to rank the
test cases in T using information about c and T . The ranking is computed by a scoring function
f(c, t) : C ⇥ T ! <. Scores are indicators of the failure likelihood of a test t for a given CI c. In
our context of test cases prioritization within a CI cycle, test cases that are likely to fail based on
previous executions might not fail when the software is bug-free, even if their failure would be
predicted. Therefore, we need to formulate our learning-to-rank model with an online-learning
approach able to adapt and tolerate such test cases continuously. Our formulation of the test
cases prioritization di�ers from most other works in that we consider the continuous adaptation
of the priority scores during the software lifetime as new code changes are added and CI cycles
are executed. A natural �t for our problem are formalizations from reinforcement learning, where
an algorithm learns by trying out actions (e.g., test suites) that generate reward (e.g., evaluation
measures such as test recall) from its environment (e.g., CI test execution environment). Figure
5.1 shows the CI cycle. A developer commits code changes that trigger a CI cycle, the test case
scheduling system generates a prioritized test suite. A subset of the test cases will be executed in
the given order until a time-out is reached (it is usually not feasible to execute all available test
cases within a CI cycle). As the test cases are executed, some will fail and others will not. The
goal of our prioritization/ranking algorithm is to learn an optimal ordered sequence of test cases
that reveal failures as early as possible. Our algorithm uses the information about which test
cases failed to infer feedback about the quality of the learned scores. This problem formulation
translates to an RL problem in which our algorithm based on test cases execution results tries
to maximize a hidden reward that corresponds to some evaluation measures. We assume that
CI cycles are independent, i.e., CI cycles are the result of code changes committed by di�erent
developers. This renders the overall problem to a well-studied type of RL, which is the contextual
bandit problem [Lan08].
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Our online prioritization algorithm can observe feedback only on the list of test cases that have
been executed. Therefore, e�ective learning is possible only if our algorithm experiments with
new prioritization ranks. Hence, our algorithm should balance exploration and exploitation to
improve the prioritization while learning. As is common in RL, we measure the cumulative re-
ward, i.e., the sum of rewards over all CI cycles during learning. We assume an in�nite horizon
problem that includes a discount factor � 2 [0, 1) that gives more weight to immediate rewards
than future rewards. The intuition behind the discount factor is to suppose that there is a 1� �

probability that the CI cycle will terminate at each timestep. Consequently, rewards are weighted
according to the probability that the CI cycle will last long enough. The cumulative reward is
de�ned as a discounted in�nite sum of rewards ri: R =

P1
i=1 �

i�1
ri.

5.2.2 Baseline Algorithm

Our approach is based on a gradient-based policy search algorithm called Dueling Bandit Gra-
dient Descent (DBGD) [YJ09]. DBGD is suitable for online learning of test case ranks because it
can generalize over CI cycles requiring only relative evaluations of the quality of two test cases
lists (two test suites), and can infer such comparison from the execution of the two test suites. In
order to rank a set of test cases T given a CI cycle c, feature vectors � =

�
�1,�2, ...,�|T |

 
that

describe the relationship between T and c are produced. The ranking scores for each test case t
are produced using f(c, t) = w�.

Algorithm 1 summarizes our online learning approach. It requires as input a comparison method
�(T S1, T S2) that compares two test suites, two step size parameters ↵ and �, and an initial
weight vector w0. At each CI cycle ci we generate ranked test suites: one exploitative and one
exploratory. The exploitative test suite is generated from the exploitative weight vector wi, per-
forming best up to CI cycle ci. The exploratory test suite is generated from the exploratory
weight vectorw0

i by movingwi in a random direction ui with a step size �. Both exploitative and
exploratory test suites are compared using �(T S1, T S2). The exploitative weight vector wi is
updated by moving it towards w0

i by a step size ↵ if w0
i is judged to have produced a better test

cases ranking.

Algorithm 1 Test Ranks Learning based on DBGD [YJ09]
1: Input:
2: �(T S1, T S2),↵,�, w0

3: for CI cycle ci(i = 1..I) do
4: Sample unit vector ui uniformly.
5: w

0
i  wi + �ui // generate exploratory w

6: if �(T S(wi), T S(w0
i)) then

7: wi+1  wi + ↵ui // update exploitative w
8: else
9: wi+1  wi

10: end if
11: end for
12: Output
13: wi+1

5.2.3 Comparison Procedure

We present in Algorithm 2 a comparison function �(T S1, T S2) that balances exploration and
exploitation during the online learning process of test cases ranks. We use a method inspired by
✏-greedy, where an RL agent explores actions with probability ✏ and selects greedy action with
probability 1� ✏.
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Our algorithm takes as input two test suites T S1 and T S2 and an exploration rate ✏. For each
rank of the result test suite to be �lled, we pick of the two result lists biased by the exploration rate
✏. From the selected list (test suite), the highest rank test case that is not yet in the combined result
list is added at that rank. The result test suite is then sent to the CI environment for execution.
Each test failure is attributed to that test suite if the test case is in the topN of the test suite, where
N is the total number of failures detected after execution. The exploration rate ✏ 2 [0.0, 0.5]
determines the probability of selecting a test suite to contribute to the result list at each rank. As
✏ decreases, the exploitative list contributesmore test cases, which introduces bias to re-executing
already failed test cases. We partially compensate for this bias since E[tf2] =

n1
n2
⇤E[tf1], where

E[tfi] is the expected number of test failures within the top N of test suite TSi, and ni is the
number of test cases from TSi that were selected in the top N of the result list. This procedure
compensates for the expected number of test failures but leaves some bias in the expected number
of times each test suite is selected. One solution to perfectly compensate for such bias is to make
probabilistic updates, but this would introduce additional noise creating a bias/variance trade-o�.

Algorithm 2 Comparison Function �(T S1, T S2)
1: Input:
2: T S1, T S2, ✏

3: initialize empty result list R
4: for rank r in (1.. | T S1 |) do
5: TS  T S1 with probability ✏, T S2 with probability 1� ✏

6: R[r] �rst element of TS /2 R

7: end for
8: execute the test cases in R and log the failed test cases TF
9: N =| TF |
10: tf1 = tf2 = 0
11: for i in (1..N) do
12: if TF [i] 2 T S1[1 : N ] then
13: tf1 = tf1 + 1
14: end if
15: if TF [i] 2 T S2[1 : N ] then
16: tf2 = tf2 + 1
17: end if
18: end for
19: n1 =| T S1[1 : N ] | \R[1 : N ]
20: n2 =| T S2[1 : N ] | \R[1 : N ]
21: tf2 =

n1
n2
⇤ tf1

22: Output
23: tf1 < tf2

5.2.4 Integration within a CI Process

We integrated our prioritization algorithm into our CI environment, which is based on Gitlab
CI/CD as a build step that extends our current CI pipeline, as illustrated in Figure 5.2

5.3 Experimental Evaluation
In this section, we present an experimental evaluation of our method to address the following
two research questions:

1. RQ1: How e�cient can our approach conduct priority-based test selection?

2. RQ2: How e�ective can our approach conduct test prioritization?
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Figure 5.2: Testing in CI process (adopted from [SGMM17]): LeaRnTec uses test execution results
for learning-to-rank test case prioritization (solid boxes: Included in LeaRnTec, blue
colored boxes: Interfaces to the CI environment).

We �rst de�ne and give an overview of the evaluation metrics used in this work in Section 5.3.1.
Afterward, we introduce the experimental setup in Section 5.3.2. Then, we discuss the results of
our experiments based on the research questions in Section 5.3.3. Finally, a discussion of possible
threats is given in Section 5.3.4.

5.3.1 Evaluation Metrics

The presented evaluation metrics in this section are described in detail in Chapter 2. Our ap-
proach learns priority ranks for all test cases. Our approach, when applied in the CI context,
might terminate before all test cases are executed. This behavior is similar to the behavior of
test selection techniques. We used the following standard commonly used metrics in software
test selection to assess the e�ectiveness of our approach when not all test cases are executed
[PP21, BX16, MSPC19]:
Test recall: Intuitively, the test recall approximates the empirical probability of a particular test
selection strategy catching an individual failure. The formula is described in Chapter 2, Section
2.3.2.

For the evaluation of the e�ectiveness of our test case prioritization approach, we use the stan-
dard evaluation metric:
Average Percentage of Faults Detected (APFD): APFD was introduced in [RUCH99] to mea-
sure the e�ectiveness of test case prioritization techniques. It measures the quality via the ranks
of failure-detecting test cases in the test execution order. It ranges from 0 to 1, with higher
numbers implying faster fault detection. The formula is described in Chapter 2, Section 2.3.2.

Furthermore, we used an extension of the APFD metric:
Normalized Average Percentage of Faults Detected (NAPFD): NAPFD is the ratio between
detected and detectable failures within the test suite T S . The NAPFD of a prioritized test suite
T S 0 is calculated using the formula which is described in Chapter 2, Section 2.3.2.

5.3.2 Experimental Setup

To evaluate the e�ciency and the e�ectiveness of our method, we compare it against four test
case prioritization methods:

1. Elbaum’s Approach [ERP14]: we were able to re-implement the approach since a detailed
algorithm is available,

2. RETECS (Reinforced Test Case Selection) [SGMM17]: the �rst online learning approach,
to the best of our knowledge, using reinforcement learning in the context of test priori-
tization and selection in continuous integration. RETECS considers as input the test case
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duration, historical failure data, and previous last execution. We execute the implementa-
tion of RETECS available in the literature 1 by using ANN, which obtained the best results
compared to with a Tableau representation [SGMM17].

3. COLEMAN (Combinatorial VOlatiLE Multi-Armed BANdit) [PLV20]: we compare the re-
sults (we have the results of the two evaluation metrics APFD and NAPFD but not the
Test Recall metric [PLV20]) on the same projects since they are available, but neither the
implementation of the approach is available, nor the algorithm to re-implement it.

4. Random: we use random test case prioritization as a baseline method.

To account for the in�uence of randomness within the experimental evaluation, all experiments
are repeated 30 times and reported results show the mean, if not stated otherwise. Our approach
is implemented in Python and scikit-learn and the source code, as well as the used data, is avail-
able for peer review 2. All the experiments are performed on an Intel R Xeon R E5 � 2640
v3 with 2.60 GHz CPU, 94GB RAM, running Linux Ubuntu 18.04.1 LTS.

5.3.2.1 Algorithm Con�guration

In all experiments, we initialize the starting weight vector w0 randomly and use the parameter
settings suggested in [YJ09]: � = 1 and ↵ = 0.01. In order to �x the exploration rate ✏ of our
algorithm, we took 1000 CI cycles from our industrial asset management example described in
Section 5.3.2.2. As an evaluation metric of the performance of our approach, we used the test
recall metric de�ned in Equation 2.17.

Figure 5.3: Testing Record Performance over CI Cycles for ✏ 2 {0.1, 0.2, 0.5}.

The results are depicted in Figure 5.3 and show that ✏ = 0.1 would be a good exploration rate
setting balancing a learning process between exploiting historical test cases execution and ex-
ploring in 10% of the times new test cases. Figure 5.3 also shows that our approach is capable
to learn a test case prioritization scheme with a test recall of over 60% after only learning from
150 CI cycles. We set the discount factor � = 0.995. This choice can be justi�ed in two ways:
(i) it is a typically used discount factor when evaluating RL methods [SB18]; a value close to 1
means future rewards have signi�cant weight, and consequently, the algorithm must explore to
perform well. (ii) with � = 0.995 a cumulative performance can be accurately estimated with

1Implementation available at https://bitbucket.org/helges/RETECS
2Implementation available at https://github.com/so1188/test-case-scheduler
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60 5. Learning to Rank Test Case Prioritization

the number of CI cycles in our data sets. Rewards after 1000 iterations have a weight of 1% of
less, consequently, our �nite runs are good approximations of true cumulative performance.

In all our experiments in the following sections, when comparing our approach to the baseline
approaches, we repeat all runs 30 times and report results averaged over folds. We test for signif-
icant di�erences with the baseline approaches using a two-sided student’s t-test with (p < 0.05).

5.3.2.2 Studied Data Sets

We used publicly available industrial data sets from ABB Robotics Norway, used by Spieker et al.
[SGMM17]. The data sets contain CI logs about test executions of two industrial robots: "Paint
Control" and "IOF/ROL". We also used the Google Shared Data set of Test Suite Results (GSDTSR)
presented �rstly by Elbaum et al. [ERP14]. Moreover, we consider eight other systems already
used in the literature and they were used to evaluate COLEMAN [PLV20]. The data sets are
detailed in Table 5.1. The data of the experiment is available online 3. The data sets include test
verdicts, duration of test execution, and their corresponding CI cycles.

Table 5.1: Data Sets Overview

Data Set CI Cycles Test Cases Failures
GSDTSR 259388 5555 3208
Paint Control 20711 1980 4956
IOF/ROL 2392 1941 9289
Druid 286 2391 270
DSpace 6309 211 13413
Deeplearning4j 3410 117 777
Retro�t 3719 206 611
Guava 2011 568 7659
ZXing 961 124 68
Fastjson 2710 2416 940
OkHttp 9919 289 9586
QioTec Asset 10829 36173 8593

We extend our validation on a web-based industrial asset management application (QioTec Asset)
where we used three years of historical CI execution logs to validate our approach further. Table
5.1 gives an overview of the data sets’ structure, where all columns show the total amount of data
in the data set.

5.3.3 Results and Analysis

To quantify the accuracy of test selection and test prioritization, we measure recall at various
cut-o� points, recall at a various percentages of the required time, APFD, and NAPFD, respec-
tively. The approaches under comparison are our approach denoted as "LeaRnTeC" and previous
approaches, de�ned above.

5.3.3.1 RQ1: Priority-based test case selection e�ciency.

We �rst evaluated our approach on the 11 publicly available data sets 3. The results are summa-
rized in Table 5.2. Recall is measured as the percentage of test failures detected if tests ranked
before the cut-o� point are executed, as de�ned in Section 5.3.1. The experiments show that
3Datasets available at https://github.com/so1188/data
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our approach can reach a recall of 0.95 after only executing 13% to 35% of the total available
test cases. For this reason, we extended to a real-world industrial application where we have ac-
cess to all CI logs. We compare our approach against the following methods; Random, Elbaum’s
Approach and RETECS. We could not compare our approach against COLEMAN since the Test
Recall metric was not considered by Lima et al. [PLV20] and therefore we don’t have available
results on the same studied projects. Moreover, neither the source code of COLEMAN [PLV20] is
available nor the algorithm to re-implement it. Figure 5.4 shows average recall across all changes
in the test datasets at varying cut-o� points below 14000 (⇠ 40%) for all the approaches under
comparison for the industrial asset management application. Each point on the curve is average
recall across all changes in the test data sets at that cut-o� point. Our approach has a higher
average recall at all cut-o� points than any other previous approach.

Furthermore, the data sets of the studied projects do not contain a time limit for each CI cycle.
Therefore, a �xed percentage of 50% of the required time is used for the time limit for each CI
cycle. We evaluated how this percentage a�ects the test recall (e.g., the percentage of detected
test failures). We set the time limit of each CI cycle to 50% of the execution time of the overall
test suite T Sci . Figure 5.5 shows the results on the industrial application (QioTec Asset). The test
recall result is averaged over all CI cycles to compare the performance of our approach against
other methods (Random, Elbaum’s Approach, and RETECS). In all the studied test case prioriti-
zation methods, the performance decreases with a lower time limit. Since RETECS is based on
reinforcement learning agents, a decreased time of test case execution implies fewer test cases
can be executed and, therefore, a limited data for learning the actions and their rewards, which
leads to a slower learning process. Our approach shows a good performance under di�erent time
limits.
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Table 5.2 summarizes how many tests need to be selected by each approach to achieve a given
recall average for all studied projects. Our approach requires 5368 (15%) top-ranked tests for the
Industrial Asset Management Application to detect 50% of the test failures, compared to at least
10321 (28%) tests when using the previous approaches. Our approach requires 11937 (33%)
top-ranked tests to detect 75% of the test failures, compared to at least 19763 (55%) tests using
previous approaches. To detect 95% of the test failures, ou method "LeaRnTeC" requires 14469
(40%) top-ranked tests, whether "RETECS" needs about 24235 (67%) tests.

Figure 5.4: Average Recall for the Industrial Asset Management Application.

Figure 5.5: Relative Performance under Di�erent Time Limits.

5.3.3.2 RQ2: Test case prioritization e�ectiveness.

We compare four test case prioritizationmethods with ourmethod. We use the quality indicators:
APFD andNAPFD to assess the e�ectiveness of our approach. We detail NAPFD andAPFD results
regarding the budget of 50% (Table 5.3). Based on Lima et al. [PLV20] (COLEMAN’s approach),
and Spieker et al. [SGMM17] (RETECS’s approach), a time budget of 50% provides a constraint
that allows for better comparison while retaining the inherent di�culty of the problem. The
average is computed using results from 30 independent executions found by each approach in
each of the studied projects. We highlighted the best values in bold. We compare our approach
against the COLEMAN’s approach [PLV20] since the results are available on the same studied
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64 5. Learning to Rank Test Case Prioritization

projects by choosing the best-performing COLEMAN con�guration with the Fitness-Rate-Rank
(FRRMAB) policy, where the FRRMAB policyworkswith a slidingwindow. Elbaum et al. [ERP14]
were among the �rst that used the sliding window principle in test case prioritization. We were
able to re-implement Elbaum’s approach since a detailed description of the algorithm is available.
Therefore, we compare our approach against Elbaum’s approach. Moreover, to compare our ap-
proach with RETECS, we choose the best-performing Network-based RL agent (with Test Case
Failure reward). Table 5.3 shows the APFD and NAPFD results of three approaches compared
with our approach on each of the twelve data sets. Our approach outperforms almost all studied
approaches. We highlighted the best values in bold. For the industrial application (QioTec Asset),
we could not compare our approach with COLEMAN [PLV20] because of the unavailability of
the source code. However, we report the results as provided in [PLV20]. Among all the studied
projects, the Random method has the worst performance. For IOF/ROL, Druid and ZXing, the
approach had the worst performance. To understand this behavior, we analyze the failures de-
tected over the cycles. In those systems, we verify peaks in the failure detection in a few commits
and long periods without failures. Moreover, Druid has the lowest number of CI Cycles among
the systems evaluated, and ZXing has the lowest number of failures reported.
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Summary:

We formulate the test case prioritization problem as an online learn-to-rank model using rein-
forcement learning techniques. Our approach minimizes the testing overhead and continuously
adapts to the changing environment as new code and new test cases are added in each CI cycle.
The experimental evaluation results show fast learning and adaptation of our approach. It shows
a good performance under di�erent time limits. We validated our approach on an industrial case
study showing that over 95% of the test failures are still reported back to the software engineers
while only 40% of the total available test cases are being executed.

5.3.4 Threats of Validity

Internal. The �rst threat to internal validity for LeaRnTec is the in�uence of random decisions
on the results. To mitigate the threat, we repeated our experiments 30 times and reported aver-
aged results, and we tested for signi�cant di�erences with a two-sided student’s t-test. A further
threat is that our approach (LeaRnTeC) can be parameter sensitive, and a set of parameters ap-
propriate for one problem environment may not work as well for another. In our experiments,
the parameters initially chosen for di�erent problems were not changed to allow for better com-
parison. In a real environment, these parameters can be adjusted to adapt the approach to the
speci�c environment. Finally, the existence of faults within our implementation. We approached
this threat by applying established components, such as scikit-learn, within our software.
External. Our evaluation is based on three industrial data sets, which is a limitation regard-
ing the wide variety of CI environments and failure distributions. Two of these data sets are
publicly available, but according to our knowledge, it has only been used in one publication
[SGMM17]. From what we have analyzed, there are no further public data sets available, includ-
ing the required data, especially test verdicts over time. This threat was addressed by executing
our validation on a further real-world industrial application.

5.4 Related Work

Test Failure Prediction: Recently, test failure prediction have been adopted to identify test cases
that are more likely to fail with the goal of reducing the overall testing e�ort. In a study carried in
Facebook, Machalica et al. [MSPC19] considered the e�ects of �aky tests and used change-level,
target-level, and other features to predict test case results. Anderson et al. [ASD15] presented an
approach that predicts each test case as passing or failing before executing these tests. However,
these approaches rely on computationally program analysis techniques, which are challenging to
apply in the CI context and evenmore challenging in the context of polygot software applications
where di�erent programming languages are used (i.e., for each programming language usually
a speci�c program analysis tool and technique is required). Pan and Pradel [PP21] proposed a
supervised model for test suite failure prediction instead of single test case prediction. Their
prediction model uses features of the code change, the test suite, and the development history.
They adopt some of the features from test case failure prediction approaches. However, their
approach relies on discriminating test cases from the test suites based on the learned classi�er
model, which in case of false positives can lead to missing whole test suites that might be fault
revealing. Moreover, their approach is not optimized for the CI environment and needs to be
retrained after changes in the execution environment. In contrast, ourwork could decidewhether
to run the test suite at all, and if this decision is positive, we optimize which test cases to run by
predicting the probability of failure of each test case.

Ranking-based Test Case Prioritization: Some research has considered the test prioritization
as a ranking problem via training machine learning models to provide the probability of failure of
each test case. Recently, Bertolino et al. [BGM+20] evaluated the e�ectiveness of several models:
Random Forest (RF), Multiple Additive Regression Tree (MART), L-MART, RankBoost, RankNet,
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Coordinate ASCENT (CA) for test prioritization. They showed that a pairwaise ranking model
was themost accurate, which is (MART). Previous researchers used Support VectorMachine rank
[Joa02], such as Lachmann et al. [LSN+16], others, like Tonella et al. [TAS06] used Rankboost
[FIS+03] to rank test cases.

These ranking-based approaches used machine learning techniques, assuming that before train-
ing, the full data is available, and thus incremental learning is not supported (i.e., integrating
new data into already constructed models); however, new models are constructed from scratch
[PBGB21]. Especially in CI environments, this can lead to potentially outdated models, which
are very ine�cient and very time-consuming.

In the context of Continuous Integration environment, machine learning techniques are often
infeasible because prediction models need to adapt to new data quickly and continuously, taking
into account changes in the system by each cycle and test suites. In recent years, researchers
have incorporated reinforcement learning methods into their research to deal with this issues,
discussed below.

Reinforcement Learning-based Test Case Prioritization: Several recent studies have used
Reinforcement Learning (RL) for both test prioritization and selection, mostly in the context of
Continuous Integration environments. In these studies, the main aim is to bene�t from the capa-
bilities of RL to integrate new data into already constructed models without retraining them from
scratch and to adapt seamlessly to the dynamic nature of CI, where frequent changes in systems
and test suites occur. Most of those studies create the reinforcement learning environment using
CI logs and train an RL agent through interaction with the environment and rewards. This agent
can then prioritize test cases. More details on the RL technique are discussed in Chapter 2. Most
researchers that used RL to solve test prioritization problems mainly di�er on the choice of the
reward function and the ways the agents learn optimal policy to prioritize and select test cases.

Spieker et al. [SGMM17] were among the �rst that used RL in the context of test case prioriti-
zation and selection in continuous integration. They de�ned 3 reward functions; failure count
reward, test case failure reward, and time-ranked reward, and prioritize test cases according to
their execution time and previous execution and failure history. In contrast, Shi et al. [SXW20]
de�ned one reward function, which was weighted based on the entire execution history. Based
on Spieker et al. [SGMM17] work, Bagherzadeh et al. [BKB21] performed a comprehensive in-
vestigation of RL techniques by guiding the RL agent according to three di�erent rankingmodels:
pairwise, listwise, and pointwise ranking. In a very recentwork, Bertolino et al. [BGM+20] exam-
ined the performance of tenmachine learning algorithms, including three reinforcement learning
(RL) algorithms, for test prioritization in continuous integration. An experimental analysis shows
that Non-RL-based approaches are more a�ected by code changes, while the RL-based algorithms
are more robust, in the context of test case prioritization. Similar to Spieker et al. [SGMM17],
Bertolino et al.’s [BGM+20] application of RL is based on the pointwise ranking model. Their re-
sults show that their speci�c RL con�guration is signi�cantly less accurate than the best ranking
algorithms based on supervised learning (e.g., MART). Furthermore, Bertolino et al. [BGM+20]
evaluated di�erent ML models as policy models. They considered both a multi-layer perceptron
and random forest, and a shallow network for policy model. Rosenbauer et al. [RSM+20] used
a a rule-based evolutionary machine learning method; XCS classi�er system (XCS) [Wil95] as
policy model. In situations where the number of test case features is relatively small, and the
most important features are also known and intuitive, simple ML models (other than Deep Neu-
ral Networks (DNNs)) can be used to achieve better accuracy at a lower cost in terms of training
data and computation time. Other researchers used a Multi-Armed Bandit (MAB) approach for
the test prioritization problem in continuous integration environment. Lima et al. [LMVAa20]
showed that they outperform reinforcement learning with an ANN policy model by evaluating
their approach on eleven case studies. In another work, Lima et al. [LV20] a similar comparison
was performed using a Genetic Algorithm (GA). According to their results, MAB approach can
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perform similarly to GA in terms of percent of faults detected, Root Mean Square Error (RMSE),
and Prioritization Time in 90% of the cases. Our approach, however, continuously learns a rank
for each test case, where a rank corresponds to the failure likelihood of a test for a given CI cycle.
This allows executing test cases by descending priority until a CI time-limit is reached or all test
cases are executed. Moreover, our approach considers the test cases volatility.
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6. Learning to Schedule Test Cases across
Software Components based on Testers’
Domain Knowledge

Testing in Continuous Integration (CI) involves test case prioritization and execution at each
cycle with the goal to accelerate detecting faults and the release of new features. However, ex-
isting prioritization techniques are usually time and resource intensive to be applied within CI
cycles. Moreover, existing techniques do not allow to capture algorithmically the testers’ do-
main knowledge and requirements which are essential to speedup and control the expensive
testing and release process. This chapter formulates the test prioritization problem as a sequen-
tial decision-making process using reinforcement learning. Our approach uses graph neural net-
works to represent the states of our reinforcement learning problem and capture the testers’
domain knowledge as well as their requirements in the form of a probabilistic graph annotated
with the preferences where to focus testing. In a constantly changing environment as new test
cases are added and release requirements are changing, our approach continuously learns to
prioritize error prone test cases.

6.1 Motivation
Modern software evolves constantly as developers change the source code by adding new fea-
tures, refactoring existing code or �xing bugs. Continuous Integration (CI) is a common practice
to allow developers to integrate their work into the mainline code base and regression testing is
a crucial technique to ensure that the changes do not introduce new bugs at each CI cycle.

By default, regression testing executes all test cases including the new added test cases as well
as all previously executed test cases to ensure that new changes do not break existing func-
tionalities. However, the huge volume of test cases and code changes make regression test-
ing very expensive in terms of both time and resources. Intuitively, prioritizing test cases that
might reveal bugs would give the software engineers more time to �x the bugs and speed up
the software release. In this context, test case prioritization techniques have been proposed
[EMR01, LHH07, MHZ+12, MB16, MB17, RUCH99, SZKP15, TAS06, YH12]. Test prioritization
techniques reorder test cases to explore software faults earlier and have been widely adopted in
the industry as by Salesforce.com [BX16] or Microsoft [CDD11].

However, the existing test prioritization techniques have some limitations; (i) they are time and
resource intensive to be executed with CI cycles in an online and dynamic fashion, (ii) do not
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allow to capture algorithmically the testers domain knowledge and preferences, (iii) ignore the
modular architecture of software applications and the relationships between its components.

In fact, a seasoned tester might have knowledge about which components are more error-prone.
Moreover, the testing activities might sometimes require to prioritize some components over
others because of release requirements (e.g., a particular feature or functionality is expected to
be more used than other features).

In order to address these challenges, we propose a new lightweight test case prioritization ap-
proach in CI environments that captures testers requirements and domain knowledge and learns
to schedule test cases across the software components while considering the structure of the
software application. In particular, we formulate the test prioritization problem as a sequential
decision-making process using reinforcement learning. We use graph neural networks to repre-
sent the states of our reinforcement learning problem and capture the structure of the software
application as well the domain knowledge and requirements of the testers. The model is based
on reinforcement learning principles allowing us to design an adaptive method capable of learn-
ing from the execution environment. Adaptiveness means in our context, that our approach can
progressively improve its e�ciency after each test case’s execution cycle. Unlike other test pri-
oritization approaches, our technique is able to adapt to situations where test cases are added or
deleted or when testing priorities change because of changing failure indications in di�erent code
regions as the code matures or as the requirements change. Moreover, our technique does not re-
quire computationally intensive operations during the prioritization process. The contributions
of this chapter are:

1. Formulation of test prioritization as an online sequential decision-making process based on
reinforcement learning principles and using GNNs to capture the structure of the software
applications as well as the domain knowledge and requirements of the testers

2. Implementation of an online prioritization model without previous training phase into
the continuous integration process showing that our approach can learn to prioritize test
cases better than traditional techniques after around 1000 CI cycles (which corresponds to
around 2 month of data if there are only 2 CI cycles per day), described in the Validation
Chapter 7.

3. A theoretical cost model that describes when our prioritization and selection approach is
worthwhile

4. An empirical evaluation of our approach on 2 industrial data sets from 2 software applica-
tions gathered over a range from 1 to 3 years of continuous integration. This shows that
our technique is applicable in real-world industrial settings, described in the Validation
Chapter 7.

6.2 Problem De�nition
Assume we have a software application composed of a set of components as described in Figure
1.1 in Chapter 1. The software components are developed in di�erent programming languages
(e.g Python for the data engineering components, JavaScript for the User Interfaces, Java for
backend work�ows,C++ for some compressing algorithms, etc). For each software component,
a set of test cases has been created, and test cases might be added or modi�ed after each change
of the application’s source code. For each software component we can compute a probability
of failure based on our approach described in Chapter 1. Moreover, the software tester can add
probabilities of execution on the edges connecting the components. Such probabilities can be
extracted (i) after pro�ling how the application’s clients are using the application, or (ii) based
on preferences and domain expertise of the testers. The tester might decide to focus testing on:

1. the components highly to be executed
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2. the components highly to contain faults

3. the components that are both highly to contain faults and highly to be executed by the
application’s clients.

We assume a limited testing budget is available at each CI cycle which does not allow to run all
test cases. The limited testing budget is explained by the following facts:

1. As software components evolve the number of test cases keeps on growing making it prac-
tically impossible to execute all test cases [MGN+17].

2. The test cases for each component are executed on speci�c testing machines which are
pre-con�gured based on the components programming language and setup requirements.
For example, the test cases of a Python-based component are usually not executed on the
same execution machine as the test cases of a JavaScript-based component. Moreover, such
test execution machines might need to be shared between di�erent applications within the
enterprise in order to reduce infrastructure and maintenance cost.

3. The round-trip time between code commits and the feedback about failing test cases should
be reduced as possible to enable quick �x and integration of the newly added source code
with the mainline code base.

Our goal is to schedule the test cases of the software components for execution on the available
test execution machines while satisfying the tester’s preferences and the time constraint for each
CI cycle. In each CI cycle, the test cases in each component are ranked from the highest likely to
fail to lowest ones using our approach described in Chapter 5.

In order to solve our test case scheduling challenge, we formulate our problem to a Parallel
Machine Scheduling Problem (PMSP) [KIL21].

De�nition 8. PMSP is a scheduling problem withm machines, and n jobs with m  n, and:

• wi{i=1,...,n} penalty weight for each job

• pi{i=1,...,n} processing times

• each job j belongs to a job class Cj 2 {1, . . . , c}, with c  n

• if job j is scheduled to process immediately after job j0 on the same machine, then there
is an additional incurred setup cost M[Cj0 , Cj], with Cj0 6= Cj, where M is a matrix with
non-negative entries, and zeros in the diagonal.

The objective is to minimize the total weighted completion time (i.e., learn to dispatch jobs to
machines step by step such that the total weighted completion (WC) time is minimized), which
consists of the waiting, setup, and processing times of all arrived jobs. [KIL21]

We map the test case scheduling problem to the PMSP problem as following:

• jobs: test cases

• job weight wi: weight of the test case ji. The weight of test cases is de�ned in Section 6.4

• processing time pi: execution time of the test case ji

• job class Cj: the software component to which the test case belongs

• setup cost M[Cj0 , Cj]: the weight of the software component to which the test case ji be-
longs. The weight of software component is de�ned in Section 6.4
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PMSP is a well known NP-hard combinatorial optimization problem that has been intensively
studied over the past several decades. Regardless of the growing computing resources and the
available e�cient solvers, many practical problems are computationally expensive and problem
speci�c heuristics and approximations have been deployed [WS11], [Lom65], [GKU97], [Yim99],
[Gup06]. However, such techniques are usually di�cult to apply to dynamic scheduling problems
where the conditions of the problem continuously change since they are designed to compute
the entire schedule assignments for given initial conditions. Consequently, re-execution of these
methods whenever the scheduling problem changes is required making such techniques imprac-
tical because of the expensive time required to �nd a solution. Recent researches have studied the
application of reinforcement learning techniques for solving combinatorial problems and specif-
ically also scheduling problems [ZSC+20]. Unlike analytical methods, reinforcement learning
based learned policies can be evaluated in real-time and consequently enable fast response times
without sacri�cing the quality of the solutions. Recent advances in reinforcement learning have
trained policies on expressive representations [ZSC+20] of the scheduling problem using Graph
Neural Networks (GNN) making the trained policy capable of solving problems of di�erent sizes.

In our context of scheduling the execution of test cases across the software components in each
CI cycles, the scheduling method requires the following properties:

1. It should deal with the dynamic changes happening during the software development and
CI cycles. It should adapt to situations where test cases are added or deleted, and when
testing priorities change because of changing failure indications in di�erent code regions
as the code matures or as the testers’ requirements and preferences change.

2. It should have fast response times to be applied within each CI cycle without adding con-
siderable time overhead. We aim at getting a scheduling solution in less than one minute.

In order to satisfy the above requirements, we propose a novel reinforcement learning based
method for solving PMSP problems, as described in Figure 6.1.

Figure 6.1: Test Case Scheduling Process.

We propose to model the PMSP state-action space as a graph representing the structure of the
problem and learn a GNN policy that operates on it. GNNs o�er properties such as invariance
to node neighborhood sizes, node permutations, and graph sizes. In our case, GNNs allow us to
use the same learned compact network to handle PMSP problems of di�erent sizes. In order to
deal with dynamic changes in the scheduling problem, we represent each separate solution as a
graph. Concretely, we model a sequential solution process of the PMSP problem instance where
at each time t a partial solution is extended, using a �nite horizon Markov Decision Process
(MDP; [Put94]) of T steps. At each time t, the state st corresponds to a partial solution, an
action at corresponds to a feasible extension of st, a reward rt+1 = r(st, at), and a transition
probability p(s0|st, a). The action distribution is set by a policy ⇡(a|s). This leads to a distribution
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over trajectories ⇢ = (hst, at, rt+1i)t=0,...,T�1, p(⇢) = p(s0)
QT�1

t=0 ⇡(at|st)p(st+1|st, at). TheQ-
function is de�ned as

Q(st, at) , E⇢

"
N�tX

i=0

r(si, ai)

����� s0 = st, a0 = at

#
,

where the agent’s objective is to �nd an optimal policy ⇡
⇤(a|s) = argmaxaQ(s, a) [SB18].

We encode the problem instance induced by a partial solution st, as a graphGt = (Vt, Et, Ev
t , Ee

t )
where:

• Ev
t maps nodes to feature vectors

• Ee
t maps edges to feature vectors

Combinatorial optimization problem like the PMSP are sensitive to perturbations in their solu-
tions [HP04]. Search procedures such as Monte Carlo Tree Search (MCTS) have been recently
applied in di�erent �elds such as playing Go [SHM+16] to increase the robustness of the opti-
mization solutions. We improve the solution predicted from our GNN-based policy by guiding a
Monte Carlo Tree Search (MCTS) using our trained policy, which allows us to mitigate possible
degradation of the performance of the learned solutions.

6.3 Method for Solving PMSP
In this section, we present the rationale of our approach. We �rst formulate Markov Decision
Process Model of the PMSP. Second, we design a method to train the scheduling policy based on
a GNN, and third we improve our policy at solution time by using the trained policy to guide
Monte Carlo Tree Search to ensure a more robust solution.

6.3.1 Markov Decision Process Formulation

Graph States:

In PMSP, a state st consists of:

• currently nt pending jobs

• set of m machines

• remaining processing times r(i)t {i=1,...,m}

• last or currently assigned job classes (for computing setup times), (Clast
t,i )i=1,...,m of the

machines

We represent this as a complete bipartite graph Gt = (Vt, Et, Ev
t , Ee

t ), where

• Vt = (Jt,M)

• Jt: sets of job

• M : sets of machine nodes

• Et = Jt ⇥M is the complete set of edges, connecting every job to every machine.

• Ev
t : maps nodes to feature vectors

• Ee
t : maps edges to feature vectors

As described in Figure 6.2, a job ji{i=1,...,nt} 2 Vt, has a feature vector Ev
t (ji) represented as

follows:
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• pi: processing time

• wi: weight

• ai: arrival time

• Cji : the class of the job

Figure 6.2: The GNN representation of a state St with nt waiting jobs andmt machines.

For a machine node mj 2M, j = 1, . . . ,mt, its feature vector is represented as follows:

• Ct,j : the class of the last executed job

• r
(j)
t : the remaining processing time of the machine

The feature of edges eij 2 Et connecting the job ji to a machinemj is:

• M[Ci, Ct,j ] = setuptime

• M[Ci, Ct,j ] = 0 if machinemj was not processing a job.

Actions:

The Actions are speci�ed by the edges that connect jobs to machines. An edge eij corresponds
to assigning a job ji to machine mj at state st at time t when the machine mj is free and we
have at least one waiting job ji. We also allow special null action that executes no assignment to
machines. Each action transitions our Markov Decision Process (MDP) at time t from state st to
st+1, as shown in Figure 6.3.

Reward Function:

The goal is to learn to dispatch jobs to machines step by step such that the totalweighted comple-
tion (WC) time is minimized. We designed a reward function R(st, at) as the quality di�erence
between the partial solution at state st and st+1. We de�ned

R(st, at) = Q(st)�Q(st+1) (6.1)

where Q(.) is the quality measure. We de�ned

Q(st) =
X

i={1,...,↵}

wi ·
X

i={1,...,↵}

pi (6.2)
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Figure 6.3: Example of State Transition.

where ↵ is the number of jobs scheduled for execution until time t at state st. Consequently,

R(st, at) =
X

i={1,...,↵}

wi ·
X

i={1,...,↵}

pi �
X

i={1,...,↵+1}

wi ·
X

i={1,...,↵+1}

pi = �w↵+1p↵+1 (6.3)

meaning that at each time t a cost is incurring since our problem is minimization problem.

6.3.2 Parameterizing the Policy

The MDP formulation in Section 6.3.1 provides a holistic view of the scheduling states and the
sequential solution construction process. This motivates the parametrization of the stochastic
policy ⇡(at | st) as a graph neural network with trainable parameter ✓, i.e. ⇡✓(at | st). Such
parametrization enables a size-agnostic generalization.

Graph Embedding:

Graph Neural Networks (GNN) [BHea18] are a family of deep neural networks able to learn the
representation of graph structured data, by extracting feature embedding of the graph nodes in
an iterative and non-linear manner. Concretely in our approach, we use the Graph Isomorphism
Network (GIN) [XHLJ19] which is a recent implementation of the GNN approach. Given a graph
G(V,E) with node feature vector Xv for v 2 V , GIN executes K iterations to compute an
embedding vector for each node v 2 V , and at each iteration k the embedding h

(k)
v of node

v is expressed as:

h
(k)
v = MLP

(k)
✓k

0

@
⇣
1 + ✏

(k)
⌘
· h(k�1)

v +
X

u2N (v)

h
(k�1)
v

1

A (6.4)

where

• h
(0)
v = Xv

• MLP
(k)
✓k

: a Multi-Layer Perceptron (MLP)
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• ✓k: parametrization of the MLP at iteration k

• ✏: a learnable parameter

• N (v): the neighborhood of node v

An average pooling function [XHLJ19], adapted from [ZSC+20]

L(
n
h
(K)
v : v 2 V

o
) =

1

| V |
X

v2V
h
(K)
v = h

(K)
G (6.5)

takes the embeddings of all nodes as input and outputs a d-dimensional embedding vector for
the whole graph, h(K)

G 2 Rd

Action Selection:

The selection of an action at at state st is decided based on a probability distribution over the
action space fromwhich at can be sampled. This is done via an action selection network that uses
the extracted graph embedding h

(K)
G . An MLP is used to compute the score for each action at

with score(at) = MLP✓⇡([h
(K)
at , h

(K)
G ]), with [.] a concatenation operator. A softmax function is

applied to output a distribution P (at) over the computed scores, which is used to sample actions
for training. During execution a greedy approach is used to pick the actions with maximum
probability.

6.3.3 Learning Algorithm

We use the Proximal Policy Optimization (PPO) algorithm to train the policy network. PPO is an
actor-critic algorithm, where the actor is the policy network ⇡✓ described in Section 6.3.2, and
the critic shares the same GIN network with the actor and uses an MLPMLP✓v with input h(K)

G
and as output an estimate of the cumulative rewards at state st.

Generalization Remarks: The proposed policy network is not bounded by the instance size
| J | and | M | (number of jobs and machines), because all parameters are shared across all
nodes of the graph. This enables generalization of the trained policy to problem instances of
di�erent sizes without retraining [ZSC+20]. Moreover, it allows us to deal with dynamics and
uncertainties such us new jobs or machines breakdown or new machines by adding or removing
nodes or edges into our graph [ZSC+20].

6.3.4 Monte Carlo Tree Search

TheMonte Carlo Tree Search approach is applied at runtime after training the policy as described
in Section 6.3.2. We use this online search technique to optimize the action selection process
based on the states observed in real time. More concretely, we use the Upper Con�dence Bound
applied to Trees (UCT) technique [KS06] together with Q̃-value trained in Section 6.3.2. The
online search procedure samples rollouts iteratively from the root state st until a terminal state
is reached. At each iteration of the online search, the Q-value of all previously traversed state-
action pairs is estimated as

Q
traversed(s, a) =

n(s,a)X

i=1

r̄i

n(s, a)
(6.6)

with

• n(s, a): number of times action a was sampled in state s
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• r̄i: the accumulated reward from state s over all traversings that passed through (s, a)

We select actions during the rollout procedure according to the UCT policy, where new actions
that have not been yet sampled in the current state are selected, and if such action does not exist
we select the one that maximizes:

Q
traversed(s, a) + �

s
log(n(s))

n(s, a)
(6.7)

with n(s) =
P

a n(s, a), and � is the exploration factor.

The UCT algorithm guarantees asymptotic convergence to the optimal decision by sampling each
action in�nitely. In order to improve the practical e�ciency of the online UCT based search, the
search tree is expanded with at most one state at each iteration, and during rollout, if the visited
state is not yet in the tree, the action that maximizes the Q̃-value is chosen.

6.4 Solving Test Case Scheduling
Scheduling the execution of test cases across the software components can be mapped to the
PMSP as follows:

• jobs: test cases

• job weight wi: weight of the test case ji. We will de�ne later the weight based on the
testers’ preferences

• processing time pi: execution time of the test case ji

• job class Cj: the software component to which the test case belongs

• machines: test case execution machines usually for di�erent programming languages and
di�erent languages speci�c execution machines are required

• setup cost M[Cj0 , Cj]: the weight of the software component to which the test case ji be-
longs. We will de�ne later the weight based on the testers’ preferences.

As illustrated in Figure 1.1 in Chapter 1, a software application can be composed of di�erent
software components. The software components might be developed in di�erent programming
languages (e.g., Python for Data Engineering, Java for Backend, JavaScript for User Interface,
etc). The software components are connected to each other via required and provided interfaces
[RBB11]. This creates a call graph describing the interactions between all components. The
software tester can use the diagram in Figure 1.1 in Chapter 1 to add her preferences and domain
knowledge as follows:

• the edges connecting the components can be annotated with the probability of execution,
for example, as depicted in Figure 1.1 starting from component 1 the probability to execute
component 3 is Pexecution(component1, component3). Such a probability can be approx-
imated based on the testers’ domain knowledge of the application, for example, the tester
might know based on pro�ling information that some functionalities are more likely to be
executed than others. Another source to approximate such probability can be the release
requirements.

• the components can annotated with the probability of failure Pfailure(componentj). Such
a probability can be approximated using our approach as presented in Chapter 4. The
probability of failure can be also approximated based on the testers’ assumptions about
the maturity of the software component.
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The preferences and the domain knowledge of the software tester is used to de�ne the weights
of the software components as well as the test cases. The software tester might be interested in
focusing testing on the software components:

1. highly to be executed by the end user after release

2. having the highest probability of failure

3. both highly to be executed by the end user after release and having the highest probability
of failure

Each software component has a set of test cases that are continuously added or updated as new
code is integrated into the components’ main source code. Using the approach presented in
Chapter 5, each test case ti has a rank

rank(ti) 2 (0, 1] (6.8)

In the following sections, we present how we map the conditional probability of execution on
the edges in Figure 1.1 to the probability of execution of each component (Section 6.4.1). Then,
we describe in Section 6.4.2 how the weights of the test cases and the software components are
computed.

6.4.1 Computing the Components Probability of Execution
The graph described in Figure 1.1 can be mapped to a �rst-order Markov Chain [Nor98]. A
Markov Chain is a discrete time stochastic process that processes from one state to another with
certain probabilities represented by graph and a state transition matrix P . Let si be a state of the
Markov Chain which corresponds to the component componenti in Figure 1.1. The transition
matrix P is �lled with the probability of execution annotated at each edge. For the edges that has
not been annotated by the software tester, we assume a uniform distribution across the output
edges of the components.

Consequently, the probability of execution of each component can be approximated by the sta-
tionary distribution ⇡ of the Markov Chain de�ned as follows: Based on the Markov Property:

si+1 = si · P

Recursively,
s1 = s0 · P,

s2 = s1 · P = (s0 · P ) · P = s0 · P 2
,

sn = s0 · Pn
,

The stationary distribution ⇡ is:
⇡ = s0 · Pn;n!1

The stationary distribution can be solved algebraic or via simulation (example simulating from a
multinomial distribution) [Nor98].

6.4.2 Computing the Weights of Test Cases and Components
The computation of the weights for the test cases as well as the software components depends
on the software testers’ preferences:

1. Preference 1: focus on testing the components highly to be executed by the end user after
release

2. Preference 2: focus on testing the components having the highest probability of failure

3. Preference 3: focus on testing the components that are both highly to be executed by the
end user after release and having the highest probability of failure
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Preference 1:

We de�ne the penalty weight of a test case ti that belongs to a component componentj as wti =
(1� rank(ti)) · (1�Pexecution(componentj)), where rankti computed as described in Chapter
5 and Pexecution(componentj) . The rationale behind the weight de�nition is to penalize low-
ranked test cases in the components less likely to fail, which in term means to prioritize the
ranked test cases in the component high likely to fail.

Theweight of a component componentj is de�ned aswcomponentj = 1�Pexecution(componentj),
where Pexecution(componentj) is the probability of execution as described in Section 6.4.1.

Aligned with the PMSP formulation, for two components componentj and componentj0 , where
the execution of componentj0 is triggered after componentj in the graph, as described in Figure
1.1, the setup cost is de�ned as M[componentj , componentj0 ] = wcomponentj0 . The rationale
behind it is that we penalize the execution of test cases from the components with the lowest
probability of execution.

Preference 2:

In analogy to Preference 1, we de�ne:

• wti = (1� rank(ti)) · (1� Pexecution(componentj))

• wcomponentj = 1� Pfailure(componentj)

• M[componentj , componentj0 ] as in Preference 1

Preference 3:

We de�ne the weights as follows:

• wti = (1� rank(ti)) · (1� Pexecution(componentj)) · (1� Pfailure(componentj))

• wcomponentj = (1� Pfailure(componentj))(1� Pexecution(componentj))

• M[componentj , componentj0 ] as in Preference 1

6.5 Theoretical Cost Model

In this section, we present a model for the theoretical analysis of the cost e�ectiveness of our
test case prioritization and scheduling approach to help decide when and whether our approach
is bene�cial in speci�c project and organization during continuous integration.

We use our cost model to reason about two strategies; running test cases (i) scheduled and pri-
oritized by our approach, (ii) based on a random decision.

The model relies on the following parameters: (i) the cost of running the test cases, (ii) the cost of
missing the execution of the failing test cases, and (iii) the failure rate of the executed test cases.

Our model is similar to the work presented in [Her19] where, for example, quality assurance,
initialization, and defect costs were used to create a costmodel for software defect prediction. Our
approach, however, uses a set of parameters suitable for the continuous integration environment
instead of defect prediction. A similar cost model in the context of continuous integration was
proposed by [PP21] but was restricted for the binary classi�cation (fail or pass) of the test suites
assuming that each CI cycle executes one test suite.
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6.5.1 Model Formulation:

Assume at a CI cycle ci, a set of test cases T Si =
�
t1, t2, ..., t|T Si|

 
is scheduled for execution,

where T Si is a subset of the set of available test cases. We de�ne:

• TP : the true positives de�ned as: TP ✓ T Si, where 8ti 2 TP , ti fails at ci.

• FP : the false positives de�ned as: FP ✓ T Si, where 8ti 2 FP , ti did not fail at ci.

• TN : the true negatives de�ned as: TN * T Si, and will not fail if they have been
executed. This represents the set of test cases that we did not schedule for execution at
CI cycle ci, and will not fail if they have been executed at ci

• FN : the false negatives de�ned as: FN * T Si, and will fail if they have been executed.
This represents the set of test cases that we did not schedule for execution at CI cycle ci,
and will fail if they have been executed at ci

Let costti be the cost of execution of a test case ti and costmissing the cost of not executing
failure-inducing test cases at CI cycle ci. We will give in Section 6.5.2 guidelines from literature
to determine both cost parameters.

Our model tries to balance between the cost of execution costexecution =
P

i=1,...,|T Si| costti and
the cost of missing failure-inducing test cases leading to the following cost formulation

costapproach =
X

ti2FP

costti · | FP | +
X

ti2TP

costti · | TP | +costmissing· | FN | (6.9)

We use the random strategy as a baseline for our approach. Our approach tries to approximate
at each CI cycle the true failure rate of the overall available test cases by sampling a subset T Si

of test cases likely to fail. The failure rate is de�ned as

failurerate =
| FN | + | TP |

N
(6.10)

where N =| FN | + | TP | + | TN | + | FP |

For the random strategy, we de�ne

• | TPrandom |= N · (failurerate)2: the probability that the randommodel produces a true
positive is the product of the probability of scheduling a test case for execution and the
probability of seeing an actual failure after execution

• | FPrandom |= N · (failurerate) · (1 � failurerate): the probability that the random
model produces a false positive is the product of the probability of scheduling a test case
for execution and the probability of not seeing an actual failure after execution

• | FNrandom |= N · (1 � failurerate) · (failurerate): the probability that the random
model produces a false negative is the product of the probability of not scheduling a test
case for execution and the probability of seeing an actual failure after execution

Similarly to our cost model, we de�ne the cost of the random model as

costrandom =
X

ti2FPrandom

costti · | FPrandom | +
X

ti2TPrandom

costti · | TPrandom | +costmissing· | FNrandom |

(6.11)

The execution cost of the test cases
P

costti can be approximated to an overall cost costall (for
example 2 person-hours) to simplify both cost Equations 6.9 and 6.11 as follows:

costapproach = costall · (| FP | + | TP |) + costmissing· | FN | (6.12)
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costrandom = costall · (| FPrandom | + | TPrandom |) + costmissing· | FNrandom | (6.13)

Consequently, our approach is bene�cial over the random strategy when

costapproach � costrandom < 0 (6.14)

which reduces to the following boundary condition, meaning when:

costall

costmissing
<

| FN | �N · failurerate · (1� failurerate)

N · failurerate� | FP | � | TP | ,

if | FN | �N · failurerate · (1� failurerate) < 0

costall

costmissing
>

| FN | �N · failurerate · (1� failurerate)

N · failurerate� | FP | � | TP | ,

if | FN | �N · failurerate · (1� failurerate) > 0

6.5.2 Cost Parameters

The cost of running test cases can be approximated by the following factors

• the computational cost of test case runs which depends on the size of the project and
the complexity of test cases. For example, Amazon is conducting 136000 builds per day
[LER18], and Google runs daily 150 million test cases [MGN+17] which corresponds to
millions of dollars on hardware spent only for execution [HTH+16]

• the human cost of developers maintaining the test infrastructure or waiting for the result
of the test case execution to integrate the new source code. At Facebook, around 5% of
the engineers are dedicated to developing and maintaining the CI environment [SDG+16].
[BGZ17] reports that the mean execution time of CI cycles for open source projects are
around 20 minutes

The cost, costmissing of not scheduling failure-inducing test cases for execution can be explained
by the following: it is usually expected for the developers to require more time to �x and lo-
calize faults which have been revealed later after the inducing code changes have been already
integrated into the main source code. Depending on the fault severity, the cost of missing faults
during CI cycle is estimated between 1.5 to 22 person-hours [DR06]. [SBB+02] reports that �nd-
ing faults later than immediately during new code integration can increase the �xing time by
factors between 2 and 100.

6.6 Experimental Validation
Our approach is implemented in Python and scikit-learn and the source code, as well as the used
data, is available for peer review 1. In our experiments, we considered �ve sets of benchmarks
originally proposed by Dunstall and Wirth [DW05a, DW05b] and used by Kramer et al. [KIL21]
to analyze and improve Branch and Bound algorithms to solve PMSP. We selected out of the
studied benchmarks in [KIL21] the ones where it took Branch and Bound algorithms more than
one minute to �nd the solution. All benchmark instances and their corresponding solutions can
be found under [pms]. The benchmark instances were created by Kramer et al. [KIL21, pms] as
follows:
1Implementation available at https://github.com/so1188/test-case-scheduler

81

https://github.com/so1188/test-case-scheduler


82
6. Learning to Schedule Test Cases across Software
Components based on Testers’ Domain Knowledge

• job processing times and weights were randomly drawn from the intervals [pmin, pmax] =
[1, 100] and [wmin, wmax] = [1, 10], respectively

• The family setup times were randomly generated in the range [0, 50]. For each combination
of (n,m, f), 100 instances were created.

In the experimental validation of our scheduling algorithm, we consider its two �avors; (i) by
only using the trained policy for the reinforcement agents, (ii) by applying an online re�nement
of the trained policy using the Monte Carlo Tree Search (MCTS).

We compare our algorithm to:

1. SC: state-of-the-art Mixed Integer Linear Program (MILP) algorithm Set Covering (SC)
based on the reported results from Kramer et al. [KIL21]

2. Zhang: state-of-the-art Deep Reinforcement Learning Job Shop Scheduling algorithm pro-
posed by Zhang et al. [ZSC+20]

For the SC algorithm, we did not run the benchmarks because of the unavailability of the source
code. However, we report the results as provided in [KIL21, pms].

Wemodi�ed the authors’ implementation of the Deep Reinforcement Learning Job Shop Schedul-
ing algorithm proposed by Zhang et al. [ZSC+20] in order to apply it to Parallel Machine Schedul-
ing Problem (PMSP). We represent each schedule as a single list ordered by machines, starting
with an entry for the machine, then entries for the jobs scheduled to that machine.

The results are summarized in Table 6.1. Column gap % represents the average gap between
the found scheduling solution and the best known feasible solution as provided in [pms]. The
scheduling solution is characterized by the makespan (time required for the execution of all jobs).
Column t(s) reports the average computation time. The average of gap % and t(s) for each
benchmark (represented as a row in Table 6.1) is computed over the 100 instances. We trained a
policy for each of the three benchmarks (i) (20, 3, 3), (ii) (20, 8, 5), (iii) (40, 5, 5). The two remain-
ing benchmarks (80, 8, 5) and (80, 12, 5) were used to evaluate the generalization performance
of our algorithm.

Table 6.1: Results on PMSP Benchmarks with and without MCTS

Size SC (MILP) Zhang Ours
without MCTS

Ours
with MCTS

Ours
(50,4, 4)
with MCTS
(Generalization)

(#jobs, #classes, # machines) gap % t(s) gap % t(s) gap % t(s) gap% t(s) gap% t(s)
20, 3, 3 <0.1 ⇠2000 26% ⇠2 20% ⇠2 16% 60
20, 8, 5 <0.1 ⇠2000 23% ⇠2 23% ⇠2 15% 60
40, 5, 5 <0.1 ⇠2800 25% ⇠12 25% ⇠10 15% 60
80, 8, 5 <0.1 ⇠3000 41% ⇠28 - - - - 15% 60
80, 12, 5 <0.1 ⇠3000 59% ⇠28 - - - - 13% 60

As shown in Table 6.1, our trained policy is slightly better than Zhang with comparable average
computation time. Compare to SC, we are at least 280 times faster with an average gap of around
23%. We are able to reduce this gab to 15% by activating our MCTS based solution re�nement
algorithm with a search timeout of 60 seconds.

Next we evaluated the performance of our algorithm in terms of generalizing to large instances.
More speci�cally, we used the policy trained on a (50, 4, 4) scheduling problem with 50 jobs
4 job families and 4 machines to solve (80, 8, 5) and (80, 12, 5) benchmarks. The last column
in Table 6.1 shows that our algorithm is able to extract knowledge from small sized instances to
solve large-scale ones with an average gap of 14% to the best known feasible solution in only one
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minute compared to the 50 minutes required by SC. In summary, our algorithm shows desirable
properties for practical applications.

Summary:

In the experimental validation, we �rst consider our scheduling algorithm by only using the
trained policy for the reinforcement agents. It shows a better performance compared to two
state-of-the-art algorithms. Second, we applied an online re�nement of the trained policy using
Monte Carlo Tree Search. Our scheduling algorithm shows the ability to reduce the gab between
the found scheduling solution and the best known feasible solution to 15% by activating our
Monte-Carlo-Tree-Search (MCTS) based solution re�nement algorithm with a search timeout of
60 seconds. Moreover, our algorithm shows good performance in terms of generalizing to large
instances.

6.6.1 Threats to Validity

A �rst threat is that our approach can be parameter sensitive, and a set of parameters appropriate
for one problem environment may not work as well for another. In our experiments, the param-
eters initially chosen for di�erent problems were not changed to allow for better comparison.
In a real environment, these parameters can be adjusted to adapt the approach to the speci�c
environment. A further threat is that combinatorial optimization problem like the PMSP are sen-
sitive to perturbations in their solutions [HP04]. Search procedures such as Monte Carlo Tree
Search (MCTS) have been recently applied in di�erent �elds such as playing Go [SHM+16] to
increase the robustness of the optimization solutions. We improve the solution predicted from
our GNN-based policy by guiding a Monte Carlo Tree Search (MCTS) using our trained policy,
which allows us to mitigate possible degradation of the performance of the learned solutions.

6.7 Related Work
Reinforcement Learning Applied on Job Shop Scheduling Problems Deep Reinforcement
Learning (DRL) as an end-to-end solution to combinatorial optimization problems has recently
received a lot of attention. Themajority of them are concernedwith solving routing problems (for
example, the travelling salesman problem) [VFJ15, NOST18, KvHW19, WSC+19, LZY20, ZPD20],
graph optimization problems [KDea17, LCK18], and the satis�ability problem (SAT) [SLB+18,
AMW19, YP19]. Scheduling problems, on the other hand, which have numerous real-world ap-
plications, are relatively unexplored, particularly for Job Shop Scheduling Problems (JSSP).

Several existing works investigate simple job scheduling problems, in which jobs are treated as
elementary tasks with no internal operation dependencies, which are required by JSSP. Mao et al.
[MAea16] proposes a DRL agent to learn job scheduling policies for a compute cluster. To capture
the status of resources and jobs, a 2-D image-based state representation scheme is used. Chen
and Tian [CT19] used DRL to learn local search heuristics for a similar problem, where the states
are represented by a Directed Acyclic Graph (DAG) describing the temporal relationships among
jobs in the corresponding schedule. The state representation in these works is hard-bounded by
some factors (e.g., look ahead horizon, size of job queue or slot) and is not scalable to arbitrary
numbers of jobs and machines (resources). This limitation is mitigated in the work of Zheng et
al. [ZGS19], which also uses an image-based representation but with a transfer learning method
to reconstruct the trained policies on problems of varying sizes. Nonetheless, policy transition is
still relatively expensive and inconvenient. Our method, on the other hand, is completely size-
agnostic, and the trained policy can be applied directly to larger problems without the need for
transfer. The work closest to ours is Zhang et al. [ZSC+20], it focuses, however, on the general
job shop scheduling problem and not on the parallel machines scheduling problem.

A DRL method for task scheduling in a cloud computing environment is proposed by Mao et al.
[MSV+19]. The policy network can scale to an arbitrary number of tasks because GNN is used
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to extract the embedding of each task represented as a DAG. The underlying problem, however,
is not JSSP, and the task DAG only describes the necessary temporal dependencies among its
subtasks. Because resource information is encoded as node features, the number of resources is
�xed. In Zhang et al. [ZSC+20] a GNN was used to embed the disjunctive graph with directed
disjunctive arcs re�ecting processing order on each machine and is size-independent in terms of
both jobs and machines. Our GNN, on the other hand, embeds the sequential solution re�nement
process allowing us to sequentially solve the PMSP problem.

A RLmethod combined with GNNs is proposed to accelerate computation in a distributed system
[SGW+20], similar to [MSV+19]. Sun et al. [SGW+20] presented another example of using GNNs
to solve real-world scheduling problems. They used an imitation learning algorithm to solve
robotic scheduling problems in manufacturing.

Combining search algorithms and machine learning techniques can bene�t each other by ei-
ther using search to accelerate learning or learning better models for the search to use, or both.
Waschneck et al. [WRB+18] used RL methods to solve scheduling problems using a multi-agent
cooperative approach. Their experiments, however, did not show any clear advantages over
heuristic algorithms. Chen and Tian [CT19] took a di�erent approach, employing a DQN in the
solution to improve a local search heuristic. Zhuwen et al. [ZQV18] labeled nodes in a graph
using GNN and supervised learning to determine whether they belong to a Maximal Indepen-
dent Set. This prediction was used in a tree search algorithm to �nd the best feasible solution
predicted by the network. Due to superhuman play levels in board games such as Go, Chess,
and Shogi, MCTS combined with RL methods has recently gained a lot of traction [SD17]. Lat-
erre et al. [LFJ+18] integrated MCTS into an RL loop and used ranking rewards to solve the Bin
Packing Problem (BPP) in two and three dimensions. In our work, we also re�ne the solution
approximated by our RL trained policy using a MCTS with a time limit as a stopping criteria.
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This thesis developed a new lightweight test case prioritization in CI environments. Our ap-
proach �rst predicts the fault density of each component to guide the testing e�ort to the compo-
nents likely to contain the largest number of faults. Moreover, it minimizes the test prioritization
overhead through formulating the test case prioritization problem as a computational e�cient
online learn-to-rank model using reinforcement learning techniques. In addition, our approach
developed a test case execution scheduling model that captures the testing requirements as well
as the testers’ domain knowledge and learns to schedule test cases across the software compo-
nents while considering the structure of the software application.

In this Chapter, we experimentally evaluate the goal of our approach in scheduling test cases
across all software components for execution on the available test execution machines while
satisfying the tester’s preferences and the time constraint for each CI cycle. We experimentally
evaluate the ability of our approach to reduce the testing overhead, taking into account the impact
of the probability of failure of each software component and the testers’ domain knowledge on
the e�ectiveness and the e�ciency of the test prioritization, as the results are dependent on
the quality of the tools used (i.e., defects detected by static analysis tools used to predict the
fault density of the software component might be false positive) and they are dependent on the
availability of testers’ domain knowledge.

7.1 Research Questions
We present an experimental evaluation of our method to address the following research ques-
tions:

1. RQ1: How e�cient can our approach conduct priority-based test selection?

• RQ1.1: Does the probability of failure of each software component impact the priority-
based test selection’ e�ciency?

• RQ1.2: Does the domain knowledge impact the priority-based test selection’ e�-
ciency?

2. RQ2: How e�ective can our approach conduct test case prioritization?

• RQ2.1: Does the probability of failure of each software component impact the test
case prioritization’ e�ectiveness?

• RQ2.2: Does the domain knowledge impact the test case prioritization’ e�ectiveness?
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3. RQ3: Is our approach applicable in the CI development context?

To evaluate the e�ciency and the e�ectiveness of our method, we compare it against three test
case prioritization methods:

1. Elbaum’s Approach [ERP14]: this approach uses sliding timewindow to select test suites to
be applied during pre-submit testing by tracking their history, then prioritizes test suites
based on such window to be performed subsequent post-submit testing. Elbaum et al,
were among the �rst that uses this technique in the context of test case prioritization in
continuous integration. We were able to re-implement their approach since a detailed
algorithm is available,

2. RETECS (Reinforced Test Case Selection) [SGMM17]: this approach is the �rst online learn-
ing approach, to the best of our knowledge, using reinforcement learning in the context
of test prioritization and selection in continuous integration. RETECS considers as input
the test case duration, historical failure data, and previous last execution. We execute the
implementation of RETECS available in the literature 1 by using ANN [SGMM17].

3. Random: we use random test case prioritization as a baseline method.

To account for the in�uence of randomness within the experimental evaluation, all experiments
are repeated 30 times, and the reported results show the mean. Our approach is implemented in
Python and scikit-learn and the source code, as well as the used data, is available for peer review
2. All the experiments are performed on an Intel R Xeon R E5�2640 v3with 2.60GHz CPU,
94GB RAM, running Linux Ubuntu 18.04.1 LTS.

7.2 Studied Data Sets
We validate our approach on two Web-based industrial analytical applications, where we had
access to the CI execution history logs for over three years as well as the test cases execution
history. We had also access to static analysis reports that were run on daily nightly builds using
the tool SonarQube 3.

The two studied applications are:

1. QioTec Asset:

• LoC: ⇠ 20 MLoC

• # Test Cases: ⇠ 36K

• # Components: 27

• Programming Languages: Java, Python, Javascript, C++

• Description: a web-based analytical application for ingesting, analyzing and visualiz-
ing industrial assets performance data. The visualization is written in Javascript. The
backend logic is in Java. The data pipelines are in Python, and the asset performance
algorithms are in C++ and Python.

2. QioTec Energy:

• LoC: ⇠ 23 MLoC

• # Test Cases: ⇠ 47K
1Implementation available at https://bitbucket.org/helges/RETECS
2Implementation available at https://github.com/so1188/test-case-scheduler
3https://www.sonarqube.org/
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• # Components: 21

• Programming Languages: Java, Python, Javascript

• Description: a web-based analytical application for the sustainable and energy e�-
cient operation of industrial assets. The visualization is written in Javascript. The
backend logic is in Java. The data pipelines and the recommendation algorithms are
in Python.

The data sets, detailed in Table 7.1, include test verdicts (failures), number of test cases and num-
ber of CI cycles. We also have static analysis metrics computed daily using SonaQube3 for each
of the software components of both studied software applications. Table 7.1 gives an overview
of the data sets’ structure, where all columns show the total amount of data in the data set.

Table 7.1: Data Sets Overview

Data Set CI Cycles Test Cases Failures
QioTec Asset 10829 36173 8593
QioTec Energy 15723 47281 13751

7.3 Results and Analysis

To quantify the accuracy of our approach, we measure recall at various cut-o� points, APFD,
and NAPFD, respectively. The studied evaluation metrics are described in detail in Chapter 2 in
Section 2.3.2.

7.3.1 RQ1: Priority-based test case selection e�ciency.

We evaluated our approach on the two industrial data sets. Table 7.2 summarizes the results
of the test recall over the studied projects. We consider both the probability of failure of each
component and the probability of execution added by the testers. The Test Recall is measured as
the percentage of test failures detected if tests ranked before the cut-o� point are executed, as
de�ned in Section 5.3.1. The experiments show that our approach can reach a recall of 0.95 after
only executing 32% to 43% of the total available test cases. Table 7.2 summarizes howmany tests
need to be selected by each approach to achieve a given recall average for all studied projects. For
the Industrial Asset Management Application (QioTec Asset), our approach requires 3617 (10%)
top-ranked tests to detect 50% of the test failures, compared to at least 10321 (28%) tests when
using the previous approaches. Our approach requires, for the Industrial Asset Energy Applica-
tion (QioTec Energy), 17493 (37%) top-ranked tests to detect 75% of the test failures, compared
to at least 24113 (51%) tests when using the previous approaches. Our method requires 11578
(32%) top-ranked tests for the QioTec Asset project and requires 20330 (43%) top-ranked tests
for the QioTec Energy project to detect 95% of the test failures, whether RETECS needs for both
projects at least about 29787 (63%) tests.

7.3.1.1 RQ1.1: Impact of the probability of failure on the e�ciency of our approach

We further studied the impact of each component’s probability of failure on the e�ciency of test
case prioritization. Table 7.3 summarizes the number of test cases needed to reach a given recall
average. The test recall average for Random, Elbaum’s Approach, and RETECS are the same as in
Table 7.2, since these studied approaches do not consider the probability of failure of each compo-
nent. The experiments show that our approach can reach a recall of 0.95 after executing 49% to
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55% of the total available test cases. In comparison with the previous results, while considering
the probability of failure of each component, we conclude that this information help to improve
the average test recall. However, our approach still stands out in all cases and outperform the
studied approaches.

7.3.1.2 RQ1.2: Impact of the probability of execution on the e�ciency of our approach.

We compare our approach with the previous approaches while not considering the probability of
execution de�ned by testers. Table 7.4 summarizes the results of the test recall over the studied
projects with each approach. Since previous approaches do not consider the software testers’
domain knowledge, the test recall average for Random, Elbaum’s Approach, and RETECS are the
same as represented in Table 7.2. Our approach requires, for the Industrial Asset Energy Applica-
tion (QioTec Energy), 18439 (39%) top-ranked tests to detect 75% of the test failures, compared
to at least 24113 (51%) tests when using the previous approaches. Our method requires 18448
(51%) top-ranked tests for the QioTec Asset project and requires 26950 (57%) top-ranked tests
for the QioTec Energy project to detect 95% of the test failures, whether RETECS needs for both
projects at least about 23928 (63%) tests. In this case, our approach outperforms also the studied
approaches.

7.3.2 RQ2: Test case prioritization e�ectiveness.

We compare three test case prioritization methods with our method. We use the quality indica-
tors: APFD and NAPFD to assess the e�ectiveness of our approach. The average is computed
using results from 30 independent executions found by each approach in each studied projects.
We highlighted the best values in bold. Elbaum et al. [ERP14] were among the �rst that used
the sliding window principle in test case prioritization. We were able to re-implement Elbaum’s
approach since a detailed description of the algorithm is available. Moreover, to compare our ap-
proach with RETECS, we choose the best-performing Network-based RL agent (with Test Case
Failure reward) [SGMM17]. Table 7.5 shows the APFD and NAPFD results of three approaches
compared with our approach on each of the two data sets while considering both probability of
execution and probability of failure of each component. Among the studied projects, the Random
method has the worst performance. Our approach outperforms all studied approaches.

7.3.2.1 RQ2.1: Impact of the probability of failure on the e�ectiveness of our approach.

Table 7.6 summarizes the results of APFD and NAPFD over the studied projects with each ap-
proach. Since previous approaches do not consider the probability of failure of each component,
APFD and NAPFD for Random, Elbaum’s Approach, and RETECS are the same as in Table 7.5.
In comparison with the previous results, described in Table 7.5, our approach has a lower per-
formance while not considering the probability of failure of each component. For example, for
the QioTec Energy application, the APFD decreases from 0.9983 to 0.8371 and NAPFD decreases
from 0.9989 to 0.8094. However, our approach still outperforms all studied approaches.

7.3.2.2 RQ2.2: Impact of the probability of execution on the e�ciency of our approach.

We studied, moreover, if the testers’ domain knowledge and preferences (e.g., probability of ex-
ecution) do impact the e�ciency of our approach, and we compare it to previous approaches.
Table 7.7 shows the APFD and NAPFD results of three approaches compared with our approach
on each of the two data sets. Our approach has a lower performance compared to the results in
Table 7.5, but still stands out in all cases. In addition, we observed a better performance of our
approach compared to the previous results in Table 7.6 where the probability of failure is not
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considered. Thus, we conclude that having the probability of failure of each component without
considering the probability of execution (Table 7.7) could outperform our approach while only
considering the probability of execution, as described in Table 7.6.

7.3.3 RQ3: Is our approach applicable in the CI development context?

Our prioritization approach required for both studied applications an average computation time
of less than a minute. Our scheduling algorithm including the MCTS part was executed with a
timeout of one minute. Consequently, our overall approach required less than two minutes to
recommend the list of test cases to be executed. This time overheadmake our approach applicable
in CI cycles.

Summary:

The probability of failure of each software components and the testers’ domain knowledge im-
pacts the results of our approach since we observe a lower performance while considering all
evaluation metrics (test recall, APFD, and NAPFD). However, our approach still outperforms the
other works. Recent works consider the software application as one single component when ex-
ecuting test cases. However, modern applications are composed of di�erent components which
have di�erent probabilities of failure. This leads to sub-optimal allocation of test cases (mean-
ing test cases could be executed in some of the component while neglecting other components).
Moreover, recent works do not consider the domain knowledge of the software testers. Based on
the testers’ preferences and domain knowledge of the software application, a probability of exe-
cution can be approximated; for example, the tester might know based on pro�ling information
that some functionalities are higher likely to be executed than others. Such a probability helps
to better focus the testing activities and hence improve both the e�ciency and the e�ectiveness
of the test case prioritization. The empirical evaluation of our approach on 2 industrial data sets
from 2 software applications gathered over a range from 1 to 3 years of continuous integration
shows that our technique is applicable in real-world industrial settings.

7.3.4 Threats to Validity

The �rst threat is that our study is dependent on the quality of the static analysis tools, and might
not be repeatable with the same degree of con�dence with other tools. Moreover, it is possible
that static analysis tools do not detect all faults during the development process. In order to
mitigate possible skewness, our hypothesis was that combining the static analysis fault density
with code complexity metrics and code churn metrics would account for faults not identi�ed by
static analysis tools. Furthermore, we experimentally evaluate the performance of our approach
without taking into account the impact of the probability of failure of each software component,
as the results are dependent on the quality of the tools used. The second threat to validity for our
approach is the in�uence of random decisions on the results. To mitigate the threat, we repeated
our experiments 30 times and reported averaged results, and we tested for signi�cant di�erences
with a two-sided student’s t-test. A further threat is that our approach can be parameter sensitive,
and a set of parameters appropriate for one problem environment may not work as well for
another. In our experiments, the parameters initially chosen for di�erent problems were not
changed to allow for better comparison. In a real environment, these parameters can be adjusted
to adapt the approach to the speci�c environment. Our validation was executed on two real-
world industrial applications.
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8. Conclusion

8.1 Summary

This thesis investigates test case scheduling for software testing in the context of Continuous
Integration (CI) environments. We propose a regressive model that predicts the fault density
of each component based on quality metrics and code churn metrics and a classi�cation model
to discriminate faulty from non-faulty components. Both models are used to guide the testing
e�ort to the software components likely to fail. Moreover, we propose methods for test case
prioritization and test case scheduling which utilize Reinforcement Learning (RL) principles. We
formulate the test case prioritization as an online learn-to-rank model based on foundational re-
sults of learning-to-rank from the �eld of Information Retrieval (IR) using reinforcement learn-
ing techniques based on a gradient-based policy search algorithm called Dueling Bandit Gradient
(DBGD). DBGD is suitable for online learning of test case ranks because it can generalize over
CI cycles as it only requires the relative evaluations of the quality of two test case lists (two
test suites) to compute the ranks. The test case scheduling is formulated as a Parallel Machine
Scheduling Problem (PMSP), a well known NP-hard combinatorial optimization problem. For
solving such a combinatorial problem, we formulated the solving process as an RL problem. RL-
based learned policies can be evaluated in real-time and consequently enable fast response times.
Furthermore, we used a Graph Neural Network (GNN) to model the sequential solving process.
We also represented each separate solution as a graph to enable our approach to generalize over
problem instances of di�erent sizes.

The developed approach has been bene�cial in dealing with the dynamic changes happening
during the software development and CI cycles. It adapts to situations where test cases are added
or deleted, and when testing priorities change because of changing failure indications in di�erent
code regions as the codematures or as the testers’ requirements and preferences change. Further-
more, it has fast response times to be applied within each CI cycle without adding considerable
time overhead.

In conclusion, we developed a test case prioritization approach in CI environments that cap-
tures testers’ requirements and domain knowledge and learns to schedule test cases across the
software components. In particular, we formulate the test prioritization problem as a sequen-
tial decision-making process using reinforcement learning. Our approach captures the domain
knowledge as well as the testers’ requirements in the form of a probabilistic graph annotated with
the preferences where to focus testing. Our experimental evaluation results show fast learning
of our approach on two industrial case studies. Our method is language agnostic and does not
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94 8. Conclusion

require access to source code and hence can be integrated as an extension or plugin for existing
CI environments like CircleCI, Gitlab CI/CD, Github actions, etc.

8.2 Future Work
As research is rarely complete, there are also directions for future research in this case. While the
work on test case prioritization and test scheduling using reinforcement learning shows promis-
ing results, there are further steps that can be taken. Our method uses a lightweight set of his-
torical test case metadata for prioritization. Further work should also consider coverage metrics
of test cases during the early stages of development when little failure historical data is avail-
able. This could allow improving the e�ectiveness of our approach. At the same time, this also
increases the complexity of the method in each CI cycle since coverage tools require source code
access, while our current approach is easier to integrate into any existing CI environment. Still,
in a CI environment, the actual tasks to be solved in each cycle are often similar to previous cy-
cles. Thus, future work on re-using the previous CI results should allow for potential speedups
in future cycles. Furthermore, adding information from the execution environment to the re-
inforcement learning environment, can enhance the quality of the test scheduler; for example,
by integrating with software engineering frameworks like Palladio [RBB11] to simulate/consider
hardware environment, network environment, and Third-Party Framework reliability.
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