3 research outputs found

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Trust-based fault detection and robust fault-tolerant control of uncertain cyber-physical systems against time-delay injection attacks

    Get PDF
    Control systems need to be able to operate under uncertainty and especially under attacks. To address such challenges, this paper formulates the solution of robust control for uncertain systems under time-varying and unknown time-delay attacks in cyber-physical systems (CPSs). A novel control method able to deal with thwart time-delay attacks on closed-loop control systems is proposed. Using a descriptor model and an appropriate Lyapunov functional, sufficient conditions for closed-loop stability are derived based on linear matrix inequalities (LMIs). A design procedure is proposed to obtain an optimal state feedback control gain such that the uncertain system can be resistant under an injection time-delay attack with variable delay. Furthermore, various fault detection frameworks are proposed by following the dynamics of the measured data at the system's input and output using statistical analysis such as correlation analysis and K-L (Kullback-Leibler) divergence criteria to detect attack's existence and to prevent possible instability. Finally, an example is provided to evaluate the proposed design method's effectiveness
    corecore