12 research outputs found

    Sampled-Data Control of Invariant Systems on Exponential Lie Groups

    Get PDF
    This thesis examines the dynamics and control of a class of systems furnished by kinematic systems on exponential matrix Lie groups, when the plant evolves in continuous-time, but whose controller is implemented in discrete-time. This setup is called sampled-data and is ubiquitous in applied control. The class of Lie groups under consideration is motivated by our previous work concerning a similar class of kinematic systems on commutative Lie groups, whose local dynamics were found to be linear, which greatly facilitated control design. This raised the natural question of what class of systems on Lie groups, or class of Lie groups, would admit global characterizations of stability based on the linear part of their local dynamics. As we show in this thesis, the answer is---or at least includes---left- or right-invariant systems on exponential Lie groups, which are necessarily solvable, nilpotent, or commutative. We examine the stability of a class of difference equations that arises by sampling a right- or left-invariant flow on a matrix Lie group. The map defining such a difference equation has three key properties that facilitate our analysis: 1) its Lie series expansion enjoys a type of strong convergence; 2) the origin is an equilibrium; 3) the algebraic ideals enumerated in the lower central series of the Lie algebra are dynamically invariant. We show that certain global stability properties are implied by stability of the Jacobian linearization of dynamics at the origin, in particular, global asymptotic stability. If the Lie algebra is nilpotent, then the origin enjoys semiglobal exponential stability. We then study the synchronization of networks of identical continuous-time kinematic agents on a matrix Lie group, controlled by discrete-time controllers with constant sampling periods and directed, weighted communication graphs with a globally reachable node. We present a smooth, distributed, nonlinear discrete-time control law that achieves global synchronization on exponential matrix Lie groups, which include simply connected nilpotent Lie groups as a special case. Synchronization is generally asymptotic, but if the Lie group is nilpotent, then synchronization is achieved at an exponential rate. We first linearize the synchronization error dynamics at the identity, and show that the proposed controller achieves local exponential synchronization on any Lie group. Building on the local analysis, we show that, if the Lie group is exponential, then synchronization is global. We provide conditions for deadbeat convergence when the communication graph is unweighted and complete. Lastly, we examine a regulator problem for a class of fully actuated continuous-time kinematic systems on Lie groups, using a discrete-time controller with constant sampling period. We present a smooth discrete-time control law that achieves global regulation on simply connected nilpotent Lie groups. We first solve the problem when both the plant state and exosystem state are available for feedback. We then present a control law for the case where the plant state and a so-called plant output are available for feedback. The class of plant outputs considered includes, for example, the quantity to be regulated. This class of output allows us to use the classical Luenberger observer to estimate the exosystem states. In the full-information case, the regulation quantity on the Lie algebra is shown to decay exponentially to zero, which implies that it tends asymptotically to the identity on the Lie group

    Resilient Cooperative Control of Networked Multi-Agent Systems

    Get PDF

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Applications

    Get PDF

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications
    corecore