22 research outputs found

    Fault-tolerant distributed computing scheme based on erasure codes

    Get PDF
    Some emerging classes of distributed computing systems, such peer-to-peer or grid computing computing systems, are composed of heterogeneous computing resources potentially unreliable. This paper proposes to use erasure codes to improve the fault-tolerance of parallel distributed computing applications in this context. A general method to generate redundant processes from a set of parallel processes is presented. This scheme allows the recovery of the result of the application even if some of the processes crash

    A performance study of routing protocols for mobile grid environment

    Get PDF
    Integration of mobile wireless consumer devices into the Grid initially seems unlikely due to limitation such as CPU performance,small secondary storage, heightened battery consumption sensitivity and unreliable low-bandwidth communication. The current grid architecture and algorithm also do not take into account the mobile computing environment since mobile devices have not been seriously considered as valid computing resources or interfaces in grid communities. This paper presents the results of simulation done in identifying a suitable ad hoc routing protocol that can be used for the target grid application in mobile environment. The simulation comparing three ad hoc routing protocols named DSDV, DSR and AODV

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry

    Simulation Analysis of New 802.11KT MAC Protocol And IEEE 802.11 MAC Protocol for Grid Topology in MANET Using NS-2

    Get PDF
    This paper compare the performance analysis of newly designed 802.11KT MAC protocol for a mobile ad-hoc network (MANET) communication system which aims to provide low cost, small end to end delay and more throughputs with the existing IEEE 802.11 MAC protocol. Simulation is the main method for evaluating the performance of protocol. It is subjected to comparison of performance of existing IEEE802.11 Mac protocol and new 802.11KT Mac protocol for random topology in MANET. The Adhoc On Demand Distance Vector (AODV) is used as routing protocol with NS-2 simulator. Simulation results indicated that newly designed 802.11KT MAC protocol has better performance than existing IEEE 802.11 MAC protocol

    Checkpointing in hybrid distributed systems

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Implementasi Sentimen Analysis Pengolahan Kata Berbasis Algoritma Map Reduce Menggunakan Hadoop

    Get PDF
    Sentiment analysis is a field of text and information based research. Text documents in this language come from the web about socialization issues. The method used in this study uses algorithmic maps to calculate from a word that will be used to find a meaning in the context of public opinion. The map algorithm reduces the retrieval of data sets and converts them into a data set, data collection of individuals separated into tuples. The stages of the map algorithm reduce reading input data in the form of text stored in HDFS (Hadoop Distributed File System) then it will be processed according to the key and the value has been changed into tuple form. The next step is to process the shuffel and reduce it which will then produce a process from the data set that is processed. Furthermore, the research data uses sentiment analysis by using a map algorithm to reduce the amount of data that is very goo

    Towards self-resource discovery and selection models in grid computing

    Get PDF
    Global computational grids nowadays are suffered from ossification problems due to the following fundamental challenges related to different existing solutions in grid computing: scalability, adaptability, security, reliability, availability and manageability.The management difficulty is due to heterogeneity, dynamicity and locality of the resources within global grid networks.Large-scale grids make the fundamental problem of resource discovery a great challenge.This paper presents a self-resource discovery mechanism (SRDM) that achieves efficient grid resource discovery and takes advantage of the strengths of both hierarchy and decentralized approaches that were previously developed for grid based P2P resource discovery.P2P systems offer potential strengths such as self-organization, self-healing, and robustness to failure or attacks. Unfortunately, the majority of existing Distributed Hash Table (DHT) based P2P overlays are lacking of attributes range queries that are familiar in resource discovery lookups.The proposed model builds an effective distributed hierarchy that providing scalable, decentralized resource discovery and allocation as well as load balancing for distributed computing using large scale pools of heterogeneous computers. Fundamentally, SRDM employs the spatial index and partitions the overlay space to build a distributed quad tree; each computational resource in the network can calculate its Nodepower.Next, it encodes the information about each node’s available computational resources power in the structure of the links connecting the nodes in the network.This distributed encoding is self-organized, with each node managing its in-degree and local connectivity via its available Nodepower.Assignment of incoming jobs to nodes with the freest resources is also accomplished by sampling it

    Towards self-resource discovery and selection models in grid computing

    Get PDF
    Global computational grids nowadays are suffered from ossification problems due to the following fundamental challenges related to different existing solutions in grid computing: scalability, adaptability, security, reliability, availability and manageability.The management difficulty is due to heterogeneity, dynamicity and locality of the resources within global grid networks.Large-scale grids make the fundamental problem of resource discovery a great challenge.This paper presents a self-resource discovery mechanism (SRDM) that achieves efficient grid resource discovery and takes advantage of the strengths of both hierarchy and decentralized approaches that were previously developed for grid based P2P resource discovery.P2P systems offer potential strengths such as self-organization, self-healing, and robustness to failure or attacks. Unfortunately, the majority of existing Distributed Hash Table (DHT) based P2P overlays are lacking of attributes range queries that are familiar in resource discovery lookups.The proposed model builds an effective distributed hierarchy that providing scalable, decentralized resource discovery and allocation as well as load balancing for distributed computing using large scale pools of heterogeneous computers. Fundamentally, SRDM employs the spatial index and partitions the overlay space to build a distributed quad tree; each computational resource in the network can calculate its Nodepower.Next, it encodes the information about each node’s available computational resources power in the structure of the links connecting the nodes in the network.This distributed encoding is self-organized, with each node managing its in-degree and local connectivity via its available Nodepower.Assignment of incoming jobs to nodes with the freest resources is also accomplished by sampling it
    corecore