
Fault-tolerant Distributed Computing Scheme
based on Erasure Codes

Jérôme Lacan

ENSICA
1, place E. Blouin, 31053, Toulouse cedex France

jerome.lacan@ensica.fr

RÉSUMÉ. De nouveaux types de systèmes de calculs répartis tels que les réseaux pair-à-pair ou
les grilles de calculs sont composés de ressources de calculs hétérogènes dont la fiabilité est
également fortement variable. Le travail présenté dans ce papier propose de transposer des
codes correcteurs à effacement dans le domaine des processus pour améliorer la tolérance aux
fautes des systèmes de calculs répartis. La méthode présentée consiste à générer des processus
redondants à partir d’un ensemble de processus. Ce système permet de récupérer le résultat des
calculs réalisés par l’ensemble des processus d’origine et redondants s’exécutant en parallèle
même si certains d’entre eux connaissent des défaillances par arrêt.

ABSTRACT. Some emerging classes of distributed computing systems, such peer-to-peer or grid
computing computing systems, are composed of heterogeneous computing resources potentially
unreliable. This paper proposes to use erasure codes to improve the fault-tolerance of parallel
distributed computing applications in this context. A general method to generate redundant
processes from a set of parallel processes is presented. This scheme allows the recovery of the
result of the application even if some of the processes crash.

MOTS-CLÉS : tolérance aux fautes, calculs répartis, codes à effacement, processus redondants

KEYWORDS: Fault tolerance, distributed computing, erasure codes, redundant processes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Notere’06.

1. Introduction

An increasing number of applications are based on distributed algorithms. These
applications can use an heterogeneous network of computing resources with highly
variable topology and characteristics. The improvement of the fault-tolerance of the
distributed applications is a widely studied problem in this context [CAS 02]. Error-
masking techniques are one of the classical approaches to enhance the fault-tolerance
of distributed applications. In this paper, we introduce an error-masking technique
consisting in adapting the IDA system of Rabin [RAB 89], which disseminates redun-
dant data to improve the data availability in distributed storage systems, to distributed
computing applications. With such a solution, the data will be available despite the
crash of some of the processes/hosts.

This paper presents a method to use similar error correcting codes techniques to
protect a set of distributed processes. The idea consists in defining a set of redundant
processes from a set of given processes so that the failure of some of the given pro-
cesses can be compensated by the redundant processes. The main problem we address
here is how to define redundant processes from a set of processes.

Several powerful error correcting codes perform encoding and decoding operations
with only simple XOR operations. The first step of our work consists then in defining a
condition on an application in order to "mimic" the XOR operation. Intuitively, if a bit
b3 is obtained from two bits b1 and b2 with the XOR operation (i.e. b3 = b1 XOR b2), it is
possible to recover the bit b1 (resp. b2) from b2 and b3 (resp. b1 and b3) with the same
operation. Let us consider now a distributed application partitioned into 2 processes
P1 and P2 with inputs i1 and i2 and outputs o1 and o2. Let us assume that P1 and P2

are two instances of a same sub-application P. To reproduce the XOR scheme, we must
define an operation on the inputs i1 and i2, called Xin(i1, i2), so that the output o1

(resp. o2) can be recovered from o2 and P(Xin(i1, i2)) (resp. o1 and P(Xin(i1, i2))).
The operation performing this recovery is called Xout. The applications supporting
this scheme are called XOR-able applications.

The main idea is presented in the next Section. In Section 3, the general condition
allowing the definition of the concept of XOR-able application is presented and seve-
ral examples of such applications are presented. The classes of error correcting codes
usable in this context are presented in Section 4. Section 5 concludes.

2. Error correcting codes and distributed applications

2.1. Related work

Few work have made the connection between Error correcting codes and distribu-
ted or parallel applications.

The Algorithm-Based Fault-Tolerance (ABFT) techniques [HUA 84] was introdu-
ced for parallel processors by Huang and Abraham as a means of error protection for



Distributed Computing and Erasure Codes 3

parallel matrix operations. The idea was to introduce checksums to provide error de-
tection and in some cases, error correction. This approach can be applied efficiently
for matrix-vector multiplication and for decompositions QR and LU .

In the domain of the consensus problem, [MOS 01] proved that if there exists a
"relation" between the outputs of the processes, then the consensus problem can be
solved for these processes despite a crash of some of them. The connection with error
correcting codes is established in [MOS 02].

2.2. Context

The principle of some emerging classes of distributed computing systems, such
peer-to-peer or grid computing systems, is to connect a wide variety of computer
types and computing resources to create vast "virtual" reservoirs of computers ser-
ving geographically widely separated users. These computing resources range from
desktop workstations to massively parallel processors. However, the heterogeneity of
the resources makes the performance of the global system highly variable. Classically,
this fault-tolerance is ensured by replicating the processes. Several general replication-
based strategies were classified to be adapted to the characteristics of the applications
and the distributed systems [POW 94].

A distributed computing system has many similarities with distributed storage sys-
tems. Indeed, the problem of the availability of the hosts also arises in distributed sto-
rage systems. It can be solved by using data dissemination schemes based on error
correcting codes. The idea, proposed by Rabin [RAB 89], consists in splitting the data
into k blocks which are encoded with an erasure code (i.e. an error correcting code
designed for the erasure channel) to produce a set of n blocks disseminated on n hosts.
If the erasure code is optimal, the data is available as long as k hosts among the n ones
are alive.

The question of the applicability of such a scheme in distributed computing sys-
tems is then asked. In fact, a distributed computing system can be considered as a
system providing input data to remote hosts and receiving output data from these
hosts. With this definition, a distributed storage system is simply a distributed compu-
ting system where, on each host, the input data are equal to the output data. A natural
way to generalize the fault-tolerant scheme is then to define a code such that 1) the
encoding operation processes a vector of input data to generate redundant input data
2) the distributed processors process input data to produce output data 3)the decoding
operation processes output data to produce the output data corresponding to the initial
input data. Such a scheme is illustrated in Figure 1. However, compared to classical
utilizations of error correcting codes, the problematic differs in several points. For
example, by definition, the data are modified by the processes (input and output data
differ). Moreover, the set of distributed applications can not be specified in terms of
input and output alphabets (which can be different). The set of applications supporting
such a scheme is formally defined in Section 3.



4 Notere’06.

Figure 1. Fault-tolerant scheme in distributed computing systems

3. XOR-able applications

To define a general strategy to apply error correcting codes techniques to a maxi-
mum of applications, we propose in this Section to define an XOR-like operation for
processes. Note that the goal of this definition is to propose a general but simple me-
thod to define redundant processes. It is clear that this definition can be generalized
to applications which does not verify all the hypotheses. Let A be an application par-
titioned into k independent processes P1, . . . , Pk. We assume that all the processes
perform the same operation, denoted by P, from a set of inputs I to a set of outputs O.
Therefore, for any 1 ≤ t ≤ k, each process Pt produces the output ot = P(it) from
the input it). The output of the application A is then the vector (o1, . . . , ok).

Definition 1 The application A is XOR-able if there exists a function :

Xin : Ik −→ I

and a set of k functions X
(1)
out, . . . , X

(k)
out :

X
(t)
out : Ok −→ O such that for any 1 ≤ t ≤ k,

X
(t)
out(o1, . . . , ot−1, P(Xin(i1, . . . , ik)), ot+1, ok) = ot.

Xin denotes the function processing input data and Xout denotes the function proces-
sing output data.

A first class of XOR-able applications are the applications such that P is a linear
application. Indeed, let us consider an application A partitioned into k processes Pt :

Pt :
{

I −→ O
it −→ ot = P(it)

such that P(a.i+ b.i′) = a.P(i)+ b.P(i′), where a and b are any element of a given
field and where i and i′ are any element of I .



Distributed Computing and Erasure Codes 5

Proposition 1 The linear application A defined above is XOR-able . Xin and X
(t)
out,

for 1 ≤ t ≤ k, can be defined as follows :∣∣∣∣∣∣
Xin : (i1, . . . , ik) −→ Xin(i1, . . . , ik) =

∑
t=1...,k it and

X
(t)
out :

(o1, . . . , ot−1, P(Xin(i1, . . . , ik)), ot+1, . . . , ok) −→
P(Xin(i1, . . . , ik))−

∑
u=1,...,k;u 6=t ou

This proposition can be easily proved by considering that P(Xin(i1, . . . , ik)) is equal
to

∑
t=1...,k P (it) since P is a linear application. Moreover, by definition, ot = P (it)

for t = 1, . . . , k. It follows that P(Xin(i1, . . . , ik))−
∑

u=1,...,k;u 6=t ou is equal to ot.

A famous example of distributed linear applications is [KOR 01] where the main
task of the distributed processes consists in performing Discrete Fourier Transforms,
which are linear applications. Several more complex applications, e.g. related to li-
near algebra, can be considered as XOR-able applications (e.g. computing the inverse
of k nonsingular square matrices, computing the determinant of several nonsingular
matrices). Another class of XOR-able applications are some classical cryptographic
operations such the operation P (x) = gx%p. Actually, even if the way to express a
given distributed application as an XOR-able application is not always direct, it ap-
pears that this technique can be applied to numerous applications (or sometimes on
some parts of these applications).

4. Error correcting codes for XOR-able applications

We consider here that the distributed processes crash or provide a correct result.
The corresponding channel in terms of error correction is then the erasure channel. By
construction, the XOR-able applications reproduce the scheme of the Single Parity
Check (SPC) codes which protects k symbols with a additional symbol defined as
the opposite of the sum of the k first symbols. It follows that this codes and all the
codes derived from SPC can be used here. For example, a product code of several
SPC, which reaches a high level of performance in term of correction capability (see
[KOU 02]), can be direcly used to protect XOR-able applications. Note that these
codes are able to correct more than one error per block.

More generally, any binary linear code whose the decoding only uses binary sums
can be used for Several classical classes of binary linear error correcting codes can be
used in this context. Reed-Muller, LDPC and "rateless" codes [LUB 02] belong to this
class of codes.

5. Conclusion

This paper has presented a fault-tolerant distributed computing scheme based on
error correcting codes. This scheme allows supporting the crash of some nodes. To
apply error correcting codes concepts to processes, the notion of XOR-able applica-



6 Notere’06.

tion was introduced and several examples of XOR-able applications were presented.
Several classical error correcting codes were proposed to be used in this context.

Several problems are opened by this work. The first one is to verify whether it is
possible to apply the proposed fault-tolerant scheme to given distributed applications
such that, for example, classical matrix operations. Another problem concerns error
correcting codes and more precisely the construction of efficient codes for distribu-
ted computing. Finally, the implementation of the fault-tolerant scheme in distributed
systems opens several problems related to the consensus, the distributed decoding
strategy or the dynamic management of redundant computing nodes.

Acknowledgments

The author thanks Tanguy Pérennou, Jérôme Fimes, Michel Salaün, et al. for their
comments and suggestions.

6. Bibliographie

[CAS 02] CASANOVA H., « Distributed Computing Research Issues in Grid Computing »,
Quarterly Newsletter for the ACM Special Interest Group on Algorithms and Computation
Theory (SIGACT News), vol. 33, no 2, 2002.

[HUA 84] HUANG K. H., ABRAHAM J. A., « Algorithm-based fault tolerance for matrix ope-
rations », IEEE Trans. on Computers, vol. C-33, 1984, p. 518-528.

[KOR 01] KORPELA E., WERTHIMER D., ANDERSON D., COBB J., LEBOFSKY M.,
« SETI@home :Massively Distributed Computing for SETI », Computing in Science and
Engineering, vol. 3, no 1, 2001, p. 78-83.

[KOU 02] KOUSA M., « A novel approach for evaluating the performance of SPC product
codes under erasure decoding », IEEE Transactions on Communications, vol. 50, no 1,
2002, p. 7 - 11.

[LUB 02] LUBY M., « LT Codes », IEEE Symposium on Foundations of Computer Science,
2002, p. 271-280.

[MOS 01] MOSTEFAOUI A., RAJSBAUM S., RAYNAL M., « Conditions on Input Vectors
for Consensus Solvability in Asynchronous Distributed Systems », ACM Symposium on
Theory of Computing (STOC’01), ACM, jul. 2001, p. 153-162.

[MOS 02] MOSTEFAOUI A., RAJSBAUM S., RAYNAL M., « Asynchronous Interactive
Consistency and its Relation with Error-Correcting Codes », ACM Symposium on Prin-
ciples of Distributed Computing (PODC-02), jul. 2002, page 253.

[POW 94] POWELLS D., « Distributed fault-tolerance - Lessons learnt from Delta 4 », IEEE
Micro., vol. 14, no 1, 1994, p. 36-47.

[RAB 89] RABIN M. O., « Efficient dispersal of information for security, load balancing, and
fault tolerance », J. ACM, vol. 36, no 2, 1989, p. 335–348, ACM Press.


