6 research outputs found

    Optimal channel allocation with dynamic power control in cellular networks

    Full text link
    Techniques for channel allocation in cellular networks have been an area of intense research interest for many years. An efficient channel allocation scheme can significantly reduce call-blocking and calldropping probabilities. Another important issue is to effectively manage the power requirements for communication. An efficient power control strategy leads to reduced power consumption and improved signal quality. In this paper, we present a novel integer linear program (ILP) formulation that jointly optimizes channel allocation and power control for incoming calls, based on the carrier-to-interference ratio (CIR). In our approach we use a hybrid channel assignment scheme, where an incoming call is admitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as well as that of the new call, will be above a specified value. Our formulation also guarantees that the overall power requirement for the selected channel will be minimized as much as possible and that no ongoing calls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49 cell environment with 70 channels to investigate the effect of different parameters such as the desired CIR. The results indicate that our approach leads to significant improvements over existing techniques.Comment: 11 page

    Optimal channel assignment and power control in wireless cellular networks

    Get PDF
    Wireless mobile communication is a fast growing field in current telecommunication industry. In a wireless cellular network, channel assignment is a mechanism that assigns channels to mobile users in order to establish a communication between a mobile terminal and a base station. It is important to determine an optimal allocation of channels that makes effective use of channels and minimizes call-blocking and call-dropping probabilities. Another important issue, the power control, is a problem of determining an optimal allocation of power levels to transmitters such that the power consumption is minimized while signal quality is maintained. In wireless mobile networks, channels and transmitter powers are limited resources. Therefore, efficient utilization of both those resources can significantly increase the capacity of network. In this thesis, we solve such optimizations by the hybrid channel assignment (HCA) method using integer linear programming (ILP). Two novel sets of ILP formulation are proposed for two different cases: Reuse Distance based HCA without power control, and Carrier-to-Interference Ratio based HCA combined with power control. For each of them, our experimental results show an improvement over other several approaches

    Network capacity and quality of service management in F/TDMA cellular systems

    Get PDF
    As a consequence of rapidly increasing mobile communications, efficient utilization of the scarce radio resources becomes one of the most important issues in the system evolution. Increase of the system capacity has been investigated in two ways. The first way is to replace the fixed channel allocation (FCA), with the more efficient dynamic channel allocation (DCA). The second way is to utilize those traffic channels not being used by voice services to provide a packet data service, like general packet radio service (GPRS) and cellular digital packet data (CDPD). In this thesis, the author have proposed two DCA schemes and developed an analysis method to investigate the GPRS impact on the GSM voice services. In addition, the GPRS downlink performance is investigated and some guidelines or principles for GPRS network planning have been presented. In the proposed DCA algorithms, the effect of the channel allocation on existing calls is considered by the evaluation of the call outage rate or a cost function. In the first proposed algorithm, in order to evaluate the call outage caused by those candidate channels, a method of estimating the average signal to interference ratio (SIR) variation of on-going calls due to the assignment of a coming call has been developed. This algorithm improves the capacity or QoS performance compared with the first available and maximum SIR schemes. In the second proposed algorithm, a cost function has been introduced to estimate the cost of the assignment of a candidate channel. The performance evaluation shows that by using the cost-function for channel pre-selection the problem of high intracell handover rate for the first available based scheme can be decreased to an adequate level and the time of the call set-up can be shortened. An analysis method to calculate the outage probability of the GSM-GPRS network for both the non-frequency hopping and frequency hopping systems has been presented to investigate the GPRS impact on GSM voice services. It is found that: GPRS affects more on the QoS of voice services of the network with small reuse factor; GPRS will reduce the cell service area, but the reduction percentage of the cell service area for the system with small reuse factor is higher than that for the system with large reuse factor; those channels unused by voice services might not all be used for carrying GPRS traffic; the number of unused voice channels which can be allocated to GPRS depends on the difference between the outage level of the existing GSM network and the maximum acceptable level. From final part of this work, it is found that: GPRS capacity performance in downlink is quite different from that in uplink because of the difference in the transmission protocols; multiple-slot allocation does not show a gain of the mean throughput neither a decrease on the mean delay compared to single slot allocation. This result is different from the result of the uplink performance. In multi-rate services, the multi-slot services significantly increase the delay of the single-slot service, consequently, a control of the multi-slot services is needed.reviewe

    Integrated channel assignment and power control in cellular networks using hill-climbing approach.

    Get PDF
    Recent year\u27s incredible success and exponential growth of wireless cellular network services have necessitated careful management of radio resources to improve system capacity. Mainly due to the insufficiency of radio spectrum, reuse or sharing of radio frequency must be considered. In practical, the sharing of radio frequency introduces interferences among users, which in turn limit the system capacity. On the other hand, control of transmitter power can suppress co-channel interference, adjacent channel interference and limits the consumption of power. Thus channel assignment and power control are two effective means in wireless cellular networks and they are highly correlated to each other. Most of the existing papers have focused on optimizing the assignment of channels assuming that the allocation of transmitter power is known and fixed or vice-versa. In this thesis, we study the integration of channel assignment and power control simultaneously to increase the network capacity and throughput. We have proposed a new channel assignment approach, called HCA-PC (Hybrid Channel Assignment + Power Control) using dynamic reuse distance concept to optimize the channel assignment. We develop a Hill-climbing approach with random restart strategy, using an efficient problem representation and a fitness function that optimizes channel assignment and power control in the cellular network. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .V52. Source: Masters Abstracts International, Volume: 44-03, page: 1392. Thesis (M.Sc.)--University of Windsor (Canada), 2005
    corecore