6,207 research outputs found

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Ring oscillator clocks and margins

    Get PDF
    How much margin do we have to add to the delay lines of a bundled-data circuit? This paper is an attempt to give a methodical answer to this question, taking into account all sources of variability and the existing EDA machinery for timing analysis and sign-off. The paper is based on the study of the margins of a ring oscillator that substitutes a PLL as clock generator. A timing model is proposed that shows that a 12% margin for delay lines can be sufficient to cover variability in a 65nm technology. In a typical scenario, performance and energy improvements between 15% and 35% can be obtained by using a ring oscillator instead of a PLL. The paper concludes that a synchronous circuit with a ring oscillator clock shows similar benefits in performance and energy as those of bundled-data asynchronous circuits.Peer ReviewedPostprint (author's final draft

    Cybersecurity Methods for Grid-Connected Power Electronics

    Get PDF
    The present work shows a secure-by-design process, defense-in-depth method, and security techniques for a secure distributed energy resource. The distributed energy resource is a cybersecure, solar inverter and battery energy storage system prototype, collectively called the Cybersecure Power Router. Consideration is given to the use of the Smart Green Power Node for a foundation of the present work. Metrics for controller security are investigated to evaluate firmware security techniques. The prototype\u27s ability to mitigate, respond to, and recover from firmware integrity degradation is examined. The prototype shows many working security techniques within the context of a grid-connected, distributed energy resource. Further work is expected in the Cybersecure Power Router project. Consideration is also provided for the migration of the present research and the Smart Green Power Node to realize a pre-production prototype

    Energy Management via PI Control for Data Parallel Applications with Throughput Constraints

    Get PDF
    International audienceThis paper presents a new proportional-integral (PI) controller that sets the operating point of computing tiles in a system on chip (SoC). We address data-parallel applications with throughput constraints. The controller settings are investigated for application configurations with different QoS levels and different buffer sizes. The control method is evaluated on a test chip with four tiles executing a realistic HMAX object recognition application. Experimental results suggest that the proposed controller outperforms the state-of-the-art results: it attains, on average, 25% less number of frequency switches and has slightly higher energy savings. The reduction in number of frequency switches is important because it decreases the involved overhead. In addition, the PI controller meets the throughput constraint in cases where other approaches fail

    Flexible time-triggered protocol for CAN: new scheduling and dispatching solutions

    Get PDF
    One of the possibilities to build robust communication systems with respect to their temporal behaviour is to use autonomous control based on the time-triggered paradigm. The FTT-CAN - flexible time-triggered protocol, relies on centralised scheduling but makes use of the CAN native distributed arbitration to reduce communication overhead. There, a planning scheduler is used within a master node to reduce the scheduling run-time overhead. On-line changes to the communication requirements can then be made under guaranteed timeliness. In addition FTT-CAN also allows an efficient combination of both time-triggered and event- triggered traffic with temporal isolation. In this paper, recent evolutions of the initial protocol definition concerning transmission of synchronous and asynchronous messages are presented. These consist in a time division of the elementary transmission window which optimises the available bandwidth for asynchronous messages, keeping the timeliness of synchronous messages without jeopardising their transmission jitter. A novel solution for the planning scheduler is also presented. It consists in an FPGA-based coprocessor which implements the planning scheduler technique without imposing overhead to the arbiter CPU. With it, it is possible to reduce strongly the plan duration thus allowing on-line admission demanded by system elements and, also, to extend the protocol application to high-speed networks
    • …
    corecore