14,110 research outputs found

    Using treemaps for variable selection in spatio-temporal visualisation

    Get PDF
    We demonstrate and reflect upon the use of enhanced treemaps that incorporate spatial and temporal ordering for exploring a large multivariate spatio-temporal data set. The resulting data-dense views summarise and simultaneously present hundreds of space-, time-, and variable-constrained subsets of a large multivariate data set in a structure that facilitates their meaningful comparison and supports visual analysis. Interactive techniques allow localised patterns to be explored and subsets of interest selected and compared with the spatial aggregate. Spatial variation is considered through interactive raster maps and high-resolution local road maps. The techniques are developed in the context of 42.2 million records of vehicular activity in a 98 km(2) area of central London and informally evaluated through a design used in the exploratory visualisation of this data set. The main advantages of our technique are the means to simultaneously display hundreds of summaries of the data and to interactively browse hundreds of variable combinations with ordering and symbolism that are consistent and appropriate for space- and time- based variables. These capabilities are difficult to achieve in the case of spatio-temporal data with categorical attributes using existing geovisualisation methods. We acknowledge limitations in the treemap representation but enhance the cognitive plausibility of this popular layout through our two-dimensional ordering algorithm and interactions. Patterns that are expected (e.g. more traffic in central London), interesting (e.g. the spatial and temporal distribution of particular vehicle types) and anomalous (e.g. low speeds on particular road sections) are detected at various scales and locations using the approach. In many cases, anomalies identify biases that may have implications for future use of the data set for analyses and applications. Ordered treemaps appear to have potential as interactive interfaces for variable selection in spatio-temporal visualisation. Information Visualization (2008) 7, 210-224. doi: 10.1057/palgrave.ivs.950018

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users

    Improving Big Data Visual Analytics with Interactive Virtual Reality

    Full text link
    For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.Comment: 6 pages, 8 figures, 2015 IEEE High Performance Extreme Computing Conference (HPEC '15); corrected typo

    A Holistic Approach to Log Data Analysis in High-Performance Computing Systems: The Case of IBM Blue Gene/Q

    Get PDF
    The complexity and cost of managing high-performance computing infrastructures are on the rise. Automating management and repair through predictive models to minimize human interventions is an attempt to increase system availability and contain these costs. Building predictive models that are accurate enough to be useful in automatic management cannot be based on restricted log data from subsystems but requires a holistic approach to data analysis from disparate sources. Here we provide a detailed multi-scale characterization study based on four datasets reporting power consumption, temperature, workload, and hardware/software events for an IBM Blue Gene/Q installation. We show that the system runs a rich parallel workload, with low correlation among its components in terms of temperature and power, but higher correlation in terms of events. As expected, power and temperature correlate strongly, while events display negative correlations with load and power. Power and workload show moderate correlations, and only at the scale of components. The aim of the study is a systematic, integrated characterization of the computing infrastructure and discovery of correlation sources and levels to serve as basis for future predictive modeling efforts.Comment: 12 pages, 7 Figure

    GeoLens: enabling interactive visual analytics over large-scale, multidimensional geospatial datasets

    Get PDF
    2015 Spring.Includes bibliographical references.With the rapid increase of scientific data volumes, interactive tools that enable effective visual representation for scientists are needed. This is critical when scientists are manipulating voluminous datasets and especially when they need to explore datasets interactively to develop their hypotheses. In this paper, we present an interactive visual analytics framework, GeoLens. GeoLens provides fast and expressive interactions with voluminous geospatial datasets. We provide an expressive visual query evaluation scheme to support advanced interactive visual analytics technique, such as brushing and linking. To achieve this, we designed and developed the geohash based image tile generation algorithm that automatically adjusts the range of data to access based on the minimum acceptable size of the image tile. In addition, we have also designed an autonomous histogram generation algorithm that generates histograms of user-defined data subsets that do not have pre-computed data properties. Using our approach, applications can generate histograms of datasets containing millions of data points with sub-second latency. The work builds on our visual query coordinating scheme that evaluates geospatial query and orchestrates data aggregation in a distributed storage environment while preserving data locality and minimizing data movements. This paper includes empirical benchmarks of our framework encompassing a billion-file dataset published by the National Climactic Data Center
    • …
    corecore