2,622 research outputs found

    Redevelopment of an industrial case study using Event-B and Rodin

    No full text
    CDIS is a commercial air traffic information system that was developed using formal methods 15 years ago by Praxis, and it is still in operation today. This system is an example of an industrial scale system that has been developed using formal methods. In particular, the functional requirements of the system were specified using VVSL -- a variant of VDM. A subset of the original specification has been chosen to be reconstructed on the Rodin platform based on the new Event-B formalism. The goal of our reconstruction was to overcome three key difficulties of the original formalisation, namely the difficulty of comprehending the original specification, the lack of any mechanical proof of the consistency of the specification and the difficulty of dealing with distribution and atomicity refinement. In this paper we elucidate how a new formal notation and tool can help to overcome these difficulties

    Formalized structured analysis specifications

    Get PDF
    Specifications define systems. The definition of a system can be stated casually or formally. A formal specification is a mathematically precise definition of software functionality. Informal specifications are less precise definitions of software functionality. The benefits of formal specifications are clear. Arguments against the use of formal specifications have been refuted;Several formal specification techniques are available for specifying imperative programs, e.g., Z, VDM, and SPECS. Most specification techniques for distributed/concurrent systems concentrate on low level issues, e.g., deadlock and synchronization;Structured Analysis (SA) specifications are a popular informal specification technique, but they lack a rigorous mathematical semantics. SA specifications are based on a graphical syntax with little underlying formal structure. In this thesis, we identify and formalize those underlying structures that are represented informally, provide a formal definition of a SA specification, develop formal interpretations for those components of SA specifications that are subject to varying interpretation, and define an operational semantics for animating SA specifications. The resulting formalized SA specifications are mathematically precise and can be used to specify distributed/concurrent systems

    Towards a Formal Model of Privacy-Sensitive Dynamic Coalitions

    Full text link
    The concept of dynamic coalitions (also virtual organizations) describes the temporary interconnection of autonomous agents, who share information or resources in order to achieve a common goal. Through modern technologies these coalitions may form across company, organization and system borders. Therefor questions of access control and security are of vital significance for the architectures supporting these coalitions. In this paper, we present our first steps to reach a formal framework for modeling and verifying the design of privacy-sensitive dynamic coalition infrastructures and their processes. In order to do so we extend existing dynamic coalition modeling approaches with an access-control-concept, which manages access to information through policies. Furthermore we regard the processes underlying these coalitions and present first works in formalizing these processes. As a result of the present paper we illustrate the usefulness of the Abstract State Machine (ASM) method for this task. We demonstrate a formal treatment of privacy-sensitive dynamic coalitions by two example ASMs which model certain access control situations. A logical consideration of these ASMs can lead to a better understanding and a verification of the ASMs according to the aspired specification.Comment: In Proceedings FAVO 2011, arXiv:1204.579

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201
    • …
    corecore