38,987 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    A dynamic distributed multi-channel TDMA slot management protocol for ad hoc networks

    Get PDF
    With the emergence of new technologies and standards for wireless communications and an increase in application and user requirements, the number and density of deployed wireless ad hoc networks is increasing. For deterministic ad hoc networks, Time-Division Multiple Access (TDMA) is a popular medium access scheme, with many distributed TDMA scheduling algorithms being proposed. However, with increasing traffic demands and the number of wireless devices, proposed protocols are facing scalability issues. Besides, these protocols are achieving suboptimal spatial spectrum reuse as a result of the unsolved exposed node problem. Due to a shortage of available spectrum, a shift from fixed spectrum allocation to more dynamic spectrum sharing is anticipated. For dynamic spectrum sharing, improved distributed scheduling protocols are needed to increase spectral efficiency and support the coexistence of multiple co-located networks. Hence, in this paper, we propose a dynamic distributed multi-channel TDMA (DDMC-TDMA) slot management protocol based on control messages exchanged between one-hop network neighbors and execution of slot allocation and removal procedures between sender and receiver nodes. DDMC-TDMA is a topology-agnostic slot management protocol suitable for large-scale and high-density ad hoc networks. The performance of DDMC-TDMA has been evaluated for various topologies and scenarios in the ns-3 simulator. Simulation results indicate that DDMC-TDMA offers near-optimal spectrum utilization by solving both hidden and exposed node problems. Moreover, it proves to be a highly scalable protocol, showing no performance degradation for large-scale and high-density networks and achieving coexistence with unknown wireless networks operating in the same wireless domain

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs
    corecore