29,243 research outputs found

    A unified wavelet-based modelling framework for non-linear system identification: the WANARX model structure

    Get PDF
    A new unified modelling framework based on the superposition of additive submodels, functional components, and wavelet decompositions is proposed for non-linear system identification. A non-linear model, which is often represented using a multivariate non-linear function, is initially decomposed into a number of functional components via the wellknown analysis of variance (ANOVA) expression, which can be viewed as a special form of the NARX (non-linear autoregressive with exogenous inputs) model for representing dynamic input–output systems. By expanding each functional component using wavelet decompositions including the regular lattice frame decomposition, wavelet series and multiresolution wavelet decompositions, the multivariate non-linear model can then be converted into a linear-in-theparameters problem, which can be solved using least-squares type methods. An efficient model structure determination approach based upon a forward orthogonal least squares (OLS) algorithm, which involves a stepwise orthogonalization of the regressors and a forward selection of the relevant model terms based on the error reduction ratio (ERR), is employed to solve the linear-in-the-parameters problem in the present study. The new modelling structure is referred to as a wavelet-based ANOVA decomposition of the NARX model or simply WANARX model, and can be applied to represent high-order and high dimensional non-linear systems

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

    No full text
    Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, sometimes by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We review, discuss and benchmark state-of-the-art representations and relations between them, including smooth overlap of atomic positions, many-body tensor representation, and symmetry functions. For this, we use a unified mathematical framework based on many-body functions, group averaging and tensor products, and compare energy predictions for organic molecules, binary alloys and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method and hyper-parameter optimization

    Deep Reinforcement Learning for Swarm Systems

    Full text link
    Recently, deep reinforcement learning (RL) methods have been applied successfully to multi-agent scenarios. Typically, these methods rely on a concatenation of agent states to represent the information content required for decentralized decision making. However, concatenation scales poorly to swarm systems with a large number of homogeneous agents as it does not exploit the fundamental properties inherent to these systems: (i) the agents in the swarm are interchangeable and (ii) the exact number of agents in the swarm is irrelevant. Therefore, we propose a new state representation for deep multi-agent RL based on mean embeddings of distributions. We treat the agents as samples of a distribution and use the empirical mean embedding as input for a decentralized policy. We define different feature spaces of the mean embedding using histograms, radial basis functions and a neural network learned end-to-end. We evaluate the representation on two well known problems from the swarm literature (rendezvous and pursuit evasion), in a globally and locally observable setup. For the local setup we furthermore introduce simple communication protocols. Of all approaches, the mean embedding representation using neural network features enables the richest information exchange between neighboring agents facilitating the development of more complex collective strategies.Comment: 31 pages, 12 figures, version 3 (published in JMLR Volume 20

    Optical implementations of radial basis classifiers

    Get PDF
    We describe two optical systems based on the radial basis function approach to pattern classification. An optical-disk-based system for handwritten character recognition is demonstrated. The optical system computes the Euclidean distance between an unknown input and 650 stored patterns at a demonstrated rate of 26,000 pattern comparisons/s. The ultimate performance of this system is limited by optical-disk resolution to 10^11 binary operations/s. An adaptive system is also presented that facilitates on-line learning and provides additional robustness

    Optical network for real-time face recognition

    Get PDF
    An optical network is described that is capable of recognizing at standard video rates the identity of faces for which it has been trained. The faces are presented under a wide variety of conditions to the system and the classification performance is measured. The system is trained by gradually adapting photorefractive holograms

    End-to-End Differentiable Proving

    Get PDF
    We introduce neural networks for end-to-end differentiable proving of queries to knowledge bases by operating on dense vector representations of symbols. These neural networks are constructed recursively by taking inspiration from the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. By using gradient descent, the resulting neural network can be trained to infer facts from a given incomplete knowledge base. It learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove queries, (iii) induce logical rules, and (iv) use provided and induced logical rules for multi-hop reasoning. We demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, on three out of four benchmark knowledge bases while at the same time inducing interpretable function-free first-order logic rules.Comment: NIPS 2017 camera-ready, NIPS 201

    Forecasting the geomagnetic activity of the Dst Index using radial basis function networks

    Get PDF
    The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models based on limited input-output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. Radial basis function (RBF) networks are an important and popular network model for nonlinear system identification and dynamical modelling. A novel generalised multiscale RBF (MSRBF) network is introduced for Dst index modelling. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using an orthogonal least squares (OLS) type algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page
    • …
    corecore