27 research outputs found

    A Review of Energy Management of Renewable Multisources in Industrial Microgrids

    Get PDF
    This review aims to consolidate recent advancements in power control within microgrids and multi-microgrids. It specifically focuses on analyzing the comparative benefits of various architectures concerning energy sharing and demand cost management. The paper provides a comprehensive technical analysis of different architectures found in existing literature, which are designed for energy management and demand cost optimization. In summary, this review paper provides a thorough examination of power control in microgrids and multi-microgrids and compares different architectural approaches for energy management and demand cost optimization

    Flexible Demand Resource Pricing Scheme: A Stochastic Benefit-Sharing Approach

    Full text link
    With the rapidly increased penetration of renewable generations, incentive-based demand side management (DSM) shows great value on alleviating the uncertainty and providing flexibility for microgrid. However, how to price those demand resources becomes one of the most significant challenges for promoting incentive-based DSM under microgrid environments. In this paper, a flexible demand resource pricing scheme is proposed. Instead of using the utility function of end users like most existing literatures, the economic benefit of flexible demand resources is evaluated by the operation performance enhancement of microgrid and correspondingly the resource is priced based on a benefit sharing approach. An iteration-based chance-constrained method is established to calculate the economic benefit and shared compensation for demand resource providers. Meanwhile, the financial risks for the microgrid operator due to uncertain factors are mitigated by the chance-constrained criterion. The proposed scheme is examined by an experimental microgrid to illustrate its effectiveness.Comment: 10 pages, 16 figure

    A multi-agent privacy-preserving energy management framework for renewable networked microgrids

    Get PDF
    This paper proposes a fully distributed scheme to solve the day-ahead optimal power scheduling of networked microgrids in the presence of different renewable energy resources, such as photovoltaics and wind turbines, considering energy storage systems. The proposed method enables the optimization of the power scheduling problem through local computation of agents in the system and private communication between existing agents, without any centralized scheduling unit. In this paper, a cloud-fog-based framework is also introduced as a fast and economical infrastructure for the proposed distributed method. The suggested optimized energy framework proposes an area to regulate and update policies, detect misbehaving elements, and execute punishments centrally, while the general power scheduling problem is optimized in a distributed manner using the proposed method. The suggested cloud-fog-based method eliminates the need to invest in local databases and computing systems. The proposed scheme is examined on a small-scale microgrid and also a larger test networked microgrid, including 4 microgrids and 15 areas in a 24-h time period, to illustrate the scalability, convergence, and accuracy of the framework. The simulation results substantiate the fast and precise performance of the proposed framework for networked microgrids compared with other existing centralized and distributed methods.© 2023 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    Multi-Time Scale Economic Optimization Dispatch of the Park Integrated Energy System

    Get PDF
    Copyright © 2021 Li, Zhang, Ma, Yao, Zhong, Yang, Zhao, Lai and Lai. The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.Research Project of Digital Grid Research Institute, China Southern Power Grid under Grant YTYZW20010

    Pv-battery power supply for next-generation cellular telecommunication networks

    Get PDF

    Priority-driven self-optimizing power control scheme for interlinking converters of hybrid AC/DC microgrid clusters in decentralized manner

    Get PDF
    Hybrid AC/DC microgrid clusters are key building blocks of smart grid to support sustainable and resilient urban power systems. In microgrid clusters, the subgrid load-priorities and power quality requirements for different areas vary significantly. To realize optimal power exchanges among microgrid clusters, this paper proposes a decentralized self-optimizing power control scheme for interlinking converters (ILC) of hybrid microgrid clusters. A priority-driven optimal power exchange model of ILCs is built considering the priorities and capacities in subgrids. The optimization objective is to minimize the total DC-voltage/AC-frequency state deviations of subgrids. To realize the decentralized power flow control, an optimal-oriented quasi-droop control strategy of ILCs is introduced to not only achieve a flexible self-optimizing power flow management, but also provide an ancillary function of voltage support. Consequently, as each of ILCs only monitors the local AC-side frequency and DC-side voltage signals, the whole optimal power control of the wide-area microgrid clusters is achieved in a decentralized manner without any communication link. Thus, the proposed control algorithm has the features of decreased cost, increased scalability, reduced geographic restrictions and high resilience in terms of communication faults. Finally, the proposed method is validated by case studies with four interconnected microgrids through hardware-in-loop tests
    corecore