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S u m m a r y  

The world is currently facing massive energy- and dramatic environment challenges 
caused by global warming and increase in energy demand. The Intergovernmental Panel 
on Climate Change (IPCC) assessed in December 2019 that human activities have 
already caused approximately a global temperature increase of 1.0°C above the pre-
industrial levels. A 1.5°C warmer world is more likely between 2030 and 2052, if 
business models and energy policies are not changing. Limiting global warming is 
mandatory to keep future health, livelihoods, food availability, water supply, human 
security, and economic growth and to reduce the risk of pandemics. 

Through a tight integration of highly intermittent renewable distributed energy 
resources, the microgrid is the technology of choice to deliver the expected impacts, 
making clean energy affordable. The focus of this work lies on the techno-economic 
analysis of optimal combined heat and power multi-microgrids (CHP-MMG); a novel 
distribution system architecture with two interconnected microgrids. These are complex 
energy systems that have been only partially investigated. High computational resources 
are needed to find their optimal siting, design, and operations fitting the climate 
conditions of a geographical area. To this aim, a novel two-layer optimization 
framework is proposed to simultaneously solve the problem of finding their optimal 
design, sizing and siting (hereinafter referred as the setting of CHP-MMG) while the 
energy dispatch balance is achieved with minimal operational costs and highest 
revenues. At a lower level, a sequential least squares programming (SLSQP) method 
ensures that the stochastic generation and consumption of energy deriving from each 
CHP-MMG trial setting are balanced at each time-step. At the upper level, two novel 
multi-objective self-adaptive evolutionary algorithms are proposed to search the setting 
that returns the highest internal rate of return (IRR) and the lowest levelized cost of 
energy (LCOE) among the trial CHP-MMG settings. In the self-adaptive differential 
evolution (ADE) method, the trial setting is obtained by perturbing the target individual 
with the difference of random set of other individuals. To improve the search space, the 
values of the mutant and crossover factors are adapted based on the gradient of the 
fitness value. In the self-adaptive artificial immune evolutionary algorithm (AIE), the 
mutant is generated with a normal random distribution, driven by the diversity of 
population and fitness convergence. The crossover recombines genes of the mutant with 
pieces of external genotypes and of target setting by means of horizontal/vertical gene 
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transfer techniques. The test results demonstrate that AIE returns best-so-far fitness 
values (BSF) over 70% better than the original Differential Evolution (DE) algorithm.  

The search of the best setting for a CHP-MMG is a stochastic problem. The two-
layer optimization algorithm returns clusters of optima of similar quality. To find the 
best configuration, the optimization must be repeated until the distribution of fitness 
measures reaches the desired target. The solution associated to the lowest fitness value 
can be assumed as the candidate of being the best probabilistic solution. To verify 
whether the latter returns the best-expected performance over all the uncertain scenarios, 
the sample average approximation method is used.  

The computing performance of the two-layer optimization tool has been further 
improved with multiple numerical approaches to reduce the overall time required for the 
computation tasks. The processing of the individuals has been distributed into 
computing elements working in parallel. Moreover, SLSQP optimization has been 
implemented to slice of datasets. Lastly, a machine learning algorithm based on linear 
regression and deep neural network methods replaced the analytical techno-economic 
model for preliminary optimal searches.  

Finally, the optimization algorithm has been used to investigate different scenarios  
for in Northern and Southern Europe. The impact of price policies, cost of fuels on IRR, 
LCOE, and quality of energy has been analyzed. The hydrogen cost fixed at 3 €/kg 
makes fuel cells the main choice of electricity. Whenever the cost rises, the main grid 
turns into the principal supplier of heat. High fuel costs cause a substantial increment of 
the wind turbines (WT) followed by photovoltaic panels (PV). In Northern Europe 
where wind conditions are favorables, an optimal CHP-MMG comprises a WT coupled 
with fuel cells (FC), making energy at low cost and the return of the investment 
attractive with the delivery of energy services to the main grid. Thermal energy is 
generated with heat pumps and exchanged between the CHP-MMG. Similarly, in 
Southern Europe the best configurations are obtained with PV combined with WT, FC 
and the main grid. The latter is used to provide energy services. The techno-economic 
scenarios dealing with off-grid supply have demonstrated that optimal CHP-MMG 
configurations still return an attractive IRR (i.e., 24%) with electricity tariff similar to 
those applied today by the utility. Further optimizations have considered on-site blue-
hydrogen generation by thermal plasma methane decomposition. The outcomes have 
shown that this bridging technology can still make CHP-MMG profitable. Moreover, the 
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simulations have brought out a scheme of collaboration among CHP-MMG (i.e.,‘swarm 
effect’) that improves the overall efficiency and response to the uncertainty of renewable 
energy.  

This work demonstrates the versatility of CHP-MMG technology. The results show 
that at each latitude and longitude, with different input settings, there are always optimal 
configurations to supply good quality of energy and provide attractive financial 
performances. 

To conclude, the innovation contents of the thesis comprise:  
- A novel simulation-optimization tool designed to simultaneously determine under 
realistic operating conditions: 1) the design, 2) the sizing, 3) the siting, 4) the 
operation optimizations of two interconnected heat and power microgrids (appendix 
C). 
- A two-layer optimization algorithm combining a novel evolutionary computing 
method with SLSQP to improve the quality of the results and the solution space 
search (Chapters 1,2,4). 
- A method to find global solutions over the most probable scenarios (Chapters 
4,5).
- Four different approaches based on an analytical technical-economic and 
complementary machine learning models to describe the stochastic problem 
(Chapters 2,3). 
The latter have addressed the need of the high computing resource required to 

investigate: 
- How the new small energy system framework comprising two interconnected heat 
and power microgrids fulfill energy demand of both thermal and electric loads, 
provides energy services to utility grids with different price policies, cost and type of 
hydrogen (Chapters 2,4,6). 
- The beneficial effect induced by the collaboration scheme between the two 
interconnected heat and power microgrids (i.e., swarm effect) fostering: 1) the 
overall efficiency, 2) the response to uncertainty, and consequently 3) the best 
financial performances over the most probable scenarios (Chapters 1,2,4,6). 
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C H A P T E R  1 :  I n t r o d u c t i o n  

As energy and environmental sustainability is becoming increasingly prominent, achieving a low-
carbon economy is the global priority. The current energy system is economically inefficient to 
deliver a climate-neutral economy and too rigid for a massive penetration of renewables. 
Fortunately, cost-effective IT infrastructures and communication technologies, are boosting the 
connectivity of distributed renewable energy resources into peer-to-peer power systems. A new 
paradigm of energy produced in small and smart independent energy networks is now emerging, 
namely the microgrid. This energy system integrates the generation, transmission, distribution 
and consumption of energy as a whole, providing an intelligent optimal interaction among all 
nodes of the system. The microgrid is a groundbreaking technology that enables scalable and 
thus, more economic and affordable financial investments. Combined heat and power multi-
microgrids strengthen the distributed technology concept with a tight, more effective integration 
of energy devices. This chapter introduces the multi-microgrid technology and the challenges to 
achieve a competitive design and optimized operation. A review of the state-of-art related to the 
simulation and optimization tools is provided. The rational for the use and development of 
computer-based tools is discussed. The chapter ends with the research topics undertaken in this 
work for the optimal design and operations of combined heat and power interconnected 
microgrids. 
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1 . 1  T h e  m i c r o g r i d s  

In his famous book published in 2019, J. Rifkin [1] addressed the need for urgently 
setting a new agenda to confront the climate change, to transform the economy, and to 
create a green post-fossil fuel culture. One year earlier (2018), K. Kotilainen et al. [2] 
analyzed the new energy contest and the drivers that are profoundly changing the way 
energy is produced and delivered.   
Further economic studies [3] revealed a new emerging actor within the business 
community that in forthcoming years will shake the very foundation of the global 
economy, leading to a revolution in the energy sector: the prosumer.  

The prosumer is defined as a sort of consumer that: 1) actively participates in the 
efficient, sustainable peer-to-peer production, 2) uses renewable energy, and 3) delivers 
demand response services [4] through small-scale distributed energy systems. The 
integration of renewable energy systems (RES) such as wind turbine and solar panels, 
distributed generation (DG) together with energy storage can potentially reduce the 
carbon emissions, improve the power reliability, and the energy efficiency. However, the 
peer-to-peer matching of unpredictable load variation with the large degree of 
intermittency caused by weather, day-night cycles and seasons of renewable energy is a 
new challenge for grid operation and control. This challenge can be effectively 
addressed by microgrids (MG). 

The definition of a MG depends on the perspective. According to the U.S. 
Department of Energy (DoE) a microgrid represents “a group of interconnected loads 
and distributed energy resources (DER) within clearly defined electrical boundaries that 
acts as a single controllable entity with respect to the grid” and “can connect and 
disconnect from the grid to operate either in grid-connected or island-mode.” A remote 
microgrid is a variation of a microgrid that operates in islanded conditions. 

Among the new technology for energy production and harvesting, microgrids are 
unanimously recognized as a key technology capable of boosting the new paradigm of 
energy, once favorable policies for distributed energy systems are set, legal obstructions 
and transaction costs for peer-to-peer are removed and coproduction is fostered [5].  

The core component of a microgrid is the DG, a small electric- and thermal power 
generator independent of traditional utility grids, which is located at the end-user side to 
meet his/her unique demand.  
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The other important component of a microgrid is the so-called distributed resource 
(DR) which refers to a combined DG and energy storage system (ES). In multi-
microgrid architectures forming a grid of microgrids, DR are also the devices for the 
electrical (ITCEL) and thermal interconnection (ITCTH) between nearby MG, or to a 
utility grid (GRID) to which prosumers can sell surplus power. As shown in Figure 1.1, 

it can be inferred that the DG is a subset of the DR, which is then a subset of the DER. 

The DG and ES are usually directly connected to the user side in parallel and are 
managed by the microgrid control center (MGCC). The microgrid control center is the 
core of the MG control system. In addition to the supervision, the MGCC optimizes the 
control strategy based on the actual operating conditions to ensure smooth transfer 
between grid connection, islanding, shutdown, and startup of DG. In grid-connected 
operation, MGCC also provides the microgrid and the best DR performance. In islanded 
mode, it adjusts the DG outputs and load consumption to secure stable, safe operation of 
the microgrid, at the most economic conditions. 
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When thermal and electric DER are both incorporated in the same MG, it becomes a 
combined heat and power microgrid (CHP-MG). The latter can be interconnected to 
make a cluster of microgrids, in which each system benefits from this cooperation 
during grid-connected and islanded modes. Clusters of hybrid microgrids are hereafter 
indicated as: combined heat and power multi-microgrid (CHP-MMG). Figure 1.2 shows 
the general layout of a cluster made by two CHP-MMG.  

MG are capable of autonomous control, protection, and management. MG can 
operate either in parallel with the utility grid (on-grid) or in an intentional islanded mode 
(off-grid). While centralized traditional power generation systems bring energy flow 
only in one direction (from large synchronous generators through a transmission/
distribution network to end-users), the MG is a small electric power system that 
incorporates peer-to-peer nodes with distributed generation, transmission, and 
distribution at a single layer.  

MG can achieve power balance and optimal energy allocation over a given area and 
act as a virtual power source in a distribution network. Compared with traditional 
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vertical transmission- and distribution networks, MG has a much more flexible 
structure. It can be defined more generally as a medium-or low distribution grid. Based 
on the type of source that is managed, MG can be classified as 1) direct current line 
(DC), 2) alternating current line (AC), or 3) hybrid (AD/DC) as shown in Figure 1.3.  

In a microgrid, it is essential to continuously balance the power supply with the 
demand, because the generation of the intermittent distributed sources is difficult to 
precisely predict and the actual available power fluctuates significantly, depending on 
the availability of the primary sources (solar irradiation and wind).  

The balancing of supply and demand becomes even more critical in an islanding 
microgrid, as only the internal supply is available to balance the demand. 

1 . 1 . 2  C l u s t e r s  o f  m i c r o g r i d s  

The concept of MG can be extended to a larger scale, in which two or more MG 
operate interconnected with each other to form a cluster of controllable MG. To mitigate 
the unstable operation of individual MG during islanded operation the interconnection 
of multiple MG (MMG) has been proposed as a viable solution providing numerous 
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economic benefits to both the utility grid and the MG systems participating in the 
network. 

Interconnected MG can take advantage of the increased reliability and stability, 
enhanced security and reduced costs associated with the cooperation of multiple MG. 
During a blackout of the utility grid, individual MG may fail to deliver a reliable and 
stable power supply to the critical loads due to the high penetration of non-controllable 
and weather-dependent RES. This can be overcome by interconnecting multiple MG 
systems and enabling them to support each other by sharing resources.  

An enhanced solution of clusters of microgrids is represented by CHP-MMG. In such 
hybrid configuration, the MG have several options for an optimal management of the 
abundant energy that is available in a certain time: 1) it can storage the abundant energy 
(e.g., electricity with batteries, heat with tanks of water, hydrogen with pressurized 
canisters) 2) it can supply their excess of energy to the loads of the nearby MG lacking 
in generation 3) it can convert abundant energy (e.g., electricity to heat with heat pumps, 
hydrogen with electrolyzers), 4) it can exchange the abundant energy (e.g., to the utility 
grid or to another MG for delivering demand response services).  

However, the coupling of multiple systems on both grid-connected and islanded MG 
requires accurate techno-economic investigations to search the optimal: 1) architectures; 
2) size of the distributed energy resources; 3) siting; 4) energy-management strategies 5) 
energy-trading techniques, ensuring a cost effective, reliable operation.  

Currently, the study of microgrid clustering architecture and control strategies were 
mostly oriented to a few electrical configurations [6]. The “Parallel Connected 
Microgrids” (PCM) with an external grid layout, that is represented in Figure 1.4(a), 
refers to a structure in which all microgrids are connected to the same external grid, 
where each microgrid has only one point of common coupling (PCC). These points are 
the interconnections with other grids.  

In the "Grid of Series of Interconnected Microgrids” (GSIM), which is shown in 
Figure 1.4(b), the microgrids are interconnected forming a grid, where the 
interconnections are based on the point-to-point structure. 

The management of MG clustering frameworks has been extensively discussed and 
several energy-management frameworks have been proposed in the literature [7]. 
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However, the research presented in the literature mainly focuses on the control and 
energy management of MG clusters, with various control strategies and algorithms 
being proposed to guarantee the optimal operation and economic feasibility of the 
system. These control strategies can follow centralized, decentralized, and distributed 
architectures or can be implemented in layers with different tasks and goals through a 
hierarchical architecture.  

Multi-agent technology and system-of-systems structures have also been proposed in 
the literature for the control and energy management of multiple MG systems. The study 
carried out by F. Bandeiras et al. in 2020 [8] has addressed the cooperation of five 
industrial MG operating in islanded mode. An algorithm has been developed to evaluate 
the cooperation among these MG and coordinate their hourly energy trade through three 
distinct market models with market clearing price/quantity in asymmetric pool.  

Studies and works that treat in detail the overall optimal best design, sizing, and 
siting of CHP-MMG in combination with optimal management however, are still 
missing. 
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Figure 1.4 Example of microgrids architectures: a) Parallel connect microgrid with an external grid; b) 
Grid of series of interconnected microgrid (Bullich-Massagué, Díaz-González et al. 2018).



1 . 1 . 3  A p p l i c a t i o n s  o f  m i c r o g r i d s  

Community, industry, commerce, military, remote off-grid units, and university 
campuses are typical applications of MG, where the aggregation of on-site generation 
with multiple loads displaced in tight geography allow the owner to determine how to 
manage them. 

In the first quarter of 2020, Guidehouse Insights identified 6610 MG projects which 
have been proposed, planned, and deployed around the world, representing a combined 
installed power capacity of around 31.8 GW [9].  

Microgrids are becoming increasingly popular in North America where about 34% of 
the current world’s microgrid installations are located. Here, the drivers for this rapid 
growth include the aging mega grid and the end-user’s increasing desire for greater 
security and reliability (A. Wilson et al., 2017) [10]. Besides the North America, 
microgrid projects are expanding rapidly to other regions of the world, especially in Asia 
Pacific region, which takes about 40% of the world total microgrid capacity.  

Various policies drive microgrid development in different countries and regions. In 
the EU, microgrid development is accompanied by a comprehensive R&D effort that is 
supported by a series of EU’s Framework Programs (J.Romankiewicz et al., 2013) [11]. 
Here, demonstration projects are executed with focus on island and remote microgrid 
systems, utility scale multi-microgrids, and microgrid control and operation.  

In Asia, Japan is a leader in microgrid research. The New Energy and Industrial 
Technology Development Organization (NEDO) has funded many microgrid research 
and demonstration projects around the world (T. S. Ustun et al., 2011) [12]. The goals of 
these demonstration projects are often related with alternative new energy solutions, 
new technologies, and controls for better reliability and resilience. Japan’s 
demonstration projects show excellent performance during natural disasters, particularly 
the successful operation the Sendai Microgrid after the “3-11 Great Easter Japan 
Sumani” (K. Hirose (2013) [13].  

China started its microgrid development through the 12th Five Year Plan (FYP, from 
2011 to 2015). The primary goal was to find a distributed clean energy way which could 
relieve China’s dependence on centralized coal power and provide low emission and 
good air quality to the atmosphere. Chinese central government had a target to build 30 
MG pilots projects in the 12th five-years plan (FYP) and this work is further extended to 
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the 13th FYP (from 2015 to 2020). MG Pilots was turning towards integrating 
renewable energy and energy storage on the demand-side or on the grid side, in many 
cases linked to electric vehicle charging. In China MG are distinguished in island, 
remote and city microgrids. For each category, applicable energy system configurations 
are recommended [14]. China views MG infrastructure as a strategic evolution of the 
power sector. MG is expected to be an integral aspect of the 14th FYP for energy [15]. 

1 . 1 . 4  C u r r e n t  c h a l l e n g e s  i n  m o d e l i n g  a n d  
o p t i m i z a t i o n  o f  m i c r o g r i d s  

A strategic interest of the stakeholders involved in the energy value chain is the 
choice of the optimal combination of technologies, operations, location of MG that are 
best suited to provide the energy services needed at the most economic conditions. 

 Finding a solution to this challenge - for investors - means to determine the capital 
expenditures, operational costs, and revenues streams returning the most attractive 
payback and return of investment (e.g., IRR) over different options and scenarios. Users 
desire to satisfy their energy demand with inexpensive and reliable services. Energy 
providers (e.g., producers and distributors) aim to predict and correctly balance the 
energy demand and fulfill the users at lowest cost. Simulation and optimization tools are 
essential to find best solutions to these requests. 

There are further issues that must be considered in the design of MG; the long 
lifetime of installations (typically more than 20 years) may cause lock-in situations due 
to high exit barriers; the rapid development of novel technologies can have far-reaching 
impacts on the system, so possible effects should be anticipated.  

A large number of simulation and optimization tools have been developed by the 
scientific community over the previous decades due to the complexity of MG and the 
multiple challenging requirements.  

The choice of type and size of DER and their geographical site have a great impact 
on the economic and technical performance of MG (e.g., MG in a windy island of North 
Europe with only PV as primary energy generator, will probably bring higher cost and 
less reliability than MG based on WT as primary energy generator). The minimum cost 
of energy, the highest profitability, the highest power quality must be achieved by 
matching the uncertainty of RES availability, the variability of the load profile. 
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The type of DG impacts on the MG!s operation, lifetime and efficiency. An example 

of this is when the energy demand of a household is fulfilled by a PV that is 
interconnected uniquely with an ES. The latter will be cycled frequently and 
consequently its lifetime will be affected. Moreover, a power outage may occur if the ES 
is not properly sized or combined with a genset.  

The same load profile can be met by integrating different combinations of DER. 
Since the energy flows of each configuration are different, the operating costs will be 
different and consequently the financial performance will be affected. 

To identify the configuration that delivers the best value, it is necessary to calculate 
the energy flows involved among DG and the loads. Lastly, the total cost of ownership 
can be estimated. This computational analysis must be accomplished for each MG 
configuration. Via such calculations, the quality of the energy balance, the amount of the 
total cost of ownership (sum of initial costs and operating costs) can be determined. 
Hence, the configuration which satisfies the requirements will be identified. In case of 
20 years of installation, the energy balance equations, and the subsequent financial 
models, need to be solved 175200 times (i.e., 20 times 8760 time-step/year). If 1000 
different combinations of DER are analyzed, more than 170 million calculations are 
required. A computer-based simulator can reproduce the behaviour of MG using 
mathematical models. The latter can solve the energy balance equations and perform a 
cost analysis for long times period and a large number of combinations of DER units 
precisely in a very short time. This is the most effective approach to predict complex 
scenarios and identify the optimal one. 

1 . 2  S t a t e  o f  t h e  a r t   

1 . 2 . 1  S t a t e - o f - a r t  o f  s i m u l a t i o n  a n d  o p t i m i z a t i o n  
t o o l s  

Modeling, simulation and optimization of energy system have different scopes – both 
conceptually and computationally. In modeling the corresponding sets of inputs (e.g., 
size of DER) and outputs are known (e.g., total cost of ownership of energy generated 
by DER), and a relationship is sought that delivers the correct output for each known 
input. The latter is a system identification problem. 
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In simulation, the system model inputs are known, and in relation to these, the 
outputs are computed (e.g., simulate the energy flows each time-step). Each component 
of the energy system is represented in the model, and the scope of the simulation is to 
analyze the throughput of the system. In optimization, the model is known, together 
with the desired output, and the task is to find the input(s) leading to this output so that a 
given objective is minimized or maximized (e.g., find the best set of DER to obtain full 
energy balance at minimum costs). Optimization and modeling problems can be seen as 
search methods, but this is not the case for simulation problems. This view naturally 
leads to the concept of a search space, being the collection of all objects of interest 
including the solution we are seeking. The search space consists of all possible inputs to 
a model (optimization problems), or all possible computational models that describe the 
phenomenon we are studying (modeling problems). In simulation, there is no overall 
objective, as optimization only occurs at the component level; i.e., a simulation may not 
deliver the optimum solution, for instance when the heuristics of two components are 
contradictory. Simulations with pre-defined control strategies are useful to assess 
existing technologies, but they do not provide insight into the best way to operate or 
design a system. Additionally, simulations are used to predict dynamic behavior of its 
components (A.E. Eiben et al., 2015) [16].  

For several years, techno-economic assessments of DER’s compositions aggregated 
in microgrids, have attracted a lot of attention. The focus of the research was on the 
simulation of demand-response scenarios, impact analysis of policies in different 
configurations and sites. Other studies covered the optimal microgrids design and 
optimization problems of energy balance subjected to the minimization of energy costs. 
Scopus, the source-neutral abstract, and citation database, returns almost 16000 
documents related to these topics.  

In parallel to the latter research, a great effort has been directed to the advancement 
of microgrid modeling and optimizations algorithms to give to system developers an 
increasingly effective support to MG design decisions and operational constraints. Four 
types of optimization can be performed in energy systems: 1) optimization of operation, 
2) system design optimization, 3) optimization of location, and 4) system evolution 
optimization.  

In the first type of optimization, the power generation equipment is fixed, but the 
dispatch is optimized to minimize energy consumption, rejected nonrecoverable heat or 
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entropy production as well as a maximization of the useful effect (M. Blaise el al., 2018) 
[17]. The second optimization aims at searching the optimal set of components and their 
optimal operation (Frangopoulos, C. A., 2003) [18]. The third type of optimization 
searches the best geolocation of a well-defined MG configuration. The fourth optimizes 
the overall design of a system (H. Aki et al. in 2005) [19] taking into account influence 
of the change in conditions (i.e., shift in electric, gas tariff) to manage in a prospective 
installation over the long-term, including the decommissioning and infrastructure. 
Operations are usually not in the scope of the system evolution optimization model. 

In the past decades, various tools have been proposed to address the challenge of 
finding the optimal DG compositions in MG systems. Models incorporated specific 
aspects and scenarios. The models concerning electricity prevailed over heat models, 
because the balancing of the electric energy flows in a grid are a critical task (due to the 
short time responses). An early contribution in the simulation of microgrids has been 
delivered by M. Indrani et al. in 2010 [20]. They proposed a simulation framework for a 
microgrid such as small township that generates electrical power from solar energy and 
uses it directly when possible, and via stored battery power at other times. The problem 
was described as a microgrid system with many consumers and suppliers and there was 
no communication or coordination among the agents.  

L. Montuori et al. (2014) [21] presented a work dealing with economic evaluation of 
the micro-power with the HOMER Energy simulator tool. This work examines how 
demand response can contribute to the better integration of DER. Later, B. Zhao et al. in 
2015 [22] proposed a simulator based on real-time micro-controllers for validating 
multi-agent energy management strategies of PV-small hydro hybrid microgrids 
operating at high altitude.  

C. Marnay et al. in 2016 [23] provided an integrated framework to forecast the 
adoption of distributed energy resources (DER), both by electricity customers and by the 
various institutions within the industry itself in California, and for evaluating the effect 
of this adoption in to the power system, particularly on the overall reliability and quality 
of electrical service to the end-user.  

D. Zafirakis et al. in 2017 [24] examined different energy strategies and scenarios for 
the Aegean Sea Islands microgrids with a simulator that considers stand-alone operation 
and interconnection to a host electricity system. P. Michalitsakos et al. in 2017 [25] 
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published a sequel that included the minimization of costs, CO2 emissions and a DER 
reliability maximization for the Greek Islands.  

The DER-CAM (Distributed Energy Resources Customer Adoption Model) decision 
support tool was used for the multi-objective analysis, which gives a set of optimal 
solutions of DG technologies, the storage capacities and the optimal dispatch of the MG. 

More recently, Stevanato, et al., in 2020 [26] developed a novel, long-term 
optimization model formulation, capable of accounting for load evolution and 
performing suitable investment decisions. This ensure access to energy in rural areas 
located far from the main grid. Multiple scenarios of load evolution are considered 
through the coupling of the model with a tool for stochastic load profile generation. The 
results show how this implementation reduces the overall costs of the project and 
connectivity between actual electricity demand and, microgrid sizing is improved. 
Morstyn T. et al., in 2020 [27] created an open-source tool for integrated modeling, 
optimization and simulation of MG. The tool provides a platform for developing and 
testing novel DER management strategies, grid power flow, energy market and storage 
modeling.  

Bhamidi L., et al., in 2020 [28] proposed a joint optimization model for grid-tied 
residential MG planning and operation with the support of the demand-side management 
tool (DSM). In this model, the residential MG is included with various DER, such as 
PV, WT, micro-turbines, OG, and ESS. The proposed model is formulated as a bi-
objective optimization problem. The minimization of the total annual costs and of the 
total annual emissions are combined objectives. The results of the simulation 
demonstrate the economic and environmental benefits of the DMS tool in the planning 
and operation of a residential community microgrid consisting of 1000 smart homes. 

Only in the recent years, the optimization problem of a multi-microgrid has been 
deeply investigated. H. Karimi et al. in 2020 [29] discussed a multi-objective 
optimization method for interconnected microgrids. An independence performance 
index has been proposed to measure the energy exchanged with the main grid. The 
simulation results show that the proposed method reduces the emissions and the energy 
outflow to the main grid. S. E. Ahmadi et al. (2020) [30] proposed a novel energy 
management system (EMS) for an isolated structure of interconnected microgrids. The 
outer-level of the EMS is aimed to exchange the required information and power 
between the interconnected microgrids. The inner-level of the EMS is dedicated to the 
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energy scheduling to manage interconnections’ fault. The optimization problem is based 
on MILP. The simulation results show that the proposed EMS minimizes the operational 
costs and increases the performance (i.e., increase of active power) of DG. 

1 . 2 . 2  P e r f o r m a n c e  a s s e s s m e n t s  i n  t e c h n o - e c o n o m i c  
a n a l y s i s  

Type, sizing, operation management, geo-location of distributed energy sources are 
all key factors that affect the technical, i.e., reliability, efficiency, lifetime and economic 
i.e., costs, profitability, performance of the MG. The state-of-the-art demonstrates the 
relevance of techno-economic simulation and optimization of MG more than it is for 
fossil-fuel based energy systems. Centralized energy systems are straightforward: they 
are composed of a single energy generation unit (i.e., thermoelectric power plant) 
connected to the grid with a high-voltage transmission line. Thus, their location, design 
and operations do not need to be necessarily correlated to other energy resources.  

Then, what is the best system configuration and an optimal operational strategy? In 
microgrids several types of energy generation systems (intermittent as RES and not as 
gas turbine), and types of energy storage (electrochemical, mechanical, electrical), are 
directly interconnected with different types of loads. A common approach to measure an 
optimal dispatch of energy in these complex energy systems is based on the so called: 

"Levelized Cost of Energy” (LCOE). This economic assessment criterion for the cost of 

the energy-generating system is a quick and effective method to compare several options 
of energy production as it measures lifetime costs divided by energy production. The 
LCOE consents to the comparison of different technologies (e.g., WT, PV, FC) of 
unequal life spans, project size, different capital cost, risk, return, and capacities 
involved in energy production. LCOE expresses investment costs, fuel costs, fixed, 
variable operation and management costs, and optionally taxes, in terms of costs per unit 
of energy. Many studies concern the analysis of LCOE of microgrids. E. Hittinger et al. 
in 2015 [31] proposed a high-resolution model allowing for the comparison of different 
battery energy storage technologies in a variety of realistic microgrid settings. The 
model is used to evaluate how the temperature effects, rate-based variable efficiency and 
capacity fade influence the optimal system design and the LCOE. S. V. Nielen (2016) 
[32] assessed the LCOE of MG embedding Solid Oxide Fuel Cells (SOFCs) and Solid 
oxide fuel assisted electrolysis cells (SOFECs) in future Dutch energy systems. 
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However, there are challenges (e.g., critical loads) where the optimum should be found 
not only in terms of LCOE but also the reliability and lifetime need to be included.  

In several studies for example M. Y. A. El-Sharkh et al. (2005) [33], M. Gulin et al. 
(2013) [34] and more recently Eman Hassan Beshr (2018) [35] the optimization models 
are used to search for the conditions (i.e., values of power variables), that return the best 
economic performance. 

1 . 2 . 3  S t a t e - o f - a r t  o f  t e c h n o - e c o n o m i c  t o o l s  

A wide selection of commercial simulation tools is available for economic technical 
analysis of energy systems. For example, H. Lund of Aalborg University in Denmark 
has developed EnergyPLAN [36] a computer model for technical and economic 
assessments of different energy systems and investments. The continued interest in 
energy system planning has resulted in increasing number of tools. Further examples of 
software packages include (W.Feng et al., 2018) [37]: DER-CAM, DEEP developed by 
Berkeley Lab (US), HOMER developed by the National Renewable Energy Laboratory 
(US), Microgrid Design Toolkit developed by the Sandia National Laboratory (US), 
Smart Grid Computational Tool developed by the Electric Power Research Institute 
(US), GridLAB-D developed by the Pacific Northwest National Laboratory (US), 
energyPRO (Denmark).  

The research study conducted by by D. Connolly in 2010 [38] has identified over 68 
different tools, ranging from short-term dispatch optimization software at the level of 
individual houses (e.g., HOMER), to optimization tools for long-term investment and 
replacement planning (e.g., Balmorel, MARKAL/TIMES). 

This work provides a guideline to identify and select the most suitable tool fitting the 
different needs of integrating a RES into various energy-systems under different 
objectives. All these energy tools are depicted in Appendix D / Table D.1. 

The early-stage simulation/optimization tools cover the following application 
domains: 1) Simulation tools to analyze the operation of a given energy-system to 
supply a given set of energy demands. The latter, usually operates in hourly time-steps 
over a one-year time-period. 2) A scenario tool usually combines a series of years into a 
long-term scenario. A scenario tool functions in time-steps of 1 year and combine such 
annual results into a scenario of typically 20–30 years. 3) Equilibrium tools are used to 
explain the behavior of supply, demand, and prices in a whole economy or part of an 
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economy (general or partial) with several or many markets. It is often assumed that 
agents are price takers and that equilibrium can be identified. 4) Top-down tools are 
macroeconomic models which are used to determine growth in energy prices and 
demands. Top-down tools are also equilibrium tools. 5) Bottom-up tools are used to 
identify and analyze the specific energy technologies and thereby determine the 
investment options and alternatives. 6) Operation optimization tools focus on the best 
operational strategy for a given energy-system. 7) Investment optimization tools 
optimize the investments in an energy-system. Such tools are suitable to optimize 
investments in new energy technologies. 

In more recent years, an increasing number of open-source models have been added. 
The wide variety is a result of the diversity in problem definitions and optimization 
algorithms. The repository listed in Appendix D / Table D.2 is available in the Wiki 
Workspace of “Openmod initiative” [39], fostering Open Source and Open Data in 
energy modeling. These models are not confined to the electricity sector but can also be 
applied to the heat, gas, end-use, and mobility sectors. Some embed market clearing 
while others assume single-actor cost minimization. 

For over two decades the HOMER tool has been instrumental in helping stakeholders 
understand the complexities and tradeoffs in designing cost-effective, reliable 
microgrids, and hybrid-energy systems. Many researchers, consultants, and 
policymakers still use this simulation tool worldwide. The HOMER tool is developed to 
evaluate small-scale microgrids including DER options with constraints. The overall 
modeling methodologies for HOMER are similar to those used in DER-CAM: to 
minimize microgrid system investment and operation life-cycle costs. HOMER can 
perform both simulation and optimization for one-year performance analysis. For 
microgrid system control, HOMER is implemented with rule-based strategies to 
optimize system operation with time-steps. Sensitivity analysis is commonly used in 
HOMER for users to compare the techno-economic performance of the proposed 
microgrids (H. Omar et al., 2012 [40]). HOMER can simulate demand response in a 
microgrid and calculate the economics through balancing load reduction with distributed 
energy resource generation (Montuori et al. 2014 [41]). 
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1 . 3  O b j e c t i v e s  o f  t h e  t h e s i s  

The scope of this thesis is centered on a techno-optimization study for finding the 
optimal operation, design, sizing and siting of CHP-MMG. 

To this aim, the following sub-objectives have been defined: 1) development of a 
novel stochastic techno-economic model to represent the DER of a CHP-MMG; 2) 
design of innovative optimization architectures 3) development of innovative machine 
learning approaches supporting techno-economic optimizations 4) research of 
innovative scenarios for the installation and operation of CHP-MMG. 

The optimization of CHP-MMG is a complex non-convex and non-linear problem 
with multiple local minima and not unique solutions that require a stochastic 
optimization approach. To this aim, a novel stochastic multi-objective optimization 
algorithm has been developed. The algorithm makes use of evolutionary computing at 
the upper layer and sequential least squares programming at the lower layer to find the 
global optimal solution. Moreover, machine learning techniques have been combined 
with analytical techno-economic models to reduce the computational time. 

The solution of the problem is given by computing the values of 38 variables that 
returns the minimum levelized cost of energy and maximum internal return rate of 
investment of a CHP-MMG.  

The list of the 38 variables is reported in detail in Appendix A.2; 36 variables are the 
size of the DER while the remaining 2 variables identify the geographic location in 
terms of latitude and longitude (i.e., the siting).  

The evolutionary algorithm produces a trial set of the 38 variables at each generation. 
The latter feed the techno-economic models: 1) to compute the actual financial variables 
(e.g., TCO, LCOE, IRR), 2) to set up the boundaries of the sequential least squares 
programming (SLSQP). SLSQP provides an optimal balance between the generation and 
consumption of energy each time-step (i.e., hour) at minimal operational costs and the 
highest revenues streams.  

Since such an analytical model requires computing time and is not suitable for usage 
in the context of global optimization, in this thesis three alternative machine learning 
models have been also developed, evaluated and combined with the analytical model for 
the reduction of the computation time. 
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1 . 4  T h e s i s  o u t l i n e   

In the second chapter a method for prediction of climate variables with Fast Fourier 
Transform and polynomial regression is proposed. This leads to the setup of the 
analytical techno-economic model of two interconnected MG. The Sequential Least 
Squares Programming optimization method is introduced and will be used at each time-
step to minimize a cost-function while the electricity and heat dispatched are 
constrained. Furthermore, a business case dealing with two microgrids of household 
communities nearby the city of Bremen (Germany) is formulated in the last part of the 
chapter. The examined scenarios demonstrate how the interconnection of multiple 
hybrid microgrids can be optimally operated with the SLSQP optimization method. The 
third chapter proposes three alternative approaches to the analytical TE model. After 
the introduction of different preprocessing techniques, multiple linear regression (MLR), 
is unveiled. Then, a three-layer neural network (NN) is presented. A third method 
(DNN) that extends the layers and adds further deep features to the NN is proposed. The 
results from the simulations are evaluated; the applicable domain of MLTE outputs is 
discussed at the end of this chapter. In the fourth chapter, two different novel self-
adaptive differential evolution algorithms named ADE and AIE, are introduced. In the 
first part, the adaptive approach applied to ADE aiming to improve the search radius and 
increases the convergence is explained. Then, the mechanism of AIE to generate the 
mutant vector driven by the population diversity method is described. Moreover, the 
benefit of the horizontal gene transfer technique to recombine individuals of previous 
trials with the mutant is demonstrated. The chapter is concluded by analyzing different 
business scenarios with the aim of examining how the cost and type of hydrogen, 
interconnection with the utility grid influences both the configurations and the financial 
performance in the different geolocations. The fifth chapter introduces the criterion for 
selecting and validating in overall scenarios the best probabilistic solution of a cluster. 
Moreover, the performances of the different models are discussed and a comparison 
between the quality of the results and computational techniques is provided. In the sixth 
chapter, the conclusions are drawn. Moreover, the perspectives for future work are 
outlined with the aim of: 1) assessing the impact of solar radiation, temperature changes 
on energy yields of renewables systems under different greenhouse gas emissions 
scenarios; 2) extending the optimization problem to a larger number of interconnected 
microgrids; 3) investigating optimal CHP-MMG suitable for manned lunar outposts. 

3 4



1 . 5  R e f e r e n c e s   

[ 1 ] J. Rifkin, 2019, The Green New Deal:Why the Fossil Fuel Civilization Will 
Collapse by 2028, and the Bold Economic Plan to Save Life on Earth, St. 
Martin's Press, ISBN-13: 978-1250253200.

[ 2 ] Kirsi Kotilainen , Ulla A. Saari. Policy Influence on Consumers’ Evolution into 
Prosumers—Empirical Findings from an Exploratory Survey in Europe. MDPI, 
January 2018

[ 3 ] Yue Zhou, Jianzhong Wu, Chao Long, Wenlong Ming, 2020, State-of-the-Art 
Analysis and Perspectives for Peer-to-Peer Energy Trading, Engineering, Volume 
6, Issue 7, Pages 739-753 ISSN 2095-8099, https://doi.org/10.1016/
j.eng.2020.06.002.

[ 4 ] Chris Giotitsas, Alex Pazaitis, Vasilis Kostakis, 2015, A peer-to-peer approach to 
energy production,Technology in Society,V olume 42, Pages 28-38, ISSN 
0160-791X,https://doi.org/10.1016/j.techsoc.2015.02.002.

[ 5 ] Maarten Wolsink, 2020, Distributed energy systems as common goods: Socio-
political acceptance of renewables in intelligent microgrids, Renewable and 
Sustainable Energy Reviews, Volume 127, 109841, ISSN 1364-0321, https://
doi.org/10.1016/j.rser.2020.109841.

[ 6 ] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-
Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering 
a r c h i t e c t u r e s . A p p l i e d E n e r g y , 2 1 2 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 /
j.apenergy.2017.12.048

[ 7 ] Meng, L., Shafiee, Q., Trecate, G. F., Karimi, H., Fulwani, D., Lu, X., & 
Guerrero, J. M. (2017). Review on Control of DC Microgrids and Multiple 
Microgrid Clusters. IEEE Journal of Emerging and Selected Topics in Power 
Electronics, 5(3). https://doi.org/10.1109/JESTPE.2017.2690219

[ 8 ] Bandeiras, F., Pinheiro, E., Gomes, M., Coelho, P., & Fernandes, J. (2020). 
Review of the cooperation and operation of microgrid clusters. In Renewable 
and Sustainable Energy Reviews (Vol. 133). https://doi.org/10.1016/
j.rser.2020.110311

[ 9 ] Insights Guidehouse. Microgrid deployment tracker 1Q20. Available online: 
https://guidehouseinsights.com/subscription-services/microgrids.

[10] Adam Wilson, and Peter Asmus (2017). Microgrid Deployment Tracker 4Q17, 
Navigant Consulting, Inc.

[11] John Romankiewicz, Min Qu, Chris Marnay, Nan Zhou (2013). International 
Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE), 
Lawrence Berkeley National Laboratory

[12] Taha Selim Ustun, Cagil Ozansoy, Aladin Zayegh (2011). Recent developments 
in microgrids and example cases around the world—A review. Renewable and 
Sustainable Energy Reviews. Volume 15. pp 4030-4041.

[13] Keiichi Hirose (2013). Behavior of the Sendai Microgrid during and after the 
311 Great East Japan Disaster, Telecommunications Energy Conference 'Smart 
Power and Efficiency' (INTELEC), IEEE

[14] Energy Foundation (2012), Research on Key Technologies and Development of 
Distributed Smart Microgrid, Research Report

3 5

https://guidehouseinsights.com/subscription-services/microgrids


[15] Anders Hove, Qian Wenyun, Zhao Kaiming, Nicole Kim Fuerst, China Energy 
Transition Status Report, 2020, Sino-German Energy Transition Project 
commissioned by Federal Ministry for Economic Affairs and Energy (BMWi)

[16] Eiben A.E., Smith J.E., 2015, Problems to Be Solved.Introduction to 
Evolutionary Computing. Natural Computing Series. Springer, Berlin, 
Heidelberg. https://doi.org/10.1007/978-3-662-44874-8_1

[17] Blaise, M., Feidt, M., 2018, A four objectives optimization for an energy system 
considered in the environment. Int J Energy Environ Eng 9, 1–11.

[18] Frangopoulos, C. A. Methods of energy systems optimization. In Summer 
school: Optimization of energy systems and processes. Gliwice, 2003.

[19] Aki, H., Murata, A., Yamamoto, S., Kondoh, J., Maeda, T., Yamaguchi, H., & 
Ishii, I. (2005). Penetration of residential fuel cells and CO2 mitigation–case 
studies in Japan by multi-objective models. International Journal of Hydrogen 
Energy, 30(9), 943–953. doi: 10.1016/j.ijhydene.2004.11.009.

[20] Indrani Maity, Shrisha Rao.,2010’ Simulation and Pricing Mechanism Analysis 
of a Solar-Powered Electrical Microgrid. IEEE Systems Journal ( Volume: 4, 
Issue: 3).

[21] Lina Montuori , Manuel Alcázar-Ortega, Carlos Álvarez-Bel, Alex Domijan. 
Integration of renewable energy in MG coordinated with demand response 
resources: Economic evaluation of a biomass gasification plant by Homer 
Simulator. Applied Energy 132 (2014) 15–23.

[22] Bo Zhao, Meidong Xue, Xuesong Zhang, Caisheng Wang, Junhui Zhao. An MAS 
based energy management system for a stand-alone MG at high altitude. Applied 
Energy 143 (2015) 251–261 

[23] Marnay, C.; Kawaan, C.P.; Blanco, R.; Osborn, J.G.; Hamachi, K.S.; Rubio, F.J. 
Integrated Assessment of Dispersed Energy Resources Deployment—LBNL No. 
46083. 2000. Available online: https://escholarship. org/uc/item/22f8m8t1 
(accessed on 17 March 2016).

[24] Dimitrios Zafirakis, Georgios Tzanes, John K. Kaldellis. An Advanced 
Microgrid Simulator for Stand-Alone and Market-Dependent Energy Strategies. 
978-1-5386-3917-7/17-2017 IEEE.

[25] Panagiotis Michalitsakos, Lucian Mihet-Popa, George Xydis. A Hybrid RES 
Distributed Generation System for Autonomous Islands: A DER-CAM and 
Storage-Based Economic and Optimal Dispatch Analysis. Open access article - 
Creative Commons Attribution. November 2017.

[26] Stevanato, N., Lombardi, F., Guidicini, G., Rinaldi, L., Balderrama, S.L., 
Pavičević, M., Quoilin, S., Colombo, E., 2020, Long-term sizing of rural 
microgrids: Accounting for load evolution through multi-step investment plan 
and stochastic optimization, Energy for Sustainable Development, 58, pp. 16-29.  

[27] Morstyn, T., Collett, K.A., Vijay, A., Deakin, M., Wheeler, S., Bhagavathy, S.M., 
Fele, F., McCulloch, M.D., 2020, OPEN: An open-source platform for 
developing smart local energy system applications, Applied Energy, 275, art. no. 
115397

[28] Bhamidi, L., Sivasubramani, S., 2020, Optimal Planning and Operational 
Strategy of a Residential Microgrid with Demand Side Management, IEEE 
Systems Journal, 14 (2), art. no. 8730494, pp. 2624-2632.

3 6



[29] Hamid Karimi, Shahram Jadid, 2020, Optimal energy management for multi-
microgrid considering demand response programs: A stochastic multi-objective 
framework, Energy, Volume 195, 116992, ISSN 0360-5442, https://doi.org/
10.1016/j.energy.2020.116992.

[30] Seyed Ehsan Ahmadi, Navid Rezaei, 2020, A new isolated renewable based multi 
microgrid optimal energy management system considering uncertainty and 
demand response, International Journal of Electrical Power & Energy Systems, 
Vo l u m e 11 8 , 1 0 5 7 6 0 , I S S N 0 1 4 2 - 0 6 1 5 , h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 /
j.ijepes.2019.105760.

[31] Eric Hittinger, Ted Wiley b, John Kluza, Jay Whitacre. Evaluating the value of 
batteries in MG electricity systems using an improved Energy Systems Model. 
Energy Conversion and Management 89 (2015) 458–473

[32] Sander van Nielen. Techno-economic Assessment of Solid Oxide Fuel Cells and 
Fuel-assisted Electrolysis Cells in Future Energy Systems. Thesis at University 
of Delft. 2016

[33] M.Y.El-SharkhA.Rahman M.S.Alam. Evolutionary programming-based 
methodology for economical output power from PEM fuel cell for micro-grid 
application. Journal of Power Sources September 2004.

[34] Marko Gulin, Mario Vasˇak, and Mato Baotic ́ . Analysis of Microgrid Power 
Flow Optimization with Consideration of Residual Storages State. IEEE Energy 
Systems, vol. 43, no. 1, pp. 779–787, 2013.

[35] Eman Hassan Beshr , Hazem Abdelghany, Mahmoud Eteiba. Novel optimization 
technique of isolated MG with hydrogen energy storage Published: February 
21,2018 https://doi.org/10.1371/journal.pone.0193224.

[36] Lund, H. (2007). EnergyPLAN–Advanced Energy Systems Analysis Computer 
Model. Aalborg University, Denmark. http://www.energyplan.eu

[37] Wei Feng, Ming Jin, Xu Liu, Yi Bao, Chris Marnay, Cheng Yao, Jiancheng Yu, 
2018, A review of microgrid development in the United States – A decade of 
progress on policies, demonstrations, controls, and software tools, Applied 
Energy, Volume 228

[38] D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, 2010, A review of computer 
tools for analysing the integration of renewable energy into various energy 
systems, Applied Energy, Volume 87, Issue 4, Pages 1059-1082, ISSN 
0306-2619, https://doi.org/10.1016/j.apenergy.2009.09.026

[39] Openmod initiative, 2021,  https://openmod-initiative.org/index.html#

[40] Hafez Omar and Kankar Bhattacharya (2012). Optimal planning and design of a 
renewable energy based supply system for microgrids. Renewable Energy. Vol. 
45. September. pp 7-15.

[41] Montuori, Lina, Manuel Alcázar-Ortega, Carlos Álvarez-Bel, and Alex Domijan 
(2014). Integration of renewable energy in microgrids coordinated with demand 
response resources: Economic evaluation of a biomass gasification plant by 
HOMER Simulator. Applied Energy. Vol. 132. 1 November. pp 15-22.

3 7





C H A P T E R  2 :  A n a l y t i c a l  t e c h n o - e c o n o m i c  
m o d e l  

This chapter presents a techno-economic model of two interconnected hybrid microgrids (MG) 
whose electricity and thermal dispatch strategy are managed with a Sequential Least Squares 
Programming (SLSQP) optimization technique. MG combine multiple thermal and electric power 
generation, transmission, and distribution systems as a whole, to gain a tight integration of 
weather-dependent distributed renewable generators with multiple stochastic load profiles. 
Moreover, MG can achieve an improvement in the return on investment and a better cost of 
energy. The first part of the work deals with setting up a method to obtain an accurate prediction 
of climate variables. This method makes use of Fast Fourier Transforms (FFT) and polynomial 
regression to manipulate climate datasets issued by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). The second part of the work deals with the optimization of 
interconnected MG operations through the SLSQP algorithm. The objective is to obtain the best 
financial performance (IRR) when clean distributed energy resources (DER) are exchanging both 
thermal and electric energy. SLSQP optimizes the energy flows by balancing their contribution 
with their nominal Levelized Cost of Energy (LCOE). The proposed algorithm is used to simulate 
innovative business scenarios where revenue streams are generated via sales of energy to end-
users, sell backs and deliveries of demand response services to the other grids. A business case 
dealing with two MG providing clean thermal and electric energies to household communities 
nearby the city of Bremen (Germany) is examined in the last part of the chapter. This business 
case with a payback in two years, an internal rate of return (IRR) of 65% and a LCOE of 0,14 €/
kWh, demonstrates how the interconnection of multiple hybrid MG with SLSQP optimization 
techniques, makes renewables and DER superior and could strand investments in fossil fuel 
generation, shaping the future of clean energy markets. 

Based on: Fracas P., Edwin Zondervan, 2019, Fast Fourier Transforms for Microgrid 
Climate Computing, Computer Aided Chemical Engineering, Elsevier, Volume 46, 
Pages 1657-1662, ISSN 1570-7946, ISBN 9780128186343, https://doi.org/10.1016/
B978-0-12-818634-3.50277-0 

Fracas, Paolo, Camarda, Kyle V. and Zondervan, Edwin. "Shaping the future energy 
markets with hybrid multimicrogrids by sequential least squares programming”, 
Physical Sciences Reviews, 2021, pp. 20200050. https://doi.org/10.1515/psr-2020-0050 

3 9



2 . 1  I n t r o d u c t i o n   

The MG is a controllable, independent small energy systems comprising DG, loads, 
ES, and control devices. It is a promising concept to overcome energy balance issues 
and thus to secure the energy supply and to reduce the overall cost of energy generated 
from RES. University campus microgrids, residential, commercial, industrial districts, 
off-grid users in a remote area, not connected to any utility grid, datacenter, telecom-
towers are examples of MG applications. This study explores the route of 
interconnection of optimized MG that embed a mix of clean thermal and electric DER. 
The main scope of this work is to analyze their economic throughputs when swarmed 
thermal and electric energy flows are optimized thru an SLSQP algorithm. 

In the first part of this work, different methods to obtain an accurate prediction of 
climate variables are described. Fast Fourier Transform and polynomial regression to 
manipulate climate datasets issued by the European Centre for Medium-Range Weather 
Forecasts (ECMWF) are outlined.  

The second part of the work is focused on detailing the analytical techno-economic 
models (ATE) of the DER which are embedded in two interconnected microgrids 
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(MG_A, MG_B). In the third part, the cost-revenues objective function, the constraints 
to balance the thermal and electric energy flows and related boundaries associated with 
the SLSQP algorithm are outlined. The overall framework of the models and their 
interrelations are depicted in Figure 2.1. In the final part of this work, the result of the 
simulation of two microgrids giving thermal and electric energies to neighboring 
communities nearby the city of Bremen (Germany) are introduced. The business cases 
treat revenue streams which are achieved thru the sale of energy to end-users, the sell-
backs to the nearby microgrid and the deliveries of demand response services to utility 
grids.  

2 . 1 . 1  P r e d i c t i o n  o f  c l i m a t e  v a r i a b l e s  

Within the techno-economic model (ATE) of MG, the accuracy of climate datasets 
plays an important role in the prediction of power generated by DER. Thus, at the 
beginning of this work, we investigated the use of recent monthly daily means datasets 
covering Earth’s areas by latitude and longitude coordinates, which are available from 
the historical archive of ECMWF. The periodic components of solar radiation, wind 
speed, temperature, and cloudiness are generated with FFTs and then filtered. These 
climate datasets are subsequently extrapolated over the timeframe of the project with 
inverse FFT (IFFT). Polynomial and forest tree regression methods are also used to 
correlate coupled of best-fitting variables. The spectral transform method has been 
successfully applied in climate datasets for more than 30 years, with the first spectral 
model introduced into reanalysis at ECMWF in April 1983 and it performs well. Fourier 
Transform method was introduced to numerical weather prediction starting from the 
work of Eliasen et al. [1] and Orszag [2] who achieved high efficiency by alternating the 
computations between a grid-point and a spectral representation at every time-step. Joly 
and Voldoire [3] have developed a method to manipulate gridded datasets with FFT to 
better understand the coupled ocean–atmosphere processes. Inter-annual variability has 
been studied by filtering long-term change data in both the observed and simulated time-
series. Kent et al. [4] reanalyzed in situ measurements and satellite retrievals of monthly 
mean marine wind speeds. The results have been used to validate the accuracy required 
in the calculation of air–sea heat fluxes. Wang and Zeng [5] have used observed data to 
quantify the land surface air temperature, which is one of the fundamental parameters to 
represent heat transfer and to modulate the moisture cycle between land and atmosphere. 
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Amendola et al. [6] used FFT to recombine Gaussian distributions of monthly datasets 
obtained via a neural network for seasonal weather forecasts. 

Different approaches have been adopted to convert the monthly mean of solar 
radiation and wind speed variables into the hourly mean time-step of the ATE. For solar 
radiation, an empirical model deriving from the literature and validated with 
experimental results has been used in this work. The model is based on the work of Liu 
and Jordan [7] in 1960 and several other researchers, i.e., H. P. Garg et al. [8] and Jain 
[9] who improved the hourly horizontal global radiation with a Gaussian function. The 
cloudiness effect is then added to the solar radiation with a normal probability density 
function. The hourly mean average for wind speed is obtained via a normal distribution 
of the wind speed values at 50 m above the surface of the earth. A global wind speed 
distribution is obtained from the NASA surface meteorology and solar energy database. 

2 . 1 . 2  E l e c t r i c  s y s t e m  o p e r a t i o n s  

The hourly mean climate datasets are utilized to calculate the renewable thermal and 
electric energy generated by wind turbines (WT), photovoltaic panels (PV), and solar 
thermal collectors (ST) net of losses and actual efficiencies, deriving from the remaining 
useful life (RUL) under the steady-state conditions. 

Combined Heat and Power Proton Exchange Fuel Cell (PEMFC-CHP), diesel 
gensets (OG), electrolyzers (EC), electric boilers (EBOY), stand-alone heat pumps (HP), 
heat pumps combined with ST (STHP) inverters (INV) thermal (TES), and electric 
energy storage systems (ESS) are additional distributed energy resources (DER) 
contemplated in the MG configurations of this work. The techno-economic model keeps 
updated the states of health (SoH) of each DG every time-step, in relation to their actual 
calendar lifetime and lifecycles (number of start-stops, charge/discharge). 

Lifecycle and calendar lifetime of lithium-ion batteries are modelled with a function 
having an “Arrhenius-like” form that takes into account the time, temperature, SOC, and 
Delta % SOC of the batteries. These models were developed according to the results of 
test conducted on 18650-size, lithium-ion battery cells by the US Department of Energy 
in 2001. 

The model of thermal and electric load demands is based on the result of statistical 
analysis carried on by K. Konstantinos in 2017 [10] with loads of more than 100 
households. Additional stochastic virtual load profiles such as load shedding and load 
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shifting are introduced in the techno-economic model. This contribution simulates 
additional energy services that the MG can provide as controlled options to respond to 
unplanned energy flows that occur in the main electric power grid. 

A sub-model to simulate the purchase and the sell-back of electric energy to the main 
grid is also considered in conjunction with stochastic grid outage events. 

2 . 1 . 3  O u t l i n e  o f  t h e  p r o p o s e d  o p t i m i z a t i o n  s t r a t e g y  

Based on the thermal- and electric-distributed energies resources which have been 
discussed in the previous paragraph, the objective of this work is to analyze how two 
interconnected MG whose energy flows are governed by the sequential least squares 
programming algorithm, improve the resilience of energy systems embedding RES, 
reduce the cost of energy, increment IRR while providing electric, thermal energy, and 
water to users and demand response services to the main grid. It is worth noting that 
enhancement of the energy system resilience is one of the main scopes of the SLSQP 
application, and it is obtained with the successful balancing of the constrained energy 
flows. 

At each time-step, the proposed optimization algorithm minimizes a non-linear 
objective function composed by the difference of two terms: to the first term that groups 
the costs inherent the generation of energy, the revenues stream (deriving from the use 
of energy) is subtracted. Costs and revenues are obtained as the product of the average 
energy flow in the time-step and, respectively, the nominal LCOE and the levelized sale 
of energy (LSOE). The estimation of LCOE is based on a simplified model of 
Department of US Energy [37].  

The revenue streams are generated from the contemporary sale of energy to the end-
users and sale of ED response services. Nominal LCOE, LSOE (i.e, sell-back prices and 
remunerations prices for demand response services) act as weights in the objective 
function to balance the thermal and electric energy flows. The SLSQP algorithm 
searches the best contribution of energy flow for each DER that maximizes the whole 
economic performance. The calculation is executed, respecting the set of constraints 
related to thermal and electric power flow under the steady-state conditions. The range 
of the boundaries of each DER is dynamically shaped in relation to the available energy 
they can provide each time-step. 
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The results given by SLSQP feed a financial model. Maintenance and operational 
costs (OPEX) are added to the initial investment costs (CAPEX) to obtain the total cost 
of ownership (TCO). Total revenues, contribution margin, total energy generated, actual 
LCOE, and the following key financial performance indicators are finally calculated. 

Optimizations of electric system operations have been the subject of several recent 
works. S. Wang et al. [11] propose an optimization method based on differential 
evolution (DE) for dynamic economic dispatch of MG, considering various distributed 
generations, ES, the transaction between the MG and power grid, as well as multiple 
kinds of loads. J. Radosavljević et al. [12]; propose an efficient algorithm based on 
particle swarm optimization (PSO) for energy and operation management (EOM) of MG 
including different distributed generation units and energy storage devices. PSO 
minimizes the total energy and operating cost of the MG via optimal adjustment of the 
control variables of the EOM, while satisfying various operating constraints. Owing to 
the stochastic nature of energy produced from renewable sources: WT, PV, load 
uncertainties, and market prices, a probabilistic approach in the EOM is proposed. 

Soares et al. [13] have proposed an evolutionary algorithm to offer residential end-
users an integrated management of energy resources minimizing the electricity bill 
while keeping the best possible quality of energy service. Simulation results show that a 
minimum savings of 10% might be achieved by optimizing load scheduling, local micro 
generation, and storage systems including electric vehicles (EVs) in both grid-to-vehicle 
(G2V) and vehicle-to-grid (V2G) modes. Jamaledini et al. [14] introduced an 
evolutionary algorithm based on the multicellular organism mechanism applied to MG 
operations. For optimization, both DE and PSO algorithms is used for the comparison of 
results. 

More recently (2019), Nagapurkar P. et al. [15] presented a methodology that 
assessed the techno-economic and environmental performance of MG-conventional grid 
integration scenarios for homes located in US cities. A genetic algorithm optimization 
technique is implemented to determine the lowest LCOE for different MG-conventional 
grid integration and carbon taxes scenarios. 

Based on the state-of-art that has been discussed earlier, this work aims to extend the 
analysis at the optimization of interconnected heat and power (hybrid) MG through the 
SLSQP algorithm. 
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2 . 2  M e t h o d s  o f  c l i m a t e  d a t a  p r o c e s s i n g  

In the following paragraph, a model to project climate daily means datasets issued by 
ECMWF with the Fast Fourier Transform is described. This method reveals very useful 
and effective to predict periodic datasets. The results discussed in the following section 
have been also published by P. Fracas et al. [30] and presented at the 29th European 
Symposium on Computer Aided Chemical Engineering (Eindhoven, The Netherlands, 
2019). 

2 . 2 . 1  P r e d i c t i o n  m o d e l  b y  i n v e r s e  f a s t  F o u r i e r  
t r a n s f o r m  

Fourier analysis is a method for expressing a function as a sum of periodic 
components and for recovering the function from those components. Cooley and Tukey 
[16] and more recently Press et al. [17] provided a computing approach to Fourier 
analysis for discretized counterparts: the FFT. The following reanalyzed monthly mean 
type of daily means datasets issued by ECMWF have been considered: 1) ssr[n] (solar 
net surface radiation, kW/m2), 2) 10si[n] (10 meter wind speed, m/s), 3) t2m[n] 
(Temperature at 2 meters from soil, K), 4) tcc[n] (total cloud cover, %). Here the number 
of months is named: n. A continuous sequence of n = 84 months is considered.  

With these datasets, two predictive discrete curves of Ni-dimension:  and  

have been generated. The first set of data has a dimension =72 and it is used to train 

the IFFT model (January 2010 to December 2015). The second dataset with dimension 

=12 is used to test the model (June 2017 to June 2018). A one-year timeframe is 

chosen as it is the typical test period for simulations of microgrids and it is suitable for 
conversion in hourly solar radiation data (T. Khatib, et al., 2015) [18] as described later 
in this paper.  

The following relation: 

,       [2.1] 

transforms the climate datasets array  from the time domain to different 

complex arrays  of dimension  where k is the index of the complex element.  

Xd(n) Xf (n)

N1

N2

Yd(k) =
N−1

∑
n=0

e−2πj kn
N xd(n)

xd(n)

Yd(k) K1
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A first complex array of -dimension is generated in the frequency domain from the 

original  dataset. The monthly averages of the original  over a five years period 

have been used to generate a second complex array of -dimension.  

A third complex array is generated from an optimized subset of the original 

-complex array thru a low-pass filter (LPF) that iterates until the cut-off frequency. This 

third optimized complex array has a -dimension. The LPF algorithm minimizes the 

mean squared error (MSE). As described in the following Eq. [2.2] the array in the time 

domain,  obtained with an optimized subset ( ) of  is compared with the 

original until MSE is minimized. 

.    [2.2] 

Here  is the objective function MSE to minimize and  is the dimension of 

training (original) dataset,  is the n-element of the training climate dataset , k 

is the index of the k-element of the complex array, P is the dimension of complex array, 

 is the k-complex element. 

The three complex arrays return then, into the time domain by the inverse discrete 
transform as follows:     

 .       [2.3] 

Here  represents the predicted dataset in the time domain of n elements . F 

is the dimension of the best subset of complex arrays,  is the k-complex element of 

the best complex array. And finally the coefficient of determination named  which 

estimates the ratio between the square error and the variance is used to compare the 
performances against the test datasets. 

 ,       [2.4] 

where  denotes the sample mean of the corresponding feature.  

K1

N1 N1

K2

K1

K3

Xp(n) K3 K1

min f (K ) =
1
N1

N

∑
n=1 (xd(n) −

1
K

K−1

∑
k=0

e2πj kn
P yp(k))

2

f (K ) N1

xd(n) Xd(n)

yp(k)

Xf (n) =
1
F

F−1

∑
k=0

e2πj kn
F yf (k)

Xf (n) xf (n)

yf (k)

R2

R2 = 1 −
∑N

n=1 (xd(n) − xf (n))
2

∑N
n=1 (xd(n) − μx)2

μx
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2 . 2 . 2  P r e d i c t i o n  o f  d a t a s e t s  b y  r e g r e s s i o n  m o d e l s  

In the following part of the work, we analyzed different regression models to identify 
interrelations among the four climate variables. The scope is to setup an indirect method 
to build quickly accurate predicting curves, among best-fitting coupled variables. We 
utilized exploratory data analysis to identify the presence of outliers, the distribution of 
the data, and the relationships between the variables, then a scatterplot matrix to 
visualize the pair-wise correlations has been created. To quantify the linear relationship 
between the variable, we proceed to build a correlation matrix embedding the Pearson 
product-moment covariance coefficients as follows:  

 .   [2.5a] 

 Here µ denotes the sample mean of the corresponding variable,  and  are 

correlated training datasets.  

As introduced by S. Raschka [19] the linear dependence between pairs of variables is 
strictly related to the value of Pearson coefficient within the range -1 and 1. A perfect 
positive linear correlation is expressed by Px,y =+1 / -1, while no correlation if Px,y = 0. 
The relationship among monthly climate variables with the Pearson’s coefficient higher 
than 0,7 has been modeled by using: linear, quadratic and cubic polynomials. For 
variables with the weakest Pearson’s coefficient, as proposed by A. Liaw et al. [20] the 
random forest method has been used.  

This further method allows dividing the continuous regression curve into a sum of 
linear functions. The decision tree is generated by splitting its nodes until the 
Information Gain (IG) is maximized as follows:  

 ,    [2.5b] 

where x is the feature to perform the split, Np is the number of samples in the parent 
node, I is the impurity function (i.e., MSE), Dp is the subset of training samples in the 

parent node. Moreover, ,  are the subsets of training samples in the left and right 

Px,y =
∑N

n=1 [(xd(n) − μx) (yd(n) − μy)]
[∑N

n=1 (xd(n) − μx)2]
−2 [∑N

n=1 (yd(n) − μy)
2]

−2

xd(n) yd(n)

IG (Dp, x) = I (Dp) − ( Nl

Np
I(Dl) +

Nr

Np
I(Dr))

Dl Dr
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child node after the split and ,  are the number of samples in the child nodes. The 

performance of the forest regression is again evaluated with R2 estimator.  

2 . 3  Te c h n o - e c o n o m i c  m o d e l s  o f  t h e  d i s t r i b u t e d  
e n e r g y  r e s o u r c e  

The following paragraphs are dedicated to describe all the techno-economic models 
that are used in the objective function, the associated boundaries and constraints.  

2 . 3 . 1  P h o t o v o l t a i c  p a n e l s  

The calculation of the hourly mean power generated by PV starts with an expression 
to convert the daily mean solar radiation into hourly solar radiation. The Cooper [31] 
relation defined in Eq. 2.6 is commonly used to detect the angle between the equatorial 
plane and a straight line drawn between the centre of the Earth and the centre of the sun 
for every day of the year. This angle is known as the solar declination, δ (degree). For 
the present purposes, it may be considered as approximately constant over the course of 
any one day. If angles north of the equator are considered as positive and south of the 

equator are considered negative, the solar declination , can be described as: 

,       [2.6] 

where n is the number of day. The standard deviation is then calculated: 

,     [2.7] 

where  is the latitude (degree). 

Finally the normal distribution is calculated as follows: 

 .      [2.8] 

In relation [8]  represents the time unit for the calculation of mean values expressed 

in hourly value and  and  are constants. The choice of a time unit  with a step of 

one hour (referred later in the paper as time-step), permits to express the terms of energy 
equal to the hourly power average.  

Nl Nr

δ(n)

δ(n) = 23.45o sin [3600 ⋅ ( 284 + n
365 )]

σg(n , θ ) = 1.983 − 0.022 ⋅ arccos [−tan θ ⋅ tan δ(n)]
θ

g(ts, n , θ ) =
1

ka ⋅ σg(n , θ )
e

−
(ts − 12)2

kc ⋅ σg(n, θ)2

ts
ka kc ts
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The conversion between the mean monthly value and the mean hourly value is 
computed via the following Eq. 2.9: 

,      [2.9] 

where  is the daily radiation monthly means returned by equation [2.3] and 

 is longitude (degree). These values are delivered for the tilted angle . Then, the 

probability density function of the normal distribution, (defined here as ) is used 

to adjust the hourly radiation with the monthly mean cloudy cover datasets; therefore the 
final expression of the hourly radiation mean with the cloudy effect can be calculated as 
follows: 

,     [2.10] 

The random number generator [32],  returns a uniformly 

distributed random number within the range . Here 

 denotes the daily monthly mean cloudiness dataset and  is standard 

deviation defined as a constant (e.g., 0,25). The mean hourly radiation with clouds is 

finally modified with the vegetation by multiplying  with Eq. 2.11:  

,      [2.11] 

where  assumes only the value ‘0’, if the vegetation is not present or ‘1’ if the 

ground is vegetated. The function  is then adjusted taking into account the 

angle between the horizontal plane and the solar panel which is called the tilt angle. As 
proposed by A. Luque and S. Hegedus in 2011 [21] the optimal inclination angle can be 
obtained with the following linear equation [2.12]: 

,       [2.12] 

where  and  are given in degree. 

Thus, with a second-order polynomial equation the ratio between radiation and a 
different tilt can be described with accuracy as follow: 

,    [2.13] 

G (ts, θ, ϕ) = g(ts, θ, n) ⋅ H(θ, ϕ, n)

H(θ, ϕ, n)

ϕ βo = 0

N(μ, σ)

Gc(ts, θ, ϕ) = G (ts, θ, ϕ) ⋅ (1 − N (μ (ts, θ, ϕ), σ))
N (μ (ts, θ, ϕ), σ)

0 ≤ Gc(ts, θ, ϕ) ≤ G (ts, θ, ϕ)

μ (ts, θ, ϕ) σ

v (θ, ϕ)
Gvc(ts, θ, ϕ) = Gc(ts, θ, ϕ) ⋅ (1 − v (θ, ϕ))

v(θ, ϕ)
Gvc(ts, n , θ, ϕ)

βopt = 3.7 + 0.69 |ϕ |

β ϕ

g (β, βopt) = 1 + p1 (β − βopt) + p2 (β − βopt)
2
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where the function  is expressed as follow: 

 .       [2.14] 

Hence, the maximum radiation can be calculated, combining the hourly mean 

radiation with clouds described in Eq. 2.11 which is related to , to the polynomial 

Eq 2.14: 

.      [2.15] 

Eq. 2.14 can be used again to adjust the title angle in the radiation as follows: 

 .   [2.16] 

The further step is the definition of a model for the temperature which is used in the 
ATE model of DG. The Pearson’s coefficient indicates that this variable can be derived 
from the hourly mean solar radiation via a linear regression model as follows:  

.       [2.17] 

Here, the weight  represents the y-axis intercept and  is the coefficient of the 

explanatory variable  .   is the environmental temperature (K).   

Finally, the total available power generated by the photovoltaic panels can be derived 
from the adjusted hourly radiation, the solar panel yield and the power losses due to 
temperature, power conditioning (e.g., MPPT), AC/DC cables, shading, snow, dust is 
described as follows: 

 ,  [2.18] 

where:  is the PV solar yield (kWh/kWpeak), N is the dimension of the power losses 

 are and  (m2) is the surface of the PV panel. 

g (β, βopt)
Gc(β )

Gc (βopt)
= g (β, βopt)

βo = 0

Gvc(ts, θ, ϕ, βopt) =
Gvc(ts, θ, ϕ)

g (βo, βopt)

Gvc(ts, θ, ϕ, β ) = Gvc(ts, θ, ϕ, βopt) ⋅ g (β, βopt)

Tamb = wo + w1 ⋅ Gvc(ts, θ, ϕ)

wo w1

Gvc Tamb

Ppv_available (ts, θ, ϕ, β) = λst ⋅ Gvc(ts, θ, ϕ, β ) ⋅
N

∏
i

(1 − ηi) ⋅ Apv

λs

ηi Apv
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Similarly, the Eq. 2.19 describes the total available power generated by the thermal 
solar collector. The latter derives from the hourly net radiation, the solar panel yield and 
the power losses due to temperature, shading, snow, dust and tilt as follow: 

 [2.19] 

.      [2.20] 

Eq. 2.20 is the relation for the thermal solar collector efficiency. The latter is 

obtained as a linear correlation between the input collector mean temperature ( , K), 

and the environmental temperature (Eq.2.17). The terms  represent the power losses 

and  (m2) is the area of the thermal solar collector.  

2 . 3 . 2  W i n d  t u r b i n e s  

For the wind turbines, the definition of the techno-economic model starts with the 

wind speed daily mean of each month, here defined as .  

In this thesis, two alternative approaches have been proposed to convert the wind 
speed daily mean into an hourly mean dataset. The first is based on the Weibull 
distribution, which is widely used as an approximation for the wind speed simulation 
(E.1 References [1,2]. 

 .   [2.21] 

The second uses the probability density function of the normal distribution 
(Appendix E). 

The optimal values of the given shape parameter  for the Weibull 

distribution in Eq. 2.21 has been computed by minimizing the MSE error between the 
result of Eq. 2.21 and the profile that for each geographic location, can be derived from 
the NASA Surface meteorology and Solar Energy (SSE) database [35]. It has been 
observed that the Weibull distribution replicates the original profile issued by NASA 
with a MSE error lower than 0,01% . 

Pst_available (ts, θ, ϕ, β) = ηst (ΔTst (ts, θ, ϕ)) ⋅ Gvc(ts, θ, ϕ, β ) ⋅
N

∏
i

(1 − υi) ⋅ Ast

ηst (ΔTst (ts, θ, ϕ)) = ηo + ko (Tin − Tamb (ts, θ, ϕ))

Tin

υi

Ast

w(ts, θ, ϕ)

Ws(ts, θ, ϕ) = {Weibull [αs (θ, ϕ), 8760] ⋅ w (ts, θ, ϕ)
Ws(ts, θ, ϕ) ≥ 0

αs (θ, ϕ)
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The available power generated by a WT is a function of the hourly mean wind speed 
and the characteristic curve of WT delivered by the manufacturer that correlates power 
of the WT to the wind speed.  

The sum of the losses,  caused by the cables, MPPT will be deducted to obtain the 

available wind power as: 

 .   [2.22] 

2 . 3 . 3  T h e r m a l  a n d  e l e c t r i c  l o a d  p r o f i l e s  

In this work, both thermal and electrical loads have been considered. These loads 
represent a sum of multiple consumptions of energy that are powered by the MG. The 

monthly profiles of the thermal loads ( ) and electric loads ( ) are obtained 

from the input of minimum and maximum daily mean power (respectively, ) 

as follows: 

,  [2.23] 

,  [2.24] 

,  [2.25] 

,    [2.26] 

where n denotes the number of the month. 

Based on the work done by A.M. Breipohl et al. [22] the Gauss Markov function, 
defined in Eq.2.27 is used to convert the monthly load profile into the stochastic daily 

electric load. The mean and standard deviations (i.e.,  ) inside the function  are 

derived from a statistical analysis of electric loads profiles of more than 100 households. 

This work has been conducted by K. Konstantinos [10] and converted into a library 
of python programming language in 2017. 

ηi

Pwt_available (ts, θ, ϕ) = Pwt (Ws(ts, θ, ϕ)) ⋅
N

∏
i

(1 − ηi)

Pth_load Pel_load

Pmax, Pmin

Pa_load (n) = cos ( 4π
12

n)0.5 (Pmax − Pmin) + 0.5 (Pmax + Pmin)

Pb_load (n) = sin ( 4π
12

n)0.5 (Pmax − Pmin) + 0.5 (Pmax + Pmin)

Pel_load(n) = {
Pload_a (n) pea k in f irs t sem es ter
Pload_b (n) pea k in secon d sem es ter

Pth_load(n) = Pa_load (n) + Pb_load (n)

μl σl fgm
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.    [2.27] 

Finally, a stochastic electrical load profile is drawn from the following normal 
distribution in Eq.2.28. The mean is derived from the previous Eq.2.27; while the 

standard deviation ( ) is given as input. 

.     [2.28] 

The thermal load  is defined with the following relation with a similar 

approach such as Eq. 2.27 but with two periodic peaks (to simulate heating in winter and 
cooling in summer) :  

.    [2.29] 

Load shedding and load shifting (peak-shaving) are then applied as a controlled 
option to respond to unplanned electric power underflow.  

Simulation of a demand response mechanism that makes the load profile less peaky 
has been introduced to explore in a micro-grid paradigm, the economic benefit of 
providing energy services. 

The electric load profile is analyzed per monthly period and the peak hours have 
their load shifted to low load hours or are shaved. When not shaved, the total load is the 
same as that one from the original, otherwise it is smaller due to the shaved peaks. The 
peak load is reduced by a predefined percentage.  

The electric load profile corresponding to the desired demand response profile is 
obtained by:  

.  [2.30] 

The parameters:  express the whole fraction of load to cut, 

fraction of hours to shift, fraction of energy to shift respectively.  

2 . 3 . 4  E n e r g i e s  e x c h a n g e d  a m o n g  i n t e r c o n n e c t e d  
m i c r o g r i d s   

Outflow and inflow energies exchanged among microgrids and the main grid are 
respectively represented by the following relationship : 

.   [2.31] 

Pelst_load(ts) = fgm ((Pel_load(n), N(μl σl), ts)

σnoise

Pel_load(ts) = N(Pelst_load(ts), σnoise)

Pth(ts)

Pth_load(ts) = fgm ((Pth_load(n), N(μl σl), ts)

Peldr_load(ts) = f (Pelst_load(ts), khm , kshif ted) ⋅ (1 − kshedding)
kshedding, khm, kshif ted
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Pgrid_sellback,grid_buy (ts) = N([0,1], p) ⋅ Pgrid_sb,grid_by (ts)



Where the index “grid_sellback” and “grid_buy” represents respectively the outflow 
energy and inflow energy for each MG to the main grid.  

 is a random number generator that returns a sample from the given 1-D 

array [0,1] to consider grid outage events spread with the probability ‘p’.  

2 . 3 . 5  T h e r m a l  a n d  e l e c t r i c  d i s t r i b u t e d  g e n e r a t o r s   

Two types of Electric DG ( ) are considered: PEMFC-CHP and OG. The mean 

power they deliver in each time-step ( ) is defined respectively as:  and . 

On the contrary the mean power absorbed by an electrolyzer to convert electric energy 

into chemical energy ( ) is denoted as: . The efficiency of the conversion from 

electricity into hydrogen is equal to the energy content (based on the higher heating 
value) of the hydrogen produced divided by the amount of electricity consumed.  

For the thermal generators, the following relations correlate the hourly mean energy 
produced respectively by electric boilers, stand alone heat pumps and combined to solar 
panels as follows:  

       [2.32]  

       [2.33] 

.       [2.34] 

Where  represents for each DG the efficiency of the conversion from electric to 

thermal energy. 

A DG is converting the chemical energy of a fuel into electric energy. The fuel has a 

purchase cost per liter and a transportation cost of   (€/l), respectively. The 

conversion of energy occurs with a certain efficiency ( ) depending upon the type of 

DG. For example, in the fuel cell, the efficiency is defined as a ratio between the 
electricity produced and the hydrogen consumed.  

The efficiency is related to the performance of the fuel cell stack, the balance of plant 
and the reformer unit, if installed. The overall costs are then related to the volumetric 

energy density of the fuel ( , kWh/l).  

N([0,1], p)

Pder, j

ts Pfc(ts) Pgenset(ts)

H2 Pec(ts)

Peboy(ts) = ηeboy ⋅ Pel_eboy(ts)

Php(ts) = ηhp ⋅ Pel_hp(ts)

Psthp(ts) = ηsthp ⋅ P
el_sthp

(ts)

η

Cfuel, Ctrp

ηdg,g

Ved_ fuel
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For HP, the efficiency is denoted by the coefficient of performance (COP). This term 
is determined by the ratio between the energy usage of the compressor and the amount 
of useful cooling at the evaporator. For a heat pump a COP value of 4, means that the 
addition of 1 kW of electric energy is needed to have a release of 4 kW of heat at the 
condenser. 

2 . 3 . 6  T h e r m a l  a n d  e l e c t r i c  e n e r g y  s t o r a g e  s y s t e m s  

The techno-economic model of the electric energy storage systems (ESS) and the 
thermal energy storage system (TES) are defined with a set of equations that describe 
charging and discharging hourly mean power (energy charged and discharged in the 
time-step of 1 hour) in relation to SoC (State of Charge), SoH (State of Health), 

 (rated and aged energy capacity, kWh). 

The C-rate function, i.e.,  is a function of the rate at which the 

battery is discharged/charged and the maximum capacity. We assume the convention 
that the energy flows coming out the ES, are negatives (charging storages, absorptions 
of loads, sell-back to main grid).  

   ,  [2.35]

    ,   [2.36]

    ,  [2.37]

  ,  [2.38] 

 ,   [2.39]

,  [2.40]

 .  [2.41] 

Pess_rated_capacit y, Pess_aged_capacit y

Cess_charge_rate(ts)

Pess_aged_capacit y(ts) = f (Pess_rated_capacit y, SoHess(ts), Tamb(ts))
Pmax_aged_capacit y(ts) = Pess_aged_capacit y(ts) ⋅ SoCess_max

Pess_aged_charge_min(ts) = {
Pess_storage(ts) − Pmax_aged_capacit y(ts)
Pess_aged_charge_min(ts) < 0

Pess_aged_charge(ts) = {
−Pess_aged_capacit y ⋅ Cess_charge_rate(ts)
Pess_aged_charge_min(ts) ≤ Pess_aged_charge(ts) ≤ 0

Pmin_aged_capacit y(ts) = Pess_aged_capacit y(ts) ⋅ SoCess_min

Pess_aged_discharge_max(ts) = {
Pess_storage(ts) − Pmin_aged_capacit y(ts)
Pess_aged_discharge_max(ts) > 0

Pess_aged_discharge(ts) = {
Pess_aged_capacit y ⋅ Cess_discharge_rate(ts)
0 ≤ Pess_aged_discharge(ts) ≤ Pess_aged_discharge_max(ts)
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Each thermal generator is coupled with thermal storage (TES); the hourly mean 
power discharge is defined in Eq. 2.43 as the minimum among the discharge rate of the 
thermal power capacity and the thermal energy storage in the “i” tank.  

Similarly, the hourly mean power charge can be defined as the minimum among the 
charge rate of the thermal power capacity, the remaining thermal energy storage to fill 
the i-tank as reported in Eq. 2.45. 

,   [2.42] 

,  [2.43]

,  [2.44] 

.  [2.45] 

2 . 4  C o s t  m o d e l s  a n d  o p t i m i z a t i o n  o f  m i c r o g r i d ’ s  
o p e r a t i o n s  

SLSQP is a sequential least squares programming algorithm that evolved from the 
least squares solver proposed by Lawson and Hanson in 1974 [23]. The optimizer uses 
the Han–Powell method and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update of 
the quasi-Newton Hessian approximation for non-linear programming (NLP) in the line 
search algorithm. Dieter Kraft [24] has originally applied in 1988 this algorithm to 
aerodynamic and robotic trajectory optimization.  

The SLSQP method minimizes a function of several variables with any combination 
of bounds, equality- and/or inequality constraints. It can be used to solve linear and non-
linear programming problems to minimize scalar functions. In this work, the off-the-
shelf SLSQP optimizer available in SciPy has been used. SciPy [34] is a Python-based 
ecosystem of open-source software for science, and engineering. 

In each time-step, SLSQP minimizes a non-linear objective function that contains 
costs and revenues, while the thermal and electric power and the interconnected energy 

Pesth_aged_capacit y,i(ts) = f (Pesth_rated_capacit y,i(ts), SoHesth,i(ts), ηesth,i)
Pesth_discharge,i(ts) = {

Pesth_aged_capacit y,i(ts) ⋅ Cesth_discharge_rate,i(ts)
0 ≤ Pesth_discharge,i(ts) ≤ Pesth_storage,i(ts)

Pesth_aged_charge_min,i(ts) = {
Pesth_storage,i(ts) − Pesth_aged_capacit y,i(ts)
Pesth_aged_charge_min,i(ts) < 0

Pesth_aged_charge,i(ts) = {
−Pesth_aged_capacit y,i(ts) ⋅ Cesth_charge_rate,i(ts)
Pesth_aged_charge_min,i(ts) ≤ Pesth_aged_charge,i(ts) ≤ 0
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flows are balanced. The objective function is the difference between the sum of costs 
and revenues. The firsts are related to the energy inflows from DG to the MG, the 
energy to generate hydrogen, the purchase of energy from others MG and the main grid 
and the discharge of energy storage systems.  

The revenues are inherent to the electric and thermal load consumptions, the sell-
back of electricity and heat to other MG, the generation of water and carbon black by 
PEMFC-CHP, the delivery of energy services (load shedding, peak shaving, load 
shifting), the sell-back electricity to the main grid. 

Costs and revenues are calculated as product between the LCOE (€/kWh), LSOE (€/
kWh), and the related energy generated and consumed in each time-step. 

LCOE is the ratio between the initial costs, the nominal operational and maintenance 
costs along the lifetime of the DER and the whole energy generated during the lifetime. 
The general expression of the objective function can be summarized as follows: 

 .                [2.46a] 

Where  (kWh) are the fractions of energy flows of the DER to optimize every 

time-step. The indexes C, c indicate the number of DER that generate costs; R, r the 

number of DER that generate revenues. The  embeds the elements  as 

depicted in the following term: 

.               [2.46b] 

The final profitability depends on the assumed values of the . The 

elements of the  are optimized for obtaining the highest profitability. The 

contribution to the profitability of each single element is detailed in the Paragraph 2.4.1. 

The weights (i.e., LCOE, LSOE) direct the SLSQP algorithm to choose the optimal 

bounded value for every element of the  to maximize the right terms 

( ) while minimizing the left terms ( ).  

In other words, SLSQP acts to better counterbalance the energy flows with the 
weight mechanism. The highest costs of generation are penalized while on the contrary, 
the highest revenue streams are prioritized.  

f (X ) =
C

∑
c=1

LCOEc ⋅ xc −
R

∑
r=1

L SOEr ⋅ xr

xc, xr

X − array xc, xr

X = [xc(ts)1, . . . , xc(ts)C, xr(ts)1, . . . , xr(ts)R]
X − array

X − array

X − array

L SOEr ⋅ xr LCOEc ⋅ xc
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The LCOE for each inlet thermal and electric i-DER can be obtained from the 
definition of LCOE: 

 ,       [2.47] 

where:  is the investment expenditures in year j (including financing),  is the 

operations and maintenance expenditures in year j,  is the fuel expenditures in year j 

(only for DG),  energy generation in year j; r is the discount rate and n is life of the 

system expressed in years.  

It is relevant to note that the terms LCOE and LSOE embedded in the objective 
function (i.e., Eq. 2.46a) are computed with the nominal values of expenditures and 
energy generation thus, they are constants. At the exit of the loop of the time-steps 
optimizations, the financial models - that are discussed in the following Paragraph 2.4.4 
- computes both terms again but with the actual costs and revenues deriving from the 
time-steps optimizations. 

2 . 4 . 1  C o s t  m o d e l s  o f  d i s t r i b u t e d  e n e r g y  r e s o u r c e s  

This section details the cost and revenue terms incorporated in Eq. 2.46a. 

The mean hourly costs of energy generated by the renewable energy sources (RES) is 
obtained as follow: 

,    [2.48] 

where i is the type of electric RES (i.e., PV, WT) and ST.  

LCOEc =
∑n

j=1

Cj + Oj + Fj

(1 + r) j

∑n
j=1

Pj

(1 + r) j

Cj Oj

Fj

Pj

Cres (ts) =
M

∑
i=1

∑n
j=1

Cres, j,i + Ores, j,i

(1 + r) j

∑n
j=1

Pavailable, j,i(ts, θ, ϕ, β)
(1 + r) j

⋅ xres,i (ts)
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The general expression of the costs and revenues for the thermal (TES) and electric 
(ESS) energy storages is denoted in the following Eq.2.49: 

 

The cost contribution of the thermal (i.e., EBOY, HP, STHP) and electric DG (i.e., 
PEMFC-CHP, OG) can be described as the following Eq.2.50a: 

       

Here, g is the type of DG.  

The parameter  is correlated to the “products” that are generated and it assumes a 

different value as follows: 

.                     [2.50b]  

According to the research of K. D. Hristovski et al. in 2009 [25], the harvesting water 
from fuel cells should be considered as a by-product of operation.  

The overall results of this study indicate that water generated from fuel cells is very 
pure, with contaminant levels lower than the MCL (Maximum Contaminant Level) 
values. 

Typically, a fuel cell is operated at its peak power output, which corresponds to a 

current density of 1 A/cm2, which results in a ratio of 0,5 . 

Ves (ts) =

∑T
t=1

∑n
j=1

(Ces, j,t + O
es, j,t

)

(1 + r) j

∑n
j=1

Pes_rated_discharge, j,t ⋅ ηt
(1 + r) j

⋅ xes,t (ts) i f xes,t ≥ 0 (d i s c h a r g e)

∑T
t=1 St (ts) −

∑n
j=1

(Ces, j,t + O
es, j,t

)

(1 + r) j

∑n
j=1

Pes_rated_discharge, j,t ⋅ ηt
(1 + r) j

⋅ xes,t (ts) i f xes,t ≤ 0 (c h a r g e)

.

Cdg (ts) =
G

∑
g=1

∑n
j=1

Cdg, j,g + Odg, j,g +
(Cfuel, j,g + Ctrp, j,g)

Ved_ fuel,g ⋅ ηdg,g
⋅ Pdg, j,g

(1 + r)k

∑n
j=1

Pdg, j,g ⋅ Gt

(1 + r) j

⋅ xdg,g (ts) .

Gt

Gt = {1 oth ers
2,5 f u el cel l s ys tem (elec t r ic, h ea t , water)

l /kW h
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The costs and revenues associated to the exchange of electric and thermal energy 
among microgrids and main grid is represented in the following Eq. 2.51: 

  

A variety of thermal and electrical loads are embedded in the CHP-MMG. These are 
the primary sources of the revenue stream. The expression to describe their economic 
contribution is denoted as follows: 

  .   [2.52] 

Where  and  are the unit prices of the thermal and electric energy 

supplied to the end-user. The terms  are respectively the thermal and 

electric loads. 

An additional source of revenues are the services to the main grid. Electric loads of 
MG can contribute to balance the main grid by taking part at demand response or 
frequency response markets. The framework of these programs foresees incentives and 
penalties to users when they provide additional power or they shape their consumption 
from the grid at peak periods.  

The following Eq. 2.53 - 2.55 propose a scheme to calculate a revenues streams 
issued by grid services (DR): 

, [2.53] 

, [2.54] 

  , [2.55] 

Rload(ts) = Sth (ts) ⋅ xth_load (ts) + Sel (ts) ⋅ xel_load (ts)
Sth(ts) Sel(ts)

xth_load, xel_load

Rdra(ts) = Peldr_load(ts) ⋅ Seldr (ts) − (xel_load (ts) −Peldr_load(ts)) ⋅ C
dr (ts)

Rdrb(ts) = xel_load(ts) ⋅ Seldr (ts) − (Peldr_load(ts) − xel_load (ts)) ⋅ C
dr (ts)

Rdr(ts) = {
Rdra(ts) i f xel_load (ti) > Peldr_load(ti)

Rdrb(ts) i f xel_load (ti) < Peldr_load(ti)

6 0

Vgrid (ts) =

LCOEgrid +
∑n

j=1
Cgrid, j + Ogrid, j

(1 + r) j

∑n
j=1

Pgrid, j
(1 + r) j

⋅ xgrid (ts) i f xgrid > 0

L SOEgrid −
∑n

j=1
Cgrid, j + Ogrid, j

(1 + r) j

∑n
j=1

Pgrid, j
(1 + r) j

⋅ xgrid (ts) i f xgrid < 0

.



where  is the energy demanded by the main grid,  is the remuneration 

per kWh for the demand response service while  is the penalty for exceeding energy 

absorbed by the electric loads. 

These relations describe possible business scenarios to foster the diffusion of 
prosumers communities (those who consume and produce energy).  

EC is a special internal load that absorbs electric energy to convert it into hydrogen, 

an energy carrier that can be converted later in electric energy. The term represents 

the efficiency in the conversion of electric energy to hydrogen back and forward.  

The contribution in term of revenue streams of the EC is expressed with the 
following Eq. 2.56: 

 .   [2.56] 

2 . 4 . 2  O b j e c t i v e  f u n c t i o n  a n d  c o n s t r a i n t s  

In this section the terms of the non-linear objective function indicated in Eq. 2.46a 
are decomposed and thus the contribution to costs and revenues of each DER is 

indicated. The overall revenue streams  (€) generated by the thermal, electric loads, 

DR and EC every time-step are indicated as follow: 

 .                   [2.57] 

In addition to Eq. 2.57, grids sell-back and ES charging functions are further 
additional contributions to the revenues embedded in the “V” terms of the following Eq. 
2.58. Therefore the objective function indicated in Eq. 2.46a can be expressed as 
follows: 

 ,  [2.58] 

where  are parameters to calibrate the weights of the two terms. The objective 

function in Eq. 2.58 is solved by keeping balanced the energy flows of the components 

Peldr_load Seldr

Cdr

ηhe

Rec(ts) = Sel (ts) ⋅ ηhe −
∑n

j=1

(Cec, j + O
ec, j

)

(1 + r) j

∑n
j=1

Pec, j

(1 + r) j

⋅ xec (ts)

R(ts)

R (ts) = Rload(ts) + Rec(ts) + Rdr(ts)

f (x) = [Cres (ts) + Cdg (ts) ± Ves (ts) ± Vgrid (ts)] ⋅ kc − R (ts) ⋅ kr

kc, kr
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embedded in the X-array indicated in Eq. 2.46b. Here, is assumed the convention that 
the outer energy flows of each DER and MG are negative.  

The unequal constraints Eq.2.59 are non-linear and respectively express the thermal 
and electric balances: 

    ,    [2.59] 

where  are parameters to calibrate the two terms. The latter are detailed in the 

following Eq. 2.60 - 2.63: 

 

 

  

 . 

Where Me, Te, Ge are respectively subsets of electric RES, ES, DG, while Mh, Th, 
Gh are respectively subsets of thermal RES, ES, DG. 

The following additional equality constraint is added for both thermal and electric 
energies, that is exchanged among the interconnected MG: 

 ,       [2.64] 

where  are the losses in the MG interconnections. 

The elements of the X-array in Eq. 2.46b vary within the boundaries indicated in the 
following Eq. 2.65-2.69.  

Their limits are dynamically shaped based on the available mean power that can be 
calculated with the model defined in Paragraph 2.3. 

{[gel_der (ts)] ⋅ kder − [gel_load (ts)] kl ≥ 0

[gth_der (ts)] ⋅ kder − [gth_load (ts)] kl ≥ 0

kder, kl

gel_der (ts) =
Me

∑
i=1

xel_res,i (ts) +
Te

∑
i=1

xess_disch,i (ts) +
Ge

∑
i=1

xel_dg,i (ts) + xgrid_buy (ts)

gel_load (ts) =
∑Ge

i=1 xth_dg,i (ts)
ηdg_thermal,i

+ xel_load (ts) + xgrid_sellback (ts) +
Te

∑
i=1

xess_ch,i (ts) + xec (ts)

gth_der (ts) =
Mh

∑
i=1

xth_res,i (ts) +
Th

∑
i=1

xesth_disch,i (ts) +
Gh

∑
i=1

xth_dg,i (ts) + kchp ⋅ x
fc (ts)

gth_load (ts) = xth_load,i (ts) +
R

∑
i=1

xesth_ch,i (ts)

xitc_i(ts) ⋅ (1 − ηitc) + xitc_ j(ts) = 0

ηitc
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      [2.65] 

       [2.66] 

                [2.67] 

     [2.68] 

.   [2.69] 

Where the subscript “i” indicates the i-DER. 

In conclusion, both constraints and the objective function are non-linear. These 
functions are the sum of piecewise-linear functions. Moreover, it can be observed that 
all computed eigenvalues of the Hessian matrix of the objective function are null; thus, 
the convex property is proved. It is noteworthy to point out that, the SLSQP optimizer, 
specifically designed for NLP, enables to iteratively achieve the global minimum of a 
constrained non-linear convex optimization problem in a computationally efficient 
manner. 

2 . 4 . 3  S t a t e  o f  h e a l t h  o f  d i s t r i b u t e d  e n e r g y  r e s o u r c e s  

The optimal configurations of the X-array calculated each time-step by SLSQP, is 
used to update the States of Healths (SoH, %). SoH has a relevant role in the calculation 
of operational costs (OPEX). It is obtained as the ratio among the energy generated until 
the time-step and the potential energy that can be generated by the DER until the End of 
Life (EOL). The following Eq. 2.70-2.77 propose how to estimate SoH of RES, DG, and 
ES in a simplified manner: 

,  [2.70] 

,    [2.71] 

 .    [2.72] 

0 ≤ xres,i (ts) ≤ Pres_available,i (ts)
0 ≤ xdg,i (ts) ≤ Pdg,i (ts)
Pes_aged_charge,i (ts) ≤ xes,i (ts) ≤ Pes_aged_discharge,i (ts)
Pgrid_sellback (ts) ≤ xgrid (ts) ≤ Pgrid_buy (ts)
m i n (Pel_load(ts), Peldr_load(ts)) ≤ xel_load,i (ts) ≤ m a x (Pel_load(ts), Peldr_load(ts))

SoHres,i (ts) = min (
s−1

∑
h=1

xres,i (th)
Eres_available_EOL,i (θ, ϕ)

,
s−1

∑
h=1

hi (th)
Li )

SoHdg,i (ts) = min (
s−1

∑
h=1

xdg,i (th)
Pdg,i ⋅ Li

,
s−1

∑
i=1

ni (th)
Ncycles,i )

SoHesth,i (ts) = min (
s−1

∑
h=1

xesth,i (th)
Pesth,i ⋅ Li

,
s−1

∑
h=1

hi (th)
Li )
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Where the subscript h is the time-step (one hour),  is the lifetime in hours of each 

DER, the term  represents the lifecycles,  is the n-cycle at the time-step  , 

while  is cumulative run-hour and  and  are the power size of the DER. 

 (kWh) is the cumulative energy at end of life generable by the RES 

geo-localized at latitude  and longitude .  

The State of Health (SoH) of the lithium battery is composed of two terms: the 
calendar lifetime and lifecycles. These empirical models proposed by R. B. Wright and 
C. G. Motloch of DOE in 2001[26][33] have been validated with test on commercial 
18650 cylindrical cells type with cathodes of LiNiCo, carbon anodes and as electrolyte 
LiPF6.  

The results of testing indicate that both the discharge and R-resistances increased 
with time at each percentage change (delta%) of the State of Charge (SOC). The 
magnitude of the discharge and resistance and the rate at which they changed depended 
on the temperature and delta% of SOC. The square root of time dependence can be 
accounted for by either a one-dimensional diffusion type of mechanism, presumably of 
the lithium ions, or by a parabolic growth mechanism for the growth of a thin film solid 
electrolyte interface (SEI) layer on the anode and/or cathode.  

 The functional form of the model of the R-resistances are given by the following Eq. 
2.73 - 2.74: 

 

  

 

where a, c are constants;  are further constants 

related to the activation energy. These parameters can be obtained thru characterization 

tests.  is the environment temperature dataset while R is the gas constant and 

 is the state-of-charge swing during the cycling.  

Li

Ncycles ni(th) ti

hi(th) Pdg,i Pesth,i

Eres_available_EOL,i

θ, ϕ

R (ts, Tamb, SOCess)calendar =
s−1

∑
h=0

a (SOCess,h) ⋅ e

Eact_acal
RTamb(th) ⋅ 2 th + c (SOCess,h) ⋅ e

Eact_ccal
RT(th)

R(ts, Tamb, SOCess, ΔSOCess)li fecycle =
s−1

∑
h=0

a (SOCh, ΔSOCess,h) ⋅ e
Eact_acy

RTamb(th) ⋅ 2 th + c (SOCh, ΔSOCess,h) ⋅ e
Eact_ccy
RT(th) ,

Eact_acal, Eact_ccal, Eact_acy, Eact_ccy

Tamb

ΔSOCess,h
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Based on the R-resistances terms, the  contribution of calendar lifetime and lifecycles to 
SoH can be computed as follows: 

 ,   [2.75] 

 .  [2.76] 

After the calculation of the above terms, the State of Heath of the lithium battery is 
defined as follows: 

.   [2.77] 

2 . 4 . 4  T h e  f i n a n c i a l  m o d e l s  

The SoH is used to calculate the replacement costs (REPEX), added to OPEX, and 
initial costs (CAPEX) to obtain the TCO (€). At the end of the calculation of all time-
step, the yearly TCO is obtained by the following Eq. 2.78: 

 

The yearly energy generated ( ), consumed by thermal and electrical loads, and sell-

back is given by Eq. 2.79: 

 .  

The expression of the yearly revenue stream is obtained as contributions of each 
DER in the following Eq. 2.80: 

 

where j and J identify the type of DER, h is the index of time-step, Nder , Cder, Oder are 
respectively the replaced number, the capital expenditures, operating expenditures of 
DG,RES, ES, EC and INV. After the first year, the time of calculation can be reduced 

SoHess (ts)calendar
= 1 −

R(ts, Tamb, SOCess)calendar

Rcalendar_max

SoHess (ts)li fecycle
= 1 −

R(ts, Tamb, SOCess, ΔSOCess)li fecycle

Rlifecycle_max

SoHess (ts) = min (SoHess (ts)calendar
, SoHess (ts)li fecycle)

TCOt =
J

∑
j=1

8760

∑
h=1

(Nder, j (th) + 1 − SoHj (th)) ⋅ Cder, j + Oder, j (th) +
(Cfuel, j (th) + Ctrp, j (th))

Ved_ fuel, j ⋅ ηdg, j
⋅ Pdg, j (th) .

Et

Et =
J

∑
j=1

8760

∑
h=1

[xth_load, j (th) + xel_load, j (th) + xth_sellback, j (th) + xel_sellback, j (th)]

Rt =
J

∑
j=1

8760

∑
h=1

(Rth_load, j (th) + Rel_load, j (th) + Rth_sellback, j (th) + Rel_sellback, j (th) + Rdr (th) + Rwater (th)),
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with a one-dimensional polynomial regression to extrapolate TCO, E and R over the 
timeframe of the project.  

The Internal Rate of Return (IRR, %) is then computed by solving: 

 .       [2.81] 

 NPV (€) of the cash flow generated during the project is returned by: 

 .     [2.82] 

Where t identifies the year of the project, M are the total years of the project. 

2 . 5  A  g e n e r a l  a r c h i t e c t u r e  o f  C H P - M M G  m i c r o g r i d s   

Figure 2.2 depicts the overall scheme of the CHP-MMG. The labeled boxes represent 
the techno-economic models of the DER. The red lines indicate the thermal network 
while the blue lines represent the electric network.  

The two CHP-MMG exchange electrical energy thru the ITCEL device and the 
thermal energy thru the ITCH device. Each MG independently exchanges electrical 
energy to the main grid (GRID).  

The generation of energy from renewables is represented with the labels: PV 
(photovoltaic panels), WT (Wind turbines) and ST (Solar thermal collectors). Fuel cells 
(FC) and OG (traditional gensets) are the further options for distributed generations.  

The electrical energy storage of energy is represented with the label ESS. Moreover, 
several thermal storages are indicated here with the initials ‘TK’ (i.e., tanks) followed by 
the name of the correspondent thermal generator. For example, the storage of hydrogen 
is indicated with the label ‘TKFC’. 

The conversion from electrical to thermal energy occurs with two different type of 
thermal distributed generators: the electric boilers (EBOY) and the heat pumps (HP, 
STHP). The conversion for electricity to hydrogen occurs with the electrolyzers that are 
labeled: ‘EC’ while the DG labeled 'FC' are the fuel cells, converting the hydrogen into 
electricity and heat. 

M

∑
t=0

−∑J
j=1 Cder, j + Rt

(1 + ir r)t
= 0

NPV =
M−1

∑
t=0

−∑J
j=1 Cder, j + Rt

(1 + r)t
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 The overall techno-economic model consists of 38 variables that need to be 
optimized to return the minimum levelized cost of energy (LCOE) and maximum 
internal return rate of investment (IRR). The 38 variables are listed in Appendix A.2 and 
they are grouped into two different categories: the fist group of 36 variables are the size 
of the Distributed Resources (DR) while the remaining 2 variables identify the 
geographic location in terms of latitude and longitude (i.e., the siting). The techno-
economic models described in Paragraph 2.3 are also used to compute the generation, 
storage, conversions of thermal and electric energy delivered by each DR labeled in 
Figure 2.2. 

Moreover, the techno-economic models are used to calculate the exchange of 
thermal, electrical, chemical energies between the two CHP-MMG under the minimum 
and maximum boundaries imposed by the size, the age of each DER or the available 
energy from renewables each time-step.  

The equations in the Paragraph 2.4.1 and Paragraph 2.4.2 are used to compute every 
time-step the economic contribution of each DER labeled in Figure 2.2 to the energy 
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Figure 2.2 The overall architecture of two CHP-MMG comprising 36 DER, 2 electrical, thermal loads



balances, while the SLSQP algorithm minimizes the cost-profit objective function. The 
equations in the Paragraph 2.4.3 are used to compute the state of health of each DER 
labeled in Figure 2.2 and the equations of the Paragraph 2.4.4 are used for the final  
computation of the financial terms (NPV, IRR). 

As highlighted in Paragraph 1.3, the optimal setting for the 38 variables is obtained 
as a solution of a highly non linear and non-convex problem requiring stochastic 
optimization techniques. A novel evolutionary optimization algorithm based on the 
innovative ADE/AIE genetic algorithms has been proposed and validated. A detailed 
description is given in the following Chapter 4.  

The following Paragraph 2.6, provides the results of the study carried on to 
investigate how the scheme of collaboration between the two microgrids (i.e.,‘swarm 
effect’) based on an optimal combination between conversions and exchanges of 
thermal, electrical, and chemical energies to obtain the best financial performances. In 
Chapter 6 a scheme of swarm effect is discussed. 

The overall results demonstrate the benefit of interconnecting MG. Crossflows of 
thermal and electrical energies allow to convert and share fraction of the exceeding 
energy between the two MG and thus DR may be downsized. For example, abundant 
electricity not used to power loads or charge batteries in a certain time interval is 
transferred to the other MG to be converted into heat energy. Then, some of the heat 
returns to the other microgrid. 
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2 . 6  R e s u l t s  a n d  d i s c u s s i o n  

2 . 6 . 1  M a n i p u l a t i o n  o f  c l i m a t e  d a t a s e t s  

The techno-economic model and optimization algorithm have been implemented into 

a Python® script. The FFT-IFFT method, utilized to manipulate original ECMWF 
datasets of the period from June 2017 to June 2018 has been implemented with the 
NumPy’s, SciPy, Sklearn, and Matplotlib libraries.  

The reference location for this work is nearby the city of Bremen, with latitude: 
53.0758196 and longitude: 8.8071646. Firstly, FFT-IFFT was used to extrapolate a first 
training dataset based on the original series, a second one based on monthly averages 
and a third generated with the low pass filter (LPF) cutting off frequencies respectively: 
1,16 [2.Hz] for radiance, cloud cover; 2,83 [2.Hz] for temperature. The performances of 
the three training curves, were measured with R2 index. The low pass filter results the 
best method to predict the radiance; cloud cover, temperature and wind speed, are best 
predicted with monthly average datasets.   

To use the regression method in alternative to FFT-IFFT, the pairwise correlations 
among variables (i.e., Figure 2.3) has been computed with the Pearson coefficient 
method. 
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Figure 2.3 Pearson product-moment correlation coefficients



The best-fitting linear correlation is among the radiation and the other climate 
variables that are characterized by values higher than 0,6. From Pearson’s relation it is 
obvious to implement a linear regression model for those variables to reduce the script 
runtime. The results delivered with linear, quadratic and cubic polynomial regressions as 
in Figure 2.4 were evaluated. The R2 (0,65) equal for all degree of regressions, confirm 
the strong linear correlation between these coupled variables. A good level of accuracy 
obtained with the climate datasets has allowed to obtain an equally sound estimation of 
the energy generated by RES. 

2 . 6 . 2  I n p u t s  o f  t h e  i n t e r c o n n e c t e d  m i c r o g r i d s  

This further part of the work concerns two interconnected community MG (MG_A, 
MG_B) located in the reference location of Paragraph 2.6.1. In the following example, 
these MG offer a way for two neighborhoods, to meet their thermal and electric energy 
needs. The following scenarios are discussed with investment (i.e, CAPEX) and 
operation and maintenance (i.e, OPEX) unit cost (i.e., €/kWh) in accordance with the 
technology cost database of the EnergyPLAN model [36]. 
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Figure 2.4 Polynomial regressions and performance of two variables with a strong linear interrelation



Power sizes of the clean DER populating the two MG are described in Table 2.1. Three 
different scenarios have been investigated. In the first scenario (Interconnected), an 
optimized combination of DER is distributed in two interconnected MG: in MG_A, RES 
and PEMFC-CHP have a more pronounced role in the generation than the other MG; in 
MG_B, the main grid (GRID) is the main external source of electric energy. 

The backbone of the thermal (ITCTH) and electric (ITCEL) interconnections 
releases significant energy flows between the two MG. The DER configurations of this 
scenario have been selected among 7.000 trials giving the best combination of IRR and 
LCOE when the operations are managed by the SLSQP algorithm. 

In the second scenario (Not_Interconnected), the absence of interconnections is 
compensated with a larger power size delivered through the grid utility (GRID) and 
RES. Also, thermal DER such as ST, EBOY have thermal storages (Tank ST, Tank 
EBOY) have a markedly higher size than the previous scenario. 

In the third scenario (i.e.,“Only main grid”), the loads profiles are powered primarily 
by the grid utility; EBOY convert electric energy into thermal energy combined with  
thermal storage. This scenario simulates a typical residential power system of today. 

In all these three scenarios, each MG is feeding the same thermal, electric load 
profiles which are resulting from the aggregation of 10–12 households. Figure 2.5a-2.5b 

DER
Interconnected  Not 

Interconnected Only Main grid
Lifetime

MG_A MG_B MG_A MG_B MG_A MG_B
PV 9 kW 5 kW 15 kW 5 kW  -  - 20 years
WT 9 kW 5 kW 100 kW 5 kW  -  - 20 years
ESS 3 kWh 3 kWh 6 kWh 4 kWh  -  - 8 yeas / 6.000 cycles

FC 100 kW 3 kW 81 kW 3 kW  -  - 15.000 hours / 10.000 
start-stops

EC 1 kW 1 kW 1 kW 1 kW  -  - 13.000 hours / 9.000 
start-stops

GRID 23 kW 69 kW 150 kW 150 kW 300 kW 300 kW
ITCEL 78 kW 78 kW  -  -  -  - 25 years
ST 4 kW  - 170 kW 36 kW  -  - 20 years
EBOY  - 1 kW 200 kW 200 kW 300 kW 300 kW 45.000 hours
STHP 157 kW  - 1 kW 43 kW  -  - 80.000 hours
ITCTH 276 kW 276 kW  -  -  -  - 25 years

Tank EBOY  - 16.581 
lt 30.000 lt 30.000 lt 30.000 lt 30.000 lt 90.000 hours

Tank ST 200 lt  - 15.000 lt 28.000 lt  -  - 90.000 hours
Tank CHP 30.000 lt  -  -  -  -  - 90.000 hours
Table 2.1 Rounded size of DER in the three simulated different scenarios
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shows the two hourly mean power profiles in each month. The mean daily monthly 
electric loads is ranging between 43 and 70 kWh while the mean daily monthly thermal 
loads is ranging between 350 and 800 kWh. Working days and weekends are built from 
different profiles having a different weighting (the energy is split 70% in working day 
30% non-working day, respectively). The periodic peak daily electric load demand is in 
the second quarter, while the periodic peak daily thermal load demand is in the first 
(heat) and second (cool) quarter. Stochastic thermal and electric profiles have been 
generated with the “Gauss Markov” algorithm. 

The simulations of the revenue streams consider except for the loads the delivery of 
demand response services and energy sell-back to a local electric utility. The demand 
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Figure 2.5a Aggregate yearly electric load profile
Figure 2.5b Aggregate yearly thermal load 
profile

Service
Price  

MG_A MG_B

Electric energy to user 38 c€/kWh  

Thermal energy to user 22 c€/kWh  

Sellback of electric energy to grid utility 11 to 18 c€/kWh  

Demand response to grid utility - 5 to 28 c€/kWh  

Sellback of electric energy among MG 28 c€/kWh  5 c€/kWh  

Sellback of thermal energy among MG 18 c€/kWh  5 c€/kWh  

Water 15c€/lt  

Table 2.2 Price structure of the energy demand services



response profiles have been simulated with 5% maximum value for load shedding, 25% 
for peak reduction, and 15% for peak hours per month. 

The price structure of the services offered to the users, the electric utility and 
exchanges between the two MG are shown in Table 2.2. The calculation of the hourly 
mean available energy from solar radiation and wind, has been executed with the power 
losses inputs described in Table 2.3.  

The hourly data-frame of the environmental temperature is extrapolated with Eq. 
2.17. The ESS is characterized by a charge/discharge profile (0.25C for charge and 0.5C 
for discharge), a round trip efficiency (98%), deep of discharge (3–98%). The 
performance curve of the battery in relation to the temperature is utilized to obtain the 
hourly aged capacity of the ESS with Eq. 2.36 - 2.39. 

In these simulations, RES are coupled with PEMFC-CHP. The latter DG converts the 
whole chemical energy of hydrogen into electricity and heat and so the efficiency goes 
up to 95%. Hydrogen tanks at 200 bars are chosen to feed the FC. The fuel is 
transported once a day. The cost for hydrogen, including the transportation, considered 
in the simulation is: 3,00 €/kgH2. This value is coherent to the report published in 
January 2020 by the Hydrogen Council [27]. The cost of renewable hydrogen produced 
from offshore wind in Europe starts at about 6,00 €/kgH2 in 2020. This rate is expected to 
decline by about 60% by 2030 to approximately 2,50 €/kgH2. 
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PV ST WT

Solar Panel Yield 16% 90% @10 dT 

Temp Losses 5%

DC Cables Losses 1%

MPPT Losses 6% 6,0%

AC/DC Cables Losses 1% 1,0%

Shading Losses 1% 5%

Dust Losses 0% 0%

Other Losses 0% 1% 1,0%

BoP Losses 6%

TILT Optimal 40,32° 

Table 2.3 Main power losses and yields of RES  



In the simulated scenarios where FC is installed, the hydrogen is partially generated 
on-site by a PEM electrolyzer (PEMEC), integrated to a 200 Bar pressurized hydrogen 
tank. Typical commercial electrolyzer system efficiencies are 56–73% and this 
corresponds to 70–53 kWh/kgH2 [28]. An additional thermal tank is part of the 
configuration to storage the heat. The EC incorporates a solid proton-conducting 
membrane rather than the aqueous solution. This type of EC generates pressurized 
hydrogen and consequently reduces compression losses. The electrolyzer system 
efficiency considered in the simulations is 53 kWh/kgH2 at nominal power. 

The thermal energy is also generated by ST integrated with further thermal storage 
tanks and auxiliary HT which are powered by electric energy, with efficiency at 400%. 
At each time-step, the SLSQP optimization algorithm secures the minimum of the non-
linear objective function (Eq. 2.58) by choosing the highest energy contribution of RES, 
DG, and ES with the lowest nominal LCOE and maximizing the contribution of those 
DER that in opposite, provide the highest revenues streams. 

2 . 6 . 3  D i s c u s s i o n  o f  t h e  r e s u l t s  

Table 2.4 reports the cumulative energy flows among DER of three alternative 
scenarios. Among the loads, the thermal loads account for 95%. The demand of energy 
of the loads is the main decision driver of SLSQP in the use of the available distributed 
power sources in all scenarios. It can be argued that the remuneration attributed to the 
thermal and electric loads, influences the optimization strategy of SLSQP. 

In the first scenario, where the two hybrid MG are interconnected, PEMFC-CHP is 
the main thermal and electric generation unit in conjunction with WT.  

The actual LCOE (resulting after the optimization of the operations) in Table 2.5, 
reflect the strategy deployed by SLSQP at each time-step. Based on today 
manufacturing costs [29], PEMFC-CHP returns a cost of energy lower than utility grid 
(GRID). Whether all the available power generated by RES is provided, then it becomes 
more convenient produce the additional required energy with the hybrid fuel cell.  

The PEMFC-CHP is able to generate electric energy at the most economical way but 
also is capable to produce thermal energy and water without any additional cost. The 
PEMFC-CHP and RES in MG_A are fulfilling not only the internal ED of thermal and 
electric loads and water, but their power sources are also able to deliver energy services 
(through both MG) and electric energy sell-back to the grid utility. This happens, by 
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transferring large amounts of thermal and electric energy from MG_A to MG_B 
(ITCEL_sellback, ITCTH_sellback of MG_A in Table 2.4). The flows of energy among 
the interconnections are fostered by the price policies described in Table 2.2. In this 
example, the prices for energy interflows are in favor of MG_A. In other words, the 
backbones of electric and thermal energy among MG are substituting the role of large 
energy storages transferring energy instead of deferring it, at most economic conditions. 

The second scenario (Not_Interconnected) shows a different configuration and 
approaches to satisfy the ED. In MG_A, the energy is mainly dispatched with PEMFC-
CHP in combination with WT. 
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Distributed energy sources Interconnected  Not Interconnected Only Main grid

MG_A 
(kWh)

MG_B 
(kWh)

MG_A 
(kWh)

MG_B 
(kWh)

MG_A 
(kWh)

MG_B 
(kWh)

PV 984 1.446 4.257 1.555 - -
WT 30.432 16.825 352.851 17.643 - -
ESS discharge 1.898 2.624 6.063 1.108 - -
FC electric energy 792.185 5.921 545.966 9.882 - -
Grid buy 8.456 11.782 45 451.257 514.225 513.605
ITCEL buy 10.943 469.857 - - - -
ST 1.954 - 71.434 16.263 - -
EBOY - 2.055 4 140.514 456.373 456.334
STHP 140.233 - 9 287.752 - -
FC thermal energy 831.794 6.217 573.264 10.376 - -
ITCTH buy 236 449.502 - - - -
Tank EBOY discharge - 1.284 431.633 3.087 1.701 1.701
Tank ST discharge 26.591 - 88.488 3.132 - -
Tank thermal energy FC discharge 291.609 - - - - -
Electric loads 19.796 19.065 26.660 19.145 19.600 19.060
EC 5.993 4.466 1.457 - - -
ESS charge 1.898 2.623 6.059 1.105 - -
Grid sell 181.278 467.003 873.014 91 - -
ITCEL sell-back 484.380 11.274 - - - -
Tank EBOY charge - 340 562.171 1.389 2 1
Tank STHP charge 27.124 - 87.531 1.376 - -
Tank Thermal FC charge 289.924 - - - - -
Thermal loads 431.839 428.407 432.386 428.099 428.107 428.071
ITCTH sell-back 483.223 253 - - - -

Table 2.4 Cumulative energy exchanged among DER in the three scenarios



Compared to the scenario dealing with interconnected MG, the contributions of 
RESs (namely WT and ST) are equivalent to PEMFC-CHP. The exceeding thermal 
energy, which is not used and cannot be transferred to the other MG, is stocked in large 
tanks (Tank_Boiler, Tank_ST) by heating water as storage medium; hence the stored 
energy can be used at a later time. 

The load-exceeding available electric energy supplied by PEMFC-CHP is given in 
sell-back to the utility grid. Thus, this optimized scenario does not consider large ESS. 
The demand of energy for MG_B of this second scenarios is satisfied with an approach 
similar to a traditional power system. In fact, the main source of electricity is the grid 
utility. The electric energy is then converted into thermal energy with an EBOY in 
combination with a HP. 

In the third scenario, both thermal and electric loads are powered solely by the utility 
grid and EBOYs. This is a typical actual electric system, where loads do have not a 
peer-to-peer interconnection to RES through MG. The financial impact of the 
dispatching strategy is indicated in Table 2.6. 

In conclusion, revenues of the interconnected scenario are higher than the other. In 
MG_A of this first scenario, 25% of the revenue stream is generated by the loads, 14% 
by water, and 54% by sell-back to the other MG. In MG_B, 57% of revenues comes 
from the loads and 39% to sell-back to the utility grid. The sale strategy implemented by 
SLSQP, allows to obtain the highest revenue streams with the lowest initial capital 
investment (CAPEX) in the interconnected scenario compared with that in the not 
interconnected one. Consequently, the contribution margin, calculated by deducing the 
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DER MG_A  
(€/kWh)

MG_B  
(€/kWh)

PV 0,390 0,254
WT 0,132 0,096
ESS 0,182 0,110
FC 0,144 0,186
EC 0,054 0,063
GRID 0,690 1,140
ST 0,130  -
EBOY - 0,034
STHP 0,057 - 
Table 2.5 Actual values of LCOE of RES and DG in the interconnected scenario
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Table 2.6 Rounded initial, yearly operational costs and revenue stream in € of the three scenarios



total costs is considerably higher when the two MG are interconnected. 

These considerations are finally synthesized in Table 2.7 with key financial ratios. 
The limited number of investments involving the first scenario leads to a very attractive 
IRR (54%) and a relevant amount for the NPV (calculated with discount rate of 5%). 
Actual LCOE resulting from the final calculation of CAPEX and OPEX as an 
aggregation of DER is much lower than actual grid purchase costs in Germany [38]. 
Payback (years to recuperate from operations in form of cash inflow the total amount 
invested) calculated for these MG is less than two years. In the other scenarios, the 
return of investments is null, and the cost-profit structure of the business leads to a 
negative NPV.  

Finally, it should be noted that the RES fraction (calculated as the ratio between the 
energy generated by the RES and the load consumptions) in the interconnected MG, 
results in 6% of the entire generated energy. However, if the fraction of the on-site 
hydrogen production is added and moreover it is assumed that the further hydrogen 
demand is sourced by large wind and solar farms (green hydrogen), the contribution of 
RES is almost 100%. These simulations demonstrate that optimization strategies 
implemented via SLSQP algorithm in hybrid interconnected MG leads to a very 
attractive IRR and, short-term paybacks while contributing to strengthen the resilience 
of power systems. Optimal configurations of hybrid DER in multiple MG can operate at 
lower LCOE than the current tariff offered today from the utilities.  

Thus, interconnected hybrid MG with SLSQP optimization techniques makes 
renewable and DER outcompeting. They are a viable route to foster the transition to the 
low-carbon energy paradigm and they can strand investments in fossil fuel generation. 
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Financial 
ratio

Interconnected  Not Interconnected Only Main grid

MG_A MG_B MG_A MG_B MG_A MG_B

IRR 54% 65% 10% 0% 0% 0%

LCOE 0,16 €/kWh 0,14 €/kWh 0,19 €/kWh 0,43 €/kWh 0,49 €/kWh 0,5 €/kWh

RES factor 6% 51% 0%

Table 2.7 Key financial ratios of the three scenarios (25 years project lifetime, 5% discount rate)



2 . 7  C o n c l u s i o n s  

This chapter has introduced an optimization method based on SLSQP to secure the 
best economic performances of interconnected hybrid MG. The algorithm minimizes at 
every time-step a piecewise-linear convex objective function that incorporates the 
weighted contributions in terms of costs and revenues of DG, loads, and MG 
interconnections.  

The nominal LSOE are the weights for the revenues terms of the objective function. 
Thermal and electric energy balances are the non-linear constraint functions. The 
SLSQP algorithm finds efficiently at each iteration the global solution of this non-linear 
constrained convex optimization problem.  

The optimizer is embedded into a techno-economic model designed to shape 
dynamically the boundaries of the objective function. Moreover, the algorithm computes 
the states of DER and at the end, it returns the actual values of the key financial ratios.  

The proposed techno-economic model starts with the manipulation of climate 
datasets by combining FFT function with the IFFT. The aim is to achieve an accurate 
extrapolation of reanalyzed climate datasets issued by ECMWF over the project 
lifetime.  

A method to identify linear correlations among coupled datasets has been developed 
to predict temperature from solar radiation with less computing resources. The climate 
datasets feed the stochastic models in forecasting renewable thermal and electric 
generation.  

Subsequently, a stochastic model based on the Gauss Markov function has been 
introduced to simulate hybrid loads profiles. Similarly, load shedding and load shifting 
have been implemented to simulate the ED response to disturbances of the main grid.  

The proposed tool has proven to be very effective in simulating innovative business 
scenarios in which multiple revenue streams are generated from the sales of energy to 
end-users, from further sales to the other energy networks and from deliveries of energy 
services to the grid utility.  

In particular, the techno-economic simulator was used to analyze the financial 
performances of three different scenarios. The outcomes demonstrate the economic 
advantages of interconnected hybrid MG which are operated with an SLSQP algorithm. 
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The optimal scenario is compared to an alternative configuration of two not connected 
MG and another configuration where the loads are solely powered by the grid utility.  

All these simulations deal with both thermal and electric loads profiles of household 
communities located nearby the city of Bremen. With a payback within two years and an 
IRR at 65%, the first scenario results in a LCOE of 0,14 €/kWh.  

This value leads also to the conclusion that interconnected hybrid MG can operate at 
costs that are lower than a current typical utility tariff if an adequate mechanism of 
remuneration among prosumers and the utility grid is provided.  

The overall results of this chapter demonstrate that the discussed multi-microgrids 
are very competitive options against the actual centralized large power networks. 

8 0



2 . 8  R e f e r e n c e s  

[ 1 ] Eliasen E.,Machenhauer B., Rasmussen E., 1970, On a numerical method for 
integration of the hydrodynamical equations with a spectral representation of 
the horizontal fields. Report 2, Institut for Teoretisk Meteorologi, University 
of Copenhagen, https://ci.nii.ac.jp/naid/10003554485/en/

[ 2 ] Orszag S.A., 1970, Transform method for calculation of vector coupled sums: 
application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 
p p . 8 9 0 – 8 9 5 , D O I : h t t p s : / / d o i . o r g /
10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2

[ 3 ] Voldoire M.J.A., 2009, Role of the Gulf of Guinea in the inter-annual 
variability of the West African monsoon: what do we learn from CMIP3 
coupled simulations?, Int. J. Climatol. 30 pp.1843–1856

[ 4 ] Kent E.C.,Fangohrb S.,Berrya D.I., 2013, A comparative assessment of 
monthly mean wind speed products over the global ocean. Journal of 
Climatology 33, pp.2520–2541

[ 5 ] Wang A.,Zeng X., 2015, Global hourly land surface air temperature datasets: 
inter-comparison and climate change, International Journal of Climatology, 35, 
13, pp.3959-3968

[ 6 ] Amendola S., Maimone F., Pasini A.,Ciciulla F.,Pelinod V., 2017, A neural 
network ensemble downscaling system (SIBILLA) for seasonal. Meteorol. 
Appl. 24, pp 157–166

[ 7 ] Benjamin Y.H. Liu, Richard C. Jordan,The interrelationship and characteristic 
distribution of direct, diffuse and total solar radiation,Solar Energy,Volume 4, 
I s s u e 3 , 1 9 6 0 , P a g e s 1 - 1 9 , I S S N 0 0 3 8 - 0 9 2 X , h t t p s : / / d o i . o r g /
10.1016/0038-092X(60)90062-1.

[ 8 ] Garg H.P.,Garg S.N., 1985, Correlation of monthly-average daily global, 
diffuse and beam radiation with bright sunshine hours, Energy Conversion and 
Management, Volume 25, Issue 4, pp. 409-417

[ 9 ] P.C. Jain, Estimation of monthly average hourly global and diffuse irradiation, 
Solar & Wind Technology, Volume 5, Issue 1, 1988, Pages 7-14, ISSN 
0741-983X, https://doi.org/10.1016/0741-983X(88)90085-9.

[ 10 ] Konstantinos, K. 2017, Welcome to enlopy’s documentation!, Version 
0.1.dev9, https://enlopy.readthedocs.io/en/latest/

[ 11 ] Shouxiang Wang, Xiguang Fan, Liang Han & Leijiao Ge (2015) Improved 
Interval Optimization Method Based on Differential Evolution for Microgrid 
Economic Dispatch, Electric Power Components and Systems, 43:16, 
1882-1890, DOI: 10.1080/15325008.2015.1057783

[ 12 ] Radosavljević J.,Jevtić M.,Klimenta D., 2015, Energy and operation 
management of a microgrid using particle swarm optimization,Journal 
Engineering Optimization, pp. 811-830 

8 1

https://doi.org/10.1016/0038-092X(60)90062-1
https://doi.org/10.1016/0741-983X(88)90085-9
https://doi.org/10.1080/15325008.2015.1057783


[ 13 ] Soares A., Gomes Á., Henggeler Antunes C. (2017) An Evolutionary 
Algorithm for the Optimization of Residential Energy Resources. In: Bertsch 
V., Fichtner W., Heuveline V., Leibfried T. (eds) Advances in Energy System 
Optimization. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/
10.1007/978-3-319-51795-7_1

[ 14 ] Jamaledini, Ashkan, Khazaei, Ehsan, Toran, Mehdi (2018): Modified Genetic 
Algorithm Framework for Optimal Scheduling of Single Microgrid 
Combination with Distribution System Operator, MPRA Paper No. 89411, 
https://mpra.ub.uni-muenchen.de/89411/ 

[ 15 ] Nagapurkar P., Smith, J.D., 2019, Techno-economic optimization and social 
costs assessment of microgrid-conventional grid integration using genetic 
algorithm and Artificial Neural Networks: A case study for two US cities, 
Journal of Cleaner Production, Volume 229, Pages 552-569, ISSN 0959-6526, 
https://doi.org/10.1016/j.jclepro.2019.05.005

[ 16 ] Cooley J.,Tukey, 1965, An algorithm for the machine calculation of complex 
Fourier series, Math. Comp. 19 (1965), 297-301, https://doi.org/10.1090/
S0025-5718-1965-0178586-1 

[ 17 ] Press W., Teukolsky S.,Vetterline W.T., Flannery B.P., 2007, Numerical 
Recipes: The Art of Scientific Computing, ch. 12-13. Cambridge Univ. Press, 
Cambridge, UK

[ 18 ] Khatib T.,Elmenreich W., 2015, A Model for Hourly Solar Radiation Data 
Generation from Daily Solar Radiation Data Using a Generalized Regression 
Artificial Neural Network, International Journal of Photoenergy, Volume 2015, 
Article ID 968024

[ 19 ] Raschka S., Python Machine Learning, 2015, pp.280-297

[ 20 ] Liaw A.,M.Wiener M. ,2002, Classification and Regression by random, Forest, 
Vol. 2/3, ISSN 1609-3631, pp.. 21-22

[ 21 ] Luque A.,Hegedus S., 2011, Handbook of Photovoltaic Science and 
Engineering, ed.2, pp. 1012-1016

[ 22 ] Breipohl A.M., Lee F.N., Zhai D.,Adapa R.,1992, A Gauss-Markov oad model 
for the application in risk evaluation and production simulation, Transactions 
on Power Systems, 7 (4) , pp. 1493-1499

[ 23 ] Lawson C., Hanson R., 1974, Solving Least Squares Problems, volume 161, 
SIAM

[ 24 ] Kraft D (1988) A software package for sequential quadratic programming. 
Tech Rep DFVLR-FB 88-28, DLR German Aerospace Center—Institute for 
Flight Mechanics, Köln, Germany

[ 25 ] Kiril D. Hristovski, Brindha Dhanasekaran, Juan E. Tibaquirá, Jonathan D. 
Posner, Paul K. Westerhoff; Producing drinking water from hydrogen fuel 
cells. Journal of Water Supply: Research and Technology-Aqua 1 August 2009; 
58 (5): 327–335. doi: https://doi.org/10.2166/aqua.2009.103.

[ 26 ] Wright, Randy Ben, and Motloch, Chester George. Calendar Life Studies of 
Advanced Technology Development Program Gen 1 Lithium Ion Batteries. 
United States: N. p., 2001. Web. doi:10.2172/911512.

8 2

https://doi.org/10.1007/978-3-319-51795-7_1
https://mpra.ub.uni-muenchen.de/89411/
https://doi.org/10.2166/aqua.2009.103


[ 27 ] Hydrogen Council, 2020, Path to hydrogen competitiveness - A cost 
perspective, https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-
to-Hydrogen-Competitiveness_Full-Study-1.pdf

[ 28 ] NREL. Technology brief: analysis of current-day commercial electrolyzers; 
2004. Golden, CO NREL/FS-560-36705.

[ 29 ] Battelle Memorial Institute, 2016, Manufacturing Cost Analysis of 100 and 
250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power 
Applications. U.S. Department of Energy

[ 30 ] Fracas, P., Zondervan, E., 2019, Fast Fourier Transforms for Microgrid 
Climate Computing. Proceedings of the 29th European Symposium on 
Computer Aided Process Engineering, Eindhoven, The Netherlands, Elsevier 
10.1016/B978-0-12-818634-3.50277-0

[ 31 ] P.I. Cooper, The absorption of radiation in solar stills, Solar Energy, Volume 
12, Issue 3, 1969, Pages 333-346, ISSN 0038-092X,https://doi.org/
10.1016/0038-092X(69)90047-4.

[ 32 ] Papoulis A, Pillai U. Probability, random variables and stochastic processes. 
4th ed. New York: McGraw-Hill, 2001: 51-125pp.

[ 33 ] Wright, Randy Ben, and Motloch, Chester George. Cycle Life Studies of 
Advanced Technology Development Program Gen 1 Lithium Ion Batteries. 
United States: N. p., 2001. Web. doi:10.2172/911513.

[ 34 ] Virtanen, P., Gommers, R., Oliphant, T.E. et al. SciPy 1.0: fundamental 
algorithms for scientific computing in Python. Nat Methods 17, 261–272 
(2020)

[ 35 ] NASA, Surface meteorology and Solar Energy (SSE) database, https://
power.larc.nasa.gov.

[ 36 ] Lund, Henrik, & Thellufsen, Jakob Zinck. (2020, September 7). EnergyPLAN 
– Advanced Energy Systems Analysis Computer Model (Version 15.1). 
Zenodo. http://doi.org/10.5281/zenodo.4017214

[ 37 ] US Department of Energy, Levelized Cost of Energy (LCOE), 2015, 
https://www.energy.gov/sites/prod/files/2015/08/f25/LCOE.pdf

[ 38 ] Eurostat , ht tps: / /ec.europa.eu/eurostat /s tat is t ics-explained/index.php/
Electricity_price_ statistics

8 3

https://power.larc.nasa.gov


2 . 9  U n i t s  o f  m e a s u r e m e n t  

10si 10 meter wind speed, m/s
Activation energy constant, kjoule/mole 
Aged energy capacity of energy storage systems, kWh

R2 Coefficient determination of performance of numerical methods
r Discount rate

Energy conversion efficiency of electric boilers
Energy conversion efficiency of heat pump combined to solar 
panels
Energy conversion efficiency of stand alone heat pumps
Energy flow of the distributed energy resources, kWh
Environmental temperature, K
Fraction of energy to shift 
Fraction of hours to shift
Fraction of load to cut  
Fuel expenditures in a year, €

R Gas constant, 8.315 joules/mole/K 
Input mean temperature of solar collectors, K  
Investment expenditures in a year, €
Latitude, degree
Levelized cost of energy of the c-distributed energy resource, €/
kWh
Levelized sales of the r-distributed energy resource, €/kWh
Lifetime of the distributed energy resources, year
Longitude, degree
Maximum daily mean power of loads, kW
Maximum state of charge
Minimum daily mean of electric power load, kW
Operations and maintenance expenditures in year, €
Optimal tilt angle, degree
Pearson product-moment covariance coefficients
Photovoltaic solar yield, kWh/kWpeak

Power losses of solar thermal collectors
Power losses of wind turbine and photovoltaic panels

Tin

Pess_aged_capacit y

Li

Tamb

Pmin

LCOEc

λs

kshif ted

Pmax

ηhp

ϕ

xc,r

Eact

Oj

Px,y

Cj

ηeboy

kshedding

ηi

ηstph

βopt

L SOEr

υi

SOCess_max

khm

θ

Fj
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Purchase cost per liter of fuel, €/l
Rated energy capacity of a battery, kWh
Solar declination, degree

ssr Solar net surface radiation, kW/m2

Standard deviation of electric power load
Standard deviation of solar declination
State of charge energy storage system
Surface of the photovoltaic panel, m2

Surface of the solar solar collector, m2

t2m Temperature at 2 meters from soil, K
Tilt angle, degree
time-step, hour

tcc Total cloud cover, %
Transportation cost of fuel, €/l
Volumetric energy density of the fuel, kWh/l

SOCess

σg

Ved_ fuel

ts

δ

Apv

Ctrp

Pess_rated_capacit y

Ast

σnoise

β

Cfuel
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C H A P T E R  3 :  M a c h i n e  l e a r n i n g  m o d e l s  i n  
t e c h n o - e c o n o m i c  o p t i m i z a t i o n s  

Optimization with an SLSQP algorithm requires a large computing resource. In this chapter, 
three algorithms for the approximation of the analytical techno-economic model into machine 
learning (MLTE) based models are discussed. The first MLTE model, is based on a multiple 
linear regression (MLR), fitting a linear model with coefficients to minimize the residual sum of 
squares between the observed targets in the dataset (DERs sizes and geolocations), and the 
targets predicted (fitness values) by the linear approximation. A second model uses a 1-layer 
neural network (NN), whose input and output neurons are connected by weighed synapses. A 
third model is a deep neural network (DNN) where the NN is expanded into 3 dynamic layers. 
MLTE models require a dimensionality reduction of the feature space, training and testing before 
querying. Min-max, standardization-based scaling techniques have been used to reduce the 
dimensionality of the feature space. The MLTE models return R2 lower than 0.2 with all the pre-
processing methods. The stochastic behavior of CHP-MMG permits to MLTE to correlate 
solutions and fitness values similarly to ATE model, for fitness values nearby zero. This behavior 
can be used in combination with ATE-based optimization to tighten the search area of the best 
CHP-MMG siting and sizing. 
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3 . 1  I n t r o d u c t i o n  t o  m a c h i n e  l e a r n i n g  m o d e l s  f o r  
m i c r o g r i d s  

With reference to the SLSQP algorithm and ATE model presented in Chapter 2, in 
this chapter, three alternative machine learning-based models to replace the analytical 
ATE model are introduced: 1) LR model 2) NN model 3) DNN Model. 

Machine Learning algorithms have been already used for the optimization of 
microgrids since the inherent variability of large-scale renewable energy generation 
leads to significant difficulties in microgrid energy management.  

Karim et al. in 2018 [14] proposed a system based on a machine learning algorithm 
to forecast the security of a standalone microgrid and to schedule multiple backup diesel 
generators. The underlying objective was to maintain the voltage stability with an 
optimized economic dispatch scheme, right after clearing of a critical three-phase short 
circuit fault. 

In a further study [15] Lan et al. in 2021, proposed a machine learning-based 
approach for energy management in renewable microgrids considering a reconfigurable 
structure based on remote switching of tie and sectionalizing. The suggested method 
considers the advanced support vector machine for modeling and estimating the 
charging demand of hybrid electric vehicles. 

In the work of Yaprakdal et al. [16] (2020), a bi-directional long short-term deep 
recurrent neural network model was designed to provide accurate aggregated electrical 
load demand and the bulk photovoltaic power generation forecasting results. The real-
world data set was utilized to test the proposed forecasting model, and based on the 
results, they demonstrate that the neural network model performs better in comparison 
with other methods in the surveyed literature. 

Fahim et al. [17] in 2020, presented a review on the MG fault diagnosis techniques 
with their limitations and proposes a machine learning model made of multiple layers 
with a restricted Boltzmann machine, which allows a probability reconstruction over its 
inputs and provide a precises solution for fault diagnosis of MG. 

Yao et al. in 2020 [18] introduced a load predictor for microgrid operation based on 
the combination of machine learning with Ant Colony Optimization (ACO) algorithm 
and Particle Swarm Optimization (PSO) algorithm to improve the prediction accuracy. 
The experimental results showed that the prediction results were close to the actual 
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values and the error changes were stable, which verified the effectiveness of the 
improved algorithm. Moreover, the algorithm contributed to improve the accuracy of 
load prediction of the two communities and the optimal operation of the microgrid. 
Hence, it has a good applicability in the load prediction of microgrid. 

 Park et al. (2020) [19] proposed an energy storage system (ESS) operation 
scheduling model to be applied to virtual space when constructing a microgrid using 
digital twin technology. An ESS optimal charging/discharging scheduling was 
established to minimize electricity bills and was implemented using supervised learning 
techniques such as the decision tree machine learning-based techniques models instead 
of existing optimization techniques. Using the proposed model, it was found in a case 
study that the amount of electricity bill savings when operating the ESS is greater than 
that incurred in the actual ESS operation. 

In this chapter, four different machine learning approaches are investigated to 
approximate the original techno-economic model of the CHP-MMG and thus reduce the 
computing time. The linear regressor (LR) has been the first method as one of the most 
common methods for industrial problems. Regression models are used to predict target 
variables on a continuous scale, which makes them attractive for understanding 
relationships between variables, evaluating trends, or making forecasts. An ordinary LR 
model has been selected among different methods (e.g., Bayesian Regression, Gaussian 
Process Regressor) as during the training LR model returns a better R2.  

To improve the R2 of the LR model alternative methods based on NN and DNN 
models were employed. The aim was to compare if a multi-layer neural network 
architecture that connects multiple non-linear functions correlations with higher R2 can 
be obtained. 

The innovation content introduced in this chapter concerns: 1) the application of 
machine learning models to improve the performance of techno-economic 
optimizations; 2) the training method of the MLTE based on the ATE model of CHP-
MMG. 

8 9



3 . 2  P r e p r o c e s s i n g  d a t a s e t s  

Preprocessing the datasets has a relevant influence on the performance of the 
machine learning algorithm [1]. Raw data does not usually fit the form and shape of 
machine learning algorithms (i.e., LR, NN, DNN). Thus, it is required that the selected 
features are on the same scale for optimal performance, which is often achieved by 
transforming the features in the range [0, 1] or a standard normal distribution with zero 
mean and unit variance. Furthermore, some of the selected features may be highly 
correlated and therefore redundant. In those cases, dimensionality reduction techniques 
are useful for compressing the features onto a lower-dimensional subspace. Reducing 
the dimensionality of our feature space has also the great advantage to reduce the data 
storage space, and therefore the learning algorithms can run much faster.  

Min-max scaling, standardization and arbitrary value-based scaling preprocessing 
techniques are evaluated in the following sections. The dataset that will be used later to 
train the machine learning models is generated with the ATE model. 

3 . 2 . 1  T r a n s f o r m i n g  t h e  d a t a  i n t o  t h e  r i g h t  s h a p e  

The MLTE models require a dataset previously generated by the ATE model. The 
latter is used to feed the training and the validation dataset, hereafter called: Q-dataset. 
The Q-dataset comprise all the generated individuals and the corresponding fitness 
values. The Q-dataset are matrix with size: [t, m] where the index t represents the 
number of the array and m the feature (i.e., respectively the individual, the chromosomes 
and the fitness value in the evolutionary algorithm). 

The quality and amount of the information that are contained in the Q-dataset are a 
paramount to assess the performance of these models. Therefore, it is necessary to 
examine and preprocess the datasets before feeding the learning algorithms. 

First, individuals embedding error values in the raw data which typically appears 
with strings such as NaN (“not a number”) are removed from the dataset entirely. 
Following the cleaning procedure, the resulting dataset is the following: 

,        [3.1] 

where qi is the i-feature that does not contain errors. 

Q̌ = {qi ∈ R : qi ≠ Na N}

9 0



If marginal outliers in the fitness column are found, a subset of individuals is selected 
from the resulting dataset in [3.1] as follows: 

,           [3.2] 

where qo is the feature embodying the maximum fitness considered. Based on the 
structure of the fitness function described in Paragraph 4.4, higher values above a 
certain threshold are not useful to train a MLTE algorithm. Thus, a method that selects 
the features permits to speed up the training process without losing relevant information.  

The resulting dataset is further subjected to feature scaling. This is a crucial step in 
the preprocessing to ensure that different values of the datasets are brought within the 
same scale and thus make it easier to optimize the weights of cost functions in each 
MLTE algorithm. 

Two approaches are considered to bring different features onto the same scale: 
normalization (i.e., min-max method, common divisor) and standardization.  

Normalization refers to the rescaling the features to the range [0, 1]. To normalize 
our data, the min-max scaling has been applied to each feature column, where the new 
value of a sample can be calculated as follows: 

 .        [3.3] 

Standardization removes the mean, and scales the data to unit variance. The standard 
score of a sample  is calculated as follow: 

   ,        [3.4] 

where  is the mean of the training samples and  is the standard deviation of the 

training samples.  

Eq. 3.3 translates the features of each axis j, individually in the range [0,1] 
considering the bound as minimum and maximum of the axis.  

Q̂ = {qj ∈ R : qj ≤ qo}

̂qnorm
i, j =

̂qmin, j
i, j ≤ ̂qi, j ≤ ̂qmax, j

i, j

̂qi, j − ̂qmin, j
i, j

̂qmax, j
i, j − ̂qmin, j

i, j

̂qstd
i, j =

̂qi, j − μj

σj

μ σ
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In Eq. 3.5 each feature is transformed in a range within [0,1] considering as bound 
the whole minimum and maximum values of the Q-array.  

 .        [3.5] 

3 . 2 . 2  T r a i n i n g  a n d  t e s t i n g  m a c h i n e  l e a r n i n g  
a l g o r i t h m s  

The transformed training datasets are next divided into training and validation (i.e., 
test) subsets to estimate the overall performance of the models. The training sets embed 
the known output, that the models use to tune the parameters in the learning phase. The 
test subset is utilized later to evaluate the performances of the model’s predictions. 

The Scikit-Learn library of Python® [2] and specifically the train_test_split method 
has been used. It permits to generate training and testing subsets with two dimensions’s 
shape (i.e., Q). A further split is performed next to obtain a subset with the individuals 
(I.E., X) and another subset with the related fitness values (i.e., y) as follows: 

  .     [3.6] 

3 . 2 . 3  Va l i d a t i o n  o f  r e s u l t s  

After training the algorithms, the test dataset is used to assign a score to the models. 

The coefficient of determination  as defined in Eq. 2.4 is used for this task. This 

indicator results from the ratio between the sum of the residual square error and the 

variance. The  is usually affected by three general errors: bias, variance and noise. 

The bias has its average error for different training sets, the variance indicates how 

sensitive it is to varying training sets, and the noise is intrinsic to the data. Here,  

indicator evaluates whether the model is over-fitting or under-fitting with training and 
test data. If the training score and the validation score are both low, the estimator will be 
under-fitting. If the training score is high and the validation score is low, the estimator is 
overfitting. A low training score and a high validation score are usually not possible [3]. 
The algorithm overfits when it performs well on the training dataset but fails to perform 
on unseen or validation and test datasets. 

̂qnorm
i, j =

̂qmin < ̂qi, j < ̂qmax
̂qi, j − ̂qmin
̂qmax − ̂qmin

Q̂scaled
train , Q̂scaled

test = [Xscaled
train , yscaled

train ], [Xscaled
test , yscaled

test ]

R2

R2

R2
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3 . 3 . 1  M u l t i p l e  l i n e a r  r e g r e s s i o n   

Linear regression is a statistical technique that can be used to predict target variables 
on a continuous scale, which makes it suitable for making forecasts for our fitness 
values. Multiple linear regression (MLR) captures the relationship between two or more 
input variables and a response observed variable by fitting a linear equation to observed 

data. In our case, the input variables: , and the corresponding 

observed variables:  which can be found from [3.6] and are used to train 

and validate the MLR model.  

The relationship for the MLR is defined as follows:  

 .            [3.7] 

Where xi,j is the element of the Xi individual; wi,j is the associated parameter that 
permits to obtain the correlation with the corresponding observed feature fj. 

The first step is to train the set of coefficients wi,j; to do that, an objective function 
defined in Eq. 3.8, is iterated until the difference between the observed variables 

embedded in the training dataset,   and the observed value , estimated with the 

linear Eq. 3.7 is minimized. 

 .            [3.8] 

This method prevents cancellations between positive and negative values and thus it 
considers all residuals in the estimation of constants weights wi,j. Another property of 
this cost function is that it is convex; i.e., the steepest descent method can be apply to 
find the weights that minimize our cost function. The trained model can then be used to 
predict the responses of new input variables that were not part of the training dataset.  

3 . 3 . 2  N e u r a l  n e t w o r k   

In this section, neural networks (NN) are briefly discussed as alternative method to 
MLR for predicting the fitness values. Similarly to MLR, the datasets obtained with the 
method described in Eq. 3.6 are used to train and then validate the NN model.  

Xi,scaled
i,train , Xi,scaled

i,test

yscaled
i,train , yscaled

i,test

fi =
N

∑
j=0

wi, j ⋅ xi, j

yscaled
i,train

̂fi

min J(wi, j) =
1
N

N

∑
i=0

(yscaled
i,train − ̂fi (wi, j))

2
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 and  are the inputs (explanatory variables) while  and  are 

the corresponding observed variables (fitness).  

In a NN, information processing occurs, over simple elements called neurons. A 
neuron is a mathematical function that takes one or more input values and outputs a 
single numerical value. Neurons are organized in interconnected layers. Neurons of one 
layer are connected to neurons of another layer through connection links and they 
exchange signals among them.  

Connection links between neurons can be stronger or weaker and this determines 
how information is processed. To determine the intensity of each incoming signal to the 
neuron (i.e., node), the input is combined to an optimized weight. In other words, the 
outcoming signal of the neuron has an internal state that is determined by all the 
incoming weighted connections from other neurons. Moreover, each neuron embeds an 
activation function that based on the internal state of the outcoming signal determines 
the output signal. 

Similar to MLR, the neural network correlates the input array I, with the resultant 
output array F, using the matrix W.  

The overall model of a NN is expressed as concisely as:  

 .          [3.9] 

Here the index k denotes the k-layer of a NN which incorporates n nodes and l layers.  

Thus, Fk is the 1d-array with dimension [n,1] of the output signals of the k-layer. 
Wk-1,k with dimension [n, n-1] embodies the weights of the interconnecting signals 
among nodes. Then, the elements of the input 1d-array Ik-1 with dimension [n-1, 1] are 
the incoming signal to each neuron.  

In this work a NN composed by 3 layers has been considered: the input layer, the 
hidden layer and the output layer. 

The resultant matrix [Fk] of the k-layer becomes an input to the sigmoid activation 
function returning all the values between the interval 0 and 1: 

.         [3.10]  

Xscaled
i,train Xscaled

i,test yscaled
i,train yscaled

i,test

Fk = Wk−1,k ⋅ Ik−1

Ok =
1

(1 + e−Fk)
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Hence, the result is the 1d-array Ok, which contains all the outputs from the k-layer. 
Eq. 3.10 is applied to compute the outputs between one layer and the next layer.  

The NN is first initialized with the number of input nodes corresponding to the 

chromosomes of each individual ( ). Next, the intermediate layer has a number of 

hidden nodes equivalent to the number of input nodes. Finally, the output layer has one 
output node corresponding to the fitness value of the input individual.  

The matrix of weights is constructed initially with a normal probability distribution 
function centered on zero and with a standard deviation that is related to the number of 
incoming links into a node. T. Rashid (2016) [4] proposed that the range of these values 
should be roughly the inverse of the square root of the number of links.  

Some overly large initial weights would bias the activation function in a biased 
direction and very large weights would saturate the activation functions. The training of 
the NN is executed in two phases. In the first phase, the matrix of weights is trained by 
iterating the learning rate parameter and the epoch parameters to obtain their best values.  

The learning rate is utilized to moderate the strength of the changes error slope 
during the training of matrix weight elements. The epoch parameter is the number of 
iterations of the training function. During the training phase, epochs and learning rates 
are used to set weights, which, will define the internal states for each neuron in the 
network. Epochs and learning rates parameters are optimized with an external “for-loop” 
over the training phase. The means square error (MSE) between target (training) and 
predicted data during the iteration of epochs and learning rates is the objective to 
minimize. For each Xi,train data, the correspondent observed Ol value is computed by 
calculating the signals into the input, hidden, output layers with the Eq. 3.11. Then the 

error  given by the training data and the predicted data at the output nodes is 

calculated with the Eq. 3.11.  

 .        [3.11] 

The propagation of the errors back ( i.e., backward propagation) to the internal nodes 
are computed with the matrix Eq. 3.12 which split the output layer errors in proportion 
to the size of the connected link weights. 

 .        [3.12] 

Xscaled
i,train

El

El = yscaled
i,train − Ol

Ek−1 = WT
k−1,k ⋅ Ek
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Second, each weight matrix is updated with the gradient-descent optimization 
algorithm as described in Eq. 3.13. 

 .      [3.13] 

The former elements of weight matrix  which determine the signals’ intensity 

coming from the nodes of the layer k-1 to the nodes of the layer k, are adjusted by the 
slopes of the errors gradient. 

After the training phase, a NN query can be executed. Thus, as further discussed in 
the following Chapter 4 the evolutionary computation method can be used to iteratively 
improve the solution and obtain the probabilistic global solution by processing in 
parallel the NN algorithm, with the individuals constituting the population of each 
generation. 

3 . 3 . 3  D e e p  n e u r a l  n e t w o r k  

Deep neural networks (DNNs) are neural networks with multiple hidden layers.  

It is notable that a network's performance degrades if a single layer is removed ( A. 
Krizhevsky et al., 2017) [5]. For example, removing any of the middle layers results in a 
loss of about 2% for the top-1 performance of the network. So the depth is important for 
achieving good results.  

PyTorch [8][9] is a high-performance tensor library for the computation of deep 
learning tasks on GPUs (graphics processing units) and CPUs (central processing units). 
PyTorch is a machine learning and deep learning tool developed by Facebook’s artificial 
intelligence division to process large-scale image analysis including object detection, 
segmentation and classification. However, it is not limited to these tasks. It can be used 
with other frameworks to implement complex algorithms.  

In the PyTorch deep learning network tool, the most important layers, i.e., the linear 
layers, apply a linear transformation of signals with Eq. 3.9. Deep learning architectures 
used for solving real-world cases generally embeds multiple layers. 

Each layer learns some kind of pattern that the later layers will build on. There is a 
problem in adding just linear layers together, as they fail to learn anything new beyond a 
simple representation of a linear layer. Hence, just stacking multiple linear layers will 

Wk−1,k = Ŵk−1,k − α ⋅
d E

d wi, j

Ŵk−1,k
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not help the algorithm to learn anything new. To solve this problem, different non-
linearity functions can be chosen. This aids the network in learning different 
relationships, rather than only focusing on linear relationships. There are different non-
linear functions available in deep learning. PyTorch provides these non-linear functions 
as layers and they can be used the same way as the linear layer. Non-linear activations 
are functions that take inputs and then apply a mathematical operation and produce an 
output. One of the non-linear operations is the ReLU function. The latter was used in 
this work. ReLU has become more popular in recent years [10]. It has a simple 
mathematical formulation:  

 .        [3.14] 

ReLU resets any input that is negative to zero and leaves positive numbers as they 
are. ReLU helps the optimizer in finding the right set of weights sooner. More 
technically it makes the convergence of stochastic gradient descent faster. ReLU is 
computationally inexpensive, as it is just thresholding and not calculating anything like 
what is done for the sigmoid and tangent functions. ReLU has one disadvantage; when a 
large gradient passes through it during the backward propagation, they often become 
non-responsive. These are called dead neutrons, which can be controlled by choosing 
the learning rate factor. For the forward pass of the model, we randomly choose either 0, 
1, 2, or 3 layers and reuse the middle linear layer that many times to compute hidden 
layer representations. Since each forward pass builds a dynamic computation graph (i.e., 
mathematical expressions described with a graph) normal loops are used when defining 
the forward pass of the model. Here it can be seen that the same module can be reused 
many times when defining a computational graph. The training of the model initiates 
with random learnable weights. The gradient descent optimization algorithm is applied 
to learn the weight coefficients of the model. In every epoch (i.e., pass over the training 
set), the weights are updated. In order to find the optimal weights of the model, an 
objective function based on the sum of squared errors (SSE) is minimized. Furthermore, 
the gradient is multiplied by a factor, the learning rate η, which is chosen to balance the 
speed of learning against the risk of overshooting the global minimum of the cost 
function [1]. 

f (x) = max (0,x)
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3 . 4  R e s u l t s  a n d  d i s c u s s i o n  

3 . 4 . 1  R e s u l t s  o f  d a t a  p r e - p r o c e s s i n g  

In this section, the results of preprocessing datasets by using the Sklearn 
preprocessing library of python [2] are discussed. The latter provides several common 
utility functions and transformer classes to change raw feature vectors into a 
representation that is more suitable for the downstream estimators. 

The transformed datasets are used later by the three different supervised machine 
learning algorithms: Multiple linear regression, Neural Network and Deep Neural 
Network.  

In the first step undefined NaN (i.e., not a number) are removed (Eq. 3.1-3.2); then, 
the cleaned datasets are scaled with normalization and standardization methods (Eq. 
3.3-3.5). The transformed datasets are split in the two subsets train and tests (Eq. 3.6).  

The three MLTE algorithms are trained with the first subset while the second subset 
is utilized to analyze the performances. Table 3.1 shows the genetic composition of the 

cracked population composed by [ ] individuals, whose shape are 2d-

array, comprising of 38 elements of the optimal solution of CHP-MMG (Appendix A). 
These datasets treated with the above mentioned preprocessing methods, are discussed 
in the following part of this paragraph. The trial starts with the two original correlated 
datasets, respectively: 

 X  and y .    [3.15]  

Where the first array, X is the explanatory dataset which embeds all the individuals 
that has been generated with the analytical techno-economic model (ATE) and y is the 
1d-array corresponding to the fitness values (observed datasets); to each Xi-individual 
with index i corresponds a fitness value yi .  

All the individuals with a fitness values lower than 2 are selected. The final 
dimension of our datasets is the following:  

X  and y .     [3.16] 

Only 2.5% of the original records has been considered to train the models. Upon of 
the tests carried out, it was found that, the dimension of the selected size improves the 
overall training process. 

Xi,scaled
i,train , Xi,scaled

i,test

∈ ℜ368.594 × 38 ∈ ℜ368.594 × 1

∈ ℜ9.243 × 38 ∈ ℜ9.243 × 1
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The impact toward the distribution of the datasets after preprocessing has been 
studied. Moreover, the performances obtained with the three machine learning 
algorithms (MLR, NN, DNN) fed with different scaled datasets, have been evaluated.  

Among the variables indicated in Appendix A, we choose a couple of variables 
(FC_SIZE_MG_A vs WT_SIZE_MG_A), having a complementary role in the power 
generation.  

Figure 3.1 shows the distribution of coupled unscaled explanatory datasets. It can be 
observed that a relevant portion of data are scattered in the upper right area of the plots. 
This behavior entails that several outliers may be present in the sets; they can degrade 
the predictive performance of many machine learning algorithms.  

In Figures 3.2-3.4, the transformed features of the correlation between the size of FC 
and WT are plotted. The left plot shows the entire dataset and the zoomed-in right plot  
shows the dataset without the marginal outliers. Note that several marginal outliers 
(individuals embedding FC with size 100 kW and WT with 150 size) are still presents 
with all transformers.   

The transformation in Figure 3.2 refers to the normalization of the individuals’s 
datasets by scaling all the values of the dataset in the range [0,1] considering as divider a 
given arbitrary value common for all the genes.  

The maximum value of the dataset (48.000) has been chosen as the common divisor. 
However, this transformation compresses all the inliers in a narrowed area the original 
data. This is due to the divisor chosen between values with different scale (e.g., DG, 
Tanks, GPS coordinates). 

StandardScaler in Figure 3.3 removes the mean and scales the data to unit variance. 
Note in particular that the spread of the transformed data on each feature lies in the 
range [-2, 1]. The distribution of data is similar to the original unscaled datasets.  

Figure 3.4 outlines the rescaling thru normalization of all feature values in the range 
[0, 1] with axis-independent dividers rescaling factors. This transformation, similarly as 
the others, keeps the distribution of data similar to the original datasets.  

To conclude, in all the examples of the correlation between WT and FC are 
visualized outliers in transformed datasets which cannot be eliminated with any 
preprocessing technique. This behavior can origins a degradation of the predictive 
performance of the machine learning algorithms.  
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Figure 3.2 spread of scaled data by common divisor method of two coupled variables (FC_size, 
WT_size) 

Figure 3.3 spread of scaled data by standardization method of two coupled variables (FC_size, 
WT_size) 

Figure 3.4 spread of scaled data by min-max method of two coupled variables (FC_size, WT_size) 

Figure 3.1 spread of unscaled data of two coupled variables (FC_size, WT_size) 



3 . 4 . 2  R e s u l t  o f  m a c h i n e  l e a r n i n g  m o d e l  t r a i n i n g  

After scaling, the transformed datasets are ready to train the MLTE algorithms. Thus, 
the matrices are split into random 50% training and 50% test subsets. The resulting size 
is the following:  

The learning phase has been conducted in a similar fashion by feeding all the models 
with the datasets transformed by normalization and standardization as described in the 
previous Paragraph 3.3.1. The effective size of the dataset to train MLTE algorithms is 
further restricted to the number of simulations that it has been possible to run with the 
ATE model so far. This may affect the overall robustness of the proposed approach. 
Figures 3.5 and 3.6 show how the transformations with the common divisor method 
affect the MLR algorithm during the phases of training and testing. The correlation 

between the predicted observed variable yscaled of the vertical axis and the same variable 
generated with the ATE model (horizontal axis) is here depicted. Evaluated on the 

training data, the R2 is 0,2. It should be noticed that R2 keeps the same value for all pre-

processing methods (standardization, min-max, common divisor). 

It was also observed that the measured R2 reflects into a concentrated horizontal 

cluster of predicting data (y_pred), meaning that a small number of predictions 
correspond to a large number of actual data. It is deemed that the delivered datasets are 
not able to properly train the MLR algorithm. Thus the independent X-dataset is not able 
to explain much in the variation of the dependent variable y - regardless of the variable 
significance. Based on the work of P. Yarnold (2019) [11] it has been assumed that this 
behavior indicates the existence of a high non-linear effect. To demonstrate this 
statement, further trials have been executed. The explanatory X and the observed 
variables y have been replaced with two stochastic arrays having the shape of the 
original datasets, but given in the half-open interval [0,0, 1.0) with a random samples 
generator which creates values from a continuous uniform distribution over the stated 
interval. When the random datasets are transformed and then they feed the MLR, the 
cluster confirms again a similar highly non-linear behavior as given with the original 
data. 

[3.17]

[3.18]Xscaled
test ∈ ℜ4.622 × 38

Xscaled
train ∈ ℜ4.621 × 38 yscaled

train ∈ ℜ4.621 × 1

.yscaled
test ∈ ℜ4.621 × 1
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Finally, the MLR model has been replaced with a NN and DNN models. To get the 
datasets in the shape for feeding the activation functions of the NN (i.e., sigmoid 
function) and DNN (i.e., ReLU function), the original datasets have been changed with 
min-max scaling method. This method avoids a null signal, when inputs are negative 
and it fosters a better distribution (e.g., Figure 3.2 vs. Figure 3.4) of the datasets within 
the range [0,1]; to this extent, the NN/DNN algorithms improve their ability to learn the 
weights [12][13]. Then, the shuffling has been applied similarly to MLR, before 
performing the split of train and test subsets.  

As for MLR, the neural network and deep neural network algorithms utilize the 
training data to learn the weights and the other parameters (i.e., epochs, learning rates in 
NN). The results of the two models are similar. The outcome of the validation phase of 
DNN is reported in Figure 3.7. This scattered plot similarly to precedent Figure 3.5-3.6 
shows a poor correlation among the observed values generated with ATE model y_test 
and the corresponding values y_pred obtained with the DNN. The simulations computed 

with DNN give a negative R2 (-0,03). Similarly, the simulations executed with three-

layer NN, return a negative R2 values with X variables treated with the same 

transforming method. It should be noticed that even the extensions to large epoch ranges  
does not improve the R2 performance. The negative R2 score, reflects a non-linearity 
more pronounced than MLR. From the distribution of the scattered patterns in Figure 
3.5-3.7, can be inferred that the correlation among predicting data (y_pred) and original 
data (y_test) is neglected. 

3 . 4 . 3  I m p l i c a t i o n s  o f  m a c h i n e  l e a r n i n g  m o d e l s  i n  
t e c h n o - e c o n o m i c  o p t i m i z a t i o n s  

The results coming out from the simulations described in the previous paragraph 

3.3.2 are characterized by a R2 lower than 0.20. Among the three different MLTE 

models, the highest R2 value is obtained with MLR. Trials have been repeated with 

different parameterizations of MLR, NN and DNN algorithms and changing scaled 
training datasets. However, a result comparable to ATE for the whole domain of the 

observed variables has not been achieved. It is assumed that the R2 performance 

indicates that any transformed independent variable X is not explaining in the variation 
of the dependent variable y - regardless of the variable significance. Hence, the 
correlation among X and y remains highly non-linear.  
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Figure 3.7 Scatterplot of predicted vs testATE-based values in DNN validation. X-explanatory 
variable scaled by normalization with axis-1 min, max values 

Figure 3.6 Scatterplot of predicted vs test ATE-based values in MLR validation. X-explanatory 
variable scaled by interpolation 

Figure 3.5 Scatterplot of predicted vs test ATE-based values in MLR training. X-explanatory 
variable scaled by interpolation 



This hypothesis has been investigated in a further campaign of simulations where the 
original explanatory variables X and the original dependent variable y have been 
replaced with stochastic matrices resulting from continuous uniform distributions. When 
a stochastic dataset is transformed and it feeds an ML algorithm, an highly non-linear 
correlation appears in a scattered plot. Neither MLR, NN, nor DNN are able to replace 
the ATE analytical techno-economic model in the overall domain of solutions.  

The potential argumentation that justifies the non-linearity among the X-explanatory 
datasets and the y-dependent datasets has been investigated.  

The ATE model that is used to generate the training and test datasets, embeds several 
stochastic relations that contribute to return different fitness values for the same 
solution: 1) cloudiness Eq. 2.10; 2) wind speed Eq. 2.21; 3) electric loads Eq. 2.27; 4) 
thermal loads Eq. 2.28; 5) demand response profiles Eq. 2.30; 6) grid outage Eq. 2.31.  

These terms cause in the underlying fitness function to become noisy, in the sense 
that the boundaries condition applied to the SLSQP may vary for the same trial solution. 
The stochastic behavior is amplified by repeating the SLSQP optimization as the 
number of time-steps.  

The scattered pattern shows in Figure 3.5-3.6 a restricted area (indicated by black 
arrows), in which y_pred (i.e., the fitness value predicted by ML) and y_test (i.e., the 
test fitness value) have the same value. It can be assumed that their correspondent 
solutions, although not yet the best, are within the optimal search area.  

Hence, MLTE can be used in combination with ATE as follow: 1) compute the first 
query with MLTE to search the solutions until the corresponding fitness values is nearby 
zero, 2) execute further queries with ATE by constraining the high values of the  
boundaries with the elements of the solutions obtained with MLTE.  

Optimizations based on MLTE have the great advantage to reduce the execution of a 
query from several hours to minutes. Thus, MLTE in combination with ATE (i.e., hybrid 
model) allows to shorten the computing time of optimizations based on multiple queries.  
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3 . 5  C o n c l u s i o n  

Three algorithms for the approximation of the analytical techno-economic model into 
MLTE based models have been discussed in this chapter. The first is based on MLR. A 
second algorithm is a 1-layer NN. A third model is a deep neural network where the NN 
is expanded into 3 dynamic layers. 

Optimizations based on MLTE in combination with the ATE model have the great 
advantage to reduce the computing time from several hours to minutes while searching 
the global minimum. 

The first query bases on MLTE can be used to tighten the search area of the best 
CHP-MMG siting and sizing. In order to preserve the quality of the results, the stopping 
criteria of the fitness function need to be set near zero. Then, the best solution obtained 
with MLTE must be utilized to override the boundaries of the subsequent search with 
the ATE-based model.  

The combination of machine learning with analytical models is a novel contribution 
in the techno-economic optimization of CHP-MMG that is proposed by this work. 
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C H A P T E R  4 :  O p t i m i z a t i o n s  w i t h  e v o l u t i o n a r y  
a l g o r i t h m s  

 This chapter addresses the optimal design, sizing and siting of CHP-MMG. This leads to a non-
linear stochastic optimization problem, subjected to variety of uncertain climate variables, load 
profiles, grid outages. The fitness function is based on a techno-economic models describing the 
energy flows and costs of the distributed energy resources. ATE makes use of sequential least 
squares programming for the hourly optimizations of operation. The FF is used to measure the 
IRR and the LCOE for each solution. Two novel self-adaptive differential evolution algorithms 
(ADE, AIE) are proposed. In these algorithms, the genotype of each individual incorporates the 
site and size features of the candidate solution. In the ADE, a mutant and crossover factor is 
adapted according to the difference of best-so-far fitness values. In AIE the mutant vector is 
obtained with a normal random distribution driven by the diversity of population and fitness 
convergence. Mutant genes are randomly recombined with the target genes and external 
genotypes (horizontal gene transfer). A one-to-one survivor selection criterion is used to find the 
best individual. The adaptive approach enhances the search radius and increases the 
convergence of the algorithm. The results demonstrate that AIE performs 20% better on average. 
Moreover, the optimization tools have been used to execute a sensitive analysis of hydrogen costs 
in off-grid and on-grid contests. Both scenarios do not select the generation of hydrogen on-site 
as preferred choice. With CHP-MMG, energy production surplus is converted from electricity to 
heat and thus, an efficient swarm of energy permits to keep the LCOE lower than 18c€/kWh. The 
overall results show that at a hydrogen cost of 3€/kg, the optimal design returns an IRR of over 
50%. Further simulations that consider on-site hydrogen production via plasma assisted 
decomposition of methane, led to similar outcomes as for green hydrogen. 

Based on: P. Fracas, E. Zondervan, M. Franke, K. V. Camarda, 2021, Nature-inspired 
two-layer optimizations for interconnected heat and power multi-microgrids. 

Published and presented at:  
- 9th Global Conference on Global Warming, 1-4 August 2021, http://
www.gcgw.org/gcgw2021/. 
- TUBA World Conference on Energy Science and Technology, 8-12 August 2021, 
https://wcest.tuba.gov.tr. 
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4 . 1  I n t r o d u c t i o n  

When two or more CHP-MG systems are interconnected into a CHP-MMG, they 
become flexible and counterbalance the variations required to match supply and demand 
at any time. Energy production surplus (i.e., exceeding the load demands and energy 
services) can be converted from electricity to heat and transferred to the nearby CHP-
MG. As a consequence, the TCO for the installations is minimized, a better LCOE is 
achieved and the IRR is higher than stand-alone MG. Orecchini et al. in 2011 [1] 
proposed the concept of "intelligent energy network" as an intelligent management 
system that incorporates distributed energy sources, electricity, heat, hydrogen, biofuels 
and non-biofuels.  

Unpredictable and variable climatic conditions make the production of the energy 
with RES, intermittent and not programmable. Matching the latter with load profile 
uncertainty, grid availability and flexible energy demand requires algorithms to solve 
stochastic optimization problems.  

In this chapter, the techno-economic optimization of multiple interconnected heat and 
power microgrids is discussed. Two novel evolutionary computing methods are 
proposed to solve this stochastic optimization problem. They are designed to 
simultaneously find the best type (design optimization), size (sizing optimization) of 
DER, the best geo-location (siting optimization). The objective of the optimizations is to 
achieve the highest IRR and lowest LCOE depending on energy policies, cost and 
hydrogen type in on-grid and off-grid contexts. 

4 . 1 . 1  F e a t u r e s  o f  e v o l u t i o n a r y  a l g o r i t h m s  

To find the optimal design, sizing and siting of CHP-MMG, a stochastic multi-
objective optimization (MOP) problem has to be solved. This is a non-convex, non-
linear problem that does not have a unique global solution. Many solutions with 
incommensurable quality, hereafter called “probabilistic best solutions” (PBS) can be 
identified. Metaheuristics are useful for solving MOP [2]. The term “metaheuristic” (F. 
Glover, 1986) [3] refers to a nature-inspired robust searching mechanism that may 
provide a sufficiently good solution.  

EA are a family of random-based solution space search algorithms. An evolutionary 
algorithm is a special computation technique that draws inspiration from the principle of 
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natural evolution and survival of the fittest that are described by the Darwinian Theory. 
The Darwinian Theory explains the principle of natural selection, which favors the 
survival of species that are matched with their environmental conditions and explains 
the evolution of species as an outcome of random variations and natural selection. There 
are a wide variety of metaheuristics including genetic algorithms (GA), evolution 
strategies (EVS), evolutionary programming (EP), genetic programming (GP) and 
differential evolution (DE). Since EA deal with a group of candidate solutions, it seems 
natural to use them in optimization problems to find a group of promising solutions. 
Indeed, EA have proven very efficient in solving complex multi-objective optimization 
problems (Rodriguez, M. A. et al., 2020) [4]. EA have a direction-based search method 
that optimizes a problem by iteratively trying to improve a candidate solution with 
respect to a given measure of quality.  

The metaheuristic EA method needs few or no assumptions about the problem and 
can search for solutions in very large spaces. Thus, EA are suitable when solving 
complex unconstrained global optimization problems. A population of target solutions 
evolves at each generation in new candidate solutions by combining existing ones and 
then keeping whichever candidate solution has the best fitness.  

The optimization problem is treated as a “black box” that merely provides a measure 
of quality given by the candidate solution the gradient is not needed. In 1995, R.Storn 
and K.Price [5] proposed the Differential Evolution (DE) algorithm, a stochastic 
population-based search method, for solving non-linear, high-dimensional and complex 
computational optimization problems. DE uses a simple mutation operator based on 
differences between pairs of solutions (called hereafter vectors) to promote a search 
direction-based approach. It is worth noting that DE can support the contour matching, 
i.e., the vector population adapts such that promising regions of the objective function 
surface are investigated automatically once they are detected.  

An important ingredient is the promotion of basin-to-basin transfer, where search 
points may move from one local minimum to another [6]. DE also utilizes a mechanism, 
where the newly generated offspring competes only with its corresponding parent 
(previous vector) and replaces it if the offspring has a higher fitness value. 
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4 . 2  S t a t e - o f - a r t  o f  e v o l u t i o n a r y  a l g o r i t h m s  a p p l i e d  
t o  m i c r o g r i d s  

In recent years, EA have emerged as successful alternatives to more classical 
approaches for solving microgrid optimization problems. The applications of EA spun 
from optimization of management to scheduling of energy-efficient scheduling to 
optimal sizing of nominal power of generators and capacity of energy storage. Most 
research is dealing with specific sites of the energy systems. A number of methods are 
considered and applied to determine optimal size and location of MG. Such methods can 
be classified as single-objective and multi-objective sizing and siting optimization 
problems. Single-objective methods target to minimize the cost or maximize the profits. 

Whereas multi-objective methods are used to determine Pareto optimal solutions of 
different objectives. For example, to ensure that the generation and consumption of 
energy are balanced at minimal operational costs, the emission of pollutions are 
minimized and the financial returns of investments (i.e., NPV, IRR) are maximized. 

4 . 2 . 1  E v o l u t i o n a r y  c o m p u t i n g  f o r  o p t i m a l  o p e r a t i o n s  

Several works deal with the optimization of MG operations using different 
metaheuristics. Such methods search for solutions over a well-defined MG configuration 
and installation site. These methods incorporate voltage, current and power flow 
regulations, multi-grid dispatch, pollutant emissions, reactive power, energy scheduling 
and the cost of energy.  

The work of H.Vahedi et al. in 2010 [7] focused on developing a cost optimal 
operational strategy for a single MG using a differential evolution to meet the customer 
demand and ensuring system safety. M. Hemmati et al. in 2014 [8] presented a 
comprehensive operational model for MG in the islanded mode. A new learning-based 
differential evolution algorithm is presented to solve the operational problem of various 
DER. W. Gu et al. in 2014 [9] presented a review of the energy management of CHP-
MG with distributed cogeneration units and renewable energy sources which yield an 
effective solution to energy-related problems, including high energy demand, costs, 
supply security, and environmental concerns. J. Zhang et al. in 2016 [10] proposed an 
optimal day-ahead scheduling model for a microgrid system based on a hybrid harmony 
search algorithm with differential evolution (HSDE). S.Reddy et al. in 2016 [11] 
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discussed a power scheduling approach for standalone MG. The proposed scheduling 
problem is solved using a hybrid differential evolution and harmony search (HSDE) 
algorithm. M. Marzband et al. in 2016 [12] developed an algorithm for an energy 
management system (EMS) based on multi-layer ant colony optimization approach 
(EMS-MACO) to schedule energy in MG. This algorithm can be used to determine the 
required load demand with minimum energy cost in a local energy market. The 
performance of MACO is compared with EMS and particle swarm optimization. N. 
Nikmehr et al. in 2017 [13] applied a PSO method to minimize the costs of multi-
microgrids concept. A stochastic model of both a small-scale energy resource as well as 
a load demand profile at each microgrid is developed to determine the best economic 
operation for each MG, based on the power transaction between the MG and main grids. 
The proposed methods allow to regulate the power demand and power transaction 
between each MG and the main grid.  

M. Hossain et al. in 2018 [14] demonstrated an application of PSO for real-time 
energy management of a community microgrid. The complexity of time-varying 
electricity prices, stochastic energy sources and power demand is managed to save costs 
and minimize energy waste. Yang Li et al. in 2019 [15] have investigated how to 
coordinate several scheduling objectives from the perspective of cost, environment and 
users with a multi-objective dynamic dispatch model. An evolutionary algorithm is used 
to find a set of Pareto-optimal solutions. The results demonstrated the effectiveness of 
the suggested approach.  

Willian M. Et al. in 2020 [16] proposed a multi-objective optimization method 
structured in multi-layers to operate DER that needs to be connected unevenly 
throughout the phases of a microgrid. The MOP, based on an EA, maximizes the active 
power generation by single-phase distributed energy resources and it minimizes the 
reactive power flow through the grid and grid currents unbalance at the point of 
common coupling. The results of microgrid operation demonstrated the effectivity of the 
proposed approach to steer grid power flow and prioritize active power injection or 
compensation of currents unbalance. 
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4 . 2 . 2  E v o l u t i o n a r y  c o m p u t i n g  f o r  o p t i m a l  s i t i n g  a n d  
s i z i n g  

Similar to the optimization of operation problems, in the last ten years, 
metaheuristics have been proposed to solve multi-objective siting of MG. Notably, 
multi-microgrid optimization problems are rarely investigated. Sizing problems are 
usually combined with a low-level management of operations, which are usually solved 
as MILP. 

H. Doagou-Mojarrad et al. in 2013 [17] introduced an interactive fuzzy method, to 
solve the problem of optimal placement and sizing of DG in a distribution network. The 
multi-objective function based on electrical energy losses, cost and pollutant emissions 
is handled by an evolutionary algorithm. B. Li et al. in 2017 [18] proposed a combined 
sizing and energy management methodology, formulated as a leader-follower problem. 
The leader problem focuses on sizing and selects the optimal size for the microgrid 
components. The energy management issue is translated into a unit commitment 
problem and is solved as a mixed-integer linear program. Uncertainties are considered 
using a robust optimization method. Several scenarios are modeled and compared via 
simulations to show the effectiveness of the proposed method. Mohseni S. et al. in 2017 
[19] investigated a novel multi-agent based method applied to the sizing of the 
components of an islanded combined heating and power residential microgrid that 
includes hydrogen refilling demands of the fuel cell electric vehicles (FCEV). The 
proposed architecture consists of five agents, namely a generation agent, an electrical- 
and thermal loads agent, a FCEV refilling station agent, a control agent, and a design 
agent. The design is the main agent that according to its interactions with the control 
agent and by minimizing the total costs of the system through PSO finds the optimal 
sizes of the system’s components. In 2017 A. Kaabeche et al. [20] proposed a hybrid 
RES sizing method taking into account the combination between the RES, the ES 
capacity, and a given load profile. This optimization method is based on the Firefly 
Algorithm (FA), considering a load dissatisfaction rate criterion (LDR), the electricity 
cost indicator for power reliability and system cost. J. Jung et al. in 2017 [21] developed 
a technique for the planning and design of hybrid renewable energy systems in MG. A 
Distributed Energy Resources Customer Adoption Model (DER-CAM) determined the 
optimal size, type of DER and operating schedules. The electrical grid of the 
Brookhaven National Laboratory campus was used to demonstrate the effectiveness of 
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this approach. A.M. Ramli et al. in 2018 [22] optimized the size of hybrid microgrid 
system components, including storage, to determine system cost and reliability. The 
optimal sizing of a PV/wind/diesel HMS with battery storage was conducted using a 
Multi-Objective Self-Adaptive Differential Evolution algorithm. The objectives have 
been treated simultaneously and independently leading to a reduction in computational 
time. Results showed that a set of design solutions could assist researchers in selecting 
the optimal MG configuration. N. Ghorbani et al. in 2018 [23] presented a hybrid 
genetic algorithm based on PSO applied for the optimal sizing of an off-grid house with 
photovoltaic panels, wind turbines, and batteries. The minimization of the total costs of 
ownership was the main goal of this study. D. Prathapaneni et al. in 2020 [24] proposed 
a leader-follower based design optimization method for microgrids where the 
management of load demand is incorporated into the sizing process. A microgrid 
powering a desalination plant has been considered to evaluate the performances of the 
proposed method. The results demonstrated that the proposed coordinated sizing is cost-
effective, and it provides better operational flexibility. 

4 . 3  T h e  t w o - l a y e r  o p t i m i z a t i o n  m e t h o d  

A two-layer algorithm to simultaneously find the optimal design, site, sizing and 
operation of CHP-MMG is proposed. The inner layer is a convex piecewise-linear 
problem and is solved with the sequential least squares programming method. The outer 
layer simultaneously solves a non-linear, non-convex problem with two novel 
evolutionary methods (i.e., ADE, AIE). The fitness values are generated by an analytical 
techno-economic model. A detailed description of ATE is reported in Chapter 2 and in 
the publication of the author (P. Fracas et al., 2021 [25]).  

Figure 4.1 shows the flowchart of the algorithm. ATE incorporates a set of DER 
models, SLSQP algorithm, the associated objective function, energy balances and 
boundaries dictated by outer ADE/AIE methods and state of health of DER. The whole 
ATE model is described in Chapter 2 and discussed in [25]. The SLSQP method ensures 
that the generation and consumption of energy are balanced each time-step (i.e., hour) at 
minimal operational costs and highest revenues streams. The objective function of the 
dispatch problem to solve with SLSQP can be defined as: 

     [4.1] min f (x) =
N

∑
c=1

LCOEc ⋅ xc (ts) −
R

∑
r=1

L SOEr ⋅ xr (ts) .
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Where ,  are the elements of the X-array candidate solution (i.e., respectively the 

energy flows of DERs consuming and generating energy). The LCOE is the ratio 
between the TCO and the energy generated along the lifetime of the DER. Similarly, the 
LSOE is the selling price deducted from the LCOE of the microgrid’s products. While 
minimizing at each time-step the cost-revenues, the electric, the thermal generation of 
each microgrid and interconnections should balance the demands surplus DER and 
networks losses. To avoid energy under-flows and improve the convergence, the 
constraints are inequalities both for the thermal and electric energy flows of the DER  
and equalities for the exchanged energy flows between the two MG: 

    [4.2] 

xc xr

((∑N
i=1 gder

i (ts)) ⋅ kd) − ((∑M
j=1 gload

j (ts)) ⋅ kl) ≥ 0

∑2
h=1 gitc

h (ts) = 0
.
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Figure 4.1 Framework of the two-layer optimization algorithm



Where the terms  and  are the energy flows of the DER and are the energy 

flows between the MG. The index i, j and h specify each generator (i.e., DER), 

consumer of energy (i.e., load) and device to interconnect the MG, respectively. The  

and  are parameters to calibrate the contribution of the two terms and hence, to set the 

size of the overflow. The latter permits the algorithm to improve the capability to 
converge. The DER models dynamically adapt the boundaries and computes the states 
of DERs after the elaboration of SLSQP. At the end of the iterations, ATE exits the 
SLSQP loop and computes the actual key financial ratios (LCOE, IRR, NPV) over the 
lifetime of the installation. The evolutionary algorithm at the upper generates the size of 
DER’s size, the latitude and the longitude. The setting is used by the ATE model for the 
boundaries of SLSQP algorithm. 

4 . 3 . 1  I n t r o d u c t i o n  t o  s e l f - a d a p t i v e  e v o l u t i o n a r y  
a l g o r i t h m s  

Two novel self-adaptive differential evolution algorithms ADE and AIE have been 
developed to identify in the search space the setting of two CHP-MMG. Before 
proceeding to discuss the overall structure of the algorithms, the candidate solutions 
within the search area (i.e., the objects) are defined. An individual is a term used to 
denote the objects. The individual is composed by chromosomes; each of them 
embodies several elements named genes. The genotype is the set of genes. The 
phenotypes are the set of characteristics of an individual, as they result from the 
expression of its genotype. In our problem, the phenotype expresses the observable 
behavior of individuals interacting with local stochastic environmental conditions (e.g., 
radiation, wind speed, load profile, grid outages).  

As described in Appendix A (Table A.2), in our problem, the individual is composed 
of 38 genes. The genotype contains two chromosomes: the first (chromosome of siting) 
embeds two genes describing the geo-spatial location (i.e., latitude, longitude) of the 
CHP-MMG configuration; the second (chromosome of sizing features) is composed of 
36 genes that are describing the size of each DER. The two chromosomes (genotype) are 
the first property of the individual; the second property is the measure of its quality 
(fitness value). The individual can also be defined as a list of data having one 
dimension. Thus, for the latter is also used the term “population vector”, “vector”, “1d-
array”.  

gder gload

kd

kl
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In our evolutionary computing problem, a population embedding 12 individuals is 
considered. An initial population is randomly generated according to a uniform 
distribution. After initialization, the EA enters a loop of evolutionary operations: 
adaptive mutation, crossover and selection. At each generation, a mutation vector is 
created with three individuals, named parents, randomly selected in the mating pools. 
The target vector is perturbed with the differences of the parents. The resulting 
difference vector is scaled down with a mutant factor which is self-adapted to the 
difference vector based on the latest best-so-far fitness values. This approach enables 
optimization of the search radius and increases the convergence of the algorithm. In AIE 
the mutant vector is obtained with a normal random distribution where standard 
deviation and mean are driven by the diversity of population and fitness convergence. 
Chromosomes of the mutant are randomly recombined with the target individual and 
with individuals randomly chosen in a dataset (horizontal gene transfer). In ADE the 
genes of the mutant individual are mixed and recombined with the target individual to 
obtain a trial individual. The intensity of crossover is adapted to the difference vector 
based on the best-so-far fitness values. 

 In both algorithms, a one-to-one survivor selection criterion is used to find the best 
individual. The selection criterion is based on the fitness values. The trial individual 
competes with the target vector. The individual with the lowest fitness value survives 
into the next generation. The selection procedure selects the better one between the 
target vector and the trial vector. Individuals with higher quality have a higher 
probability of being selected into the mating pool so that the good ones will have more 
chances to breed. Then the newly generated population replaces the old one and another 
generation starts. In the development of the ADE and the AIE algorithms, the above 
mentioned techniques keep the genotype diversity within an optimal bandwidth. The 
implementation is based on adapting the mutant, crossover parameters and a switching 
strategy to generate the mutant vectors and to transfer the genetic code during the 
recombination phase. 

4 . 3 . 2  S e l f - a d a p t i v e  d i f f e r e n t i a l  e v o l u t i o n  a l g o r i t h m  
( A D E )   

The self-adaptive differential evolution algorithm proposed method is based on DE. 
Compared to the original version introduced by Storn at al. in 1995 [5] here, the mutant 
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and crossover parameters are adapted according to the difference of the best-so-far 
fitness values. In other words, the best fitness value of the latest (e.g., n = 7) i-
generations are saved in a vector and the difference is calculated.  

The i-individual is represented by a vector embedding the chromosome of sizing 

with 36 genes (  , h=1,…,36) and the chromosome of siting composed by 2 genes 

(  k=1,2). A group of individuals represents the g-population. The index g denotes 

the generation counter. The maximum value of g (gmax) is the stop criterion. Thus, the g-
population of n individuals is a matrix (2d-array) of vectors as follows: 

 .          [4.3] 

The dimension n of the population is hereafter named as popsize.  

Based on that, the DE algorithm starts to randomly generate the initial 0-population 
according to a uniform distribution. 

 .      [4.4] 

The two initialization vectors:  and  of the individual , indicate respectively 

the initial upper and lower bounds of the genotype . The boundaries - which are 

input values of the algorithm - represent the limit of genotype space to search. The 

random number generator:  returns a uniformly distributed random number 

within the range . The index i indicates that a new random value is 

generated for each parameter. The main idea after initialization is that DE enters a loop 
of evolutionary computations mutation and crossover, generating a set of trial parameter 
vectors. Then, the loop ends with the selection of the best individual between the trial 
and the target vector. The original mutation strategy (DE/rand/1) is based on three 
vectors uniformly chosen from population set. The mutation vector is generated with the 

perturbation of a base vector  by using a difference vector based mutation. 

The difference vector distribution usually adapts to the landscape of the objective 
function. During the trials, it has been observed that a single difference vector limits the 
potential perturbation possibilities for a base vector and hence stagnation in a certain 

xi,h,g

xi,k,g

Xg =
x1,1,g … x1,38,g

⋮ ⋱ ⋮
xn,1,g … xn,38,g

Xi,0 = ran di,0[0,1) ⋅ (BU
i,0 − BL

i,0) + BL
i,0

BU
i,0 BL

i,0 Xi,0

Xi,0

ran di,0[0,1)

0 ≤ ran d [0,1) ≤ 1

X1,g
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search area may occur which leads to solutions away from the global optimum. 
Perturbation of the base vector by mutation has been treated very early and has led to 
various variants of DE. To enhance genotype diversity, the original mutation strategy is 

modified by perturbing the base vector  with three difference vectors whose intensity 

is adapted. The goal is to generate more distributed difference points without increasing 
the number of population members and thus enhance the contour matching property.  

The following variant of the original mutant equation is proposed: 

 ,   [4.5] 

where ,  are the parameters to adapt and k1, k2 are constants.  

To set   ,  a 1d-array is created with the subset of the latest best-so-far fitness 

values as follow: 

,         [4.6]  

where  is the index denoting a subset of . Then the corresponding 1d-array with the 

differences is calculated as follow: 

  .      [4.7] 

The difference vector ( ) is used to self-adapt the parameters  , , and thus, 

to maintain an optimal population diversity. 

 .     [4.8] 

Eq. 4.8 shows that the mutant ( ) and crossover parameters ( ) are 

uniformly distributed over intervals whose range is subjected to intensity and versus of 

the elements of  .  

Notably, v and w have been empirically set within the interval: 0.54 - 0.98. It has 
been observed that queries based on this bandwidth allow to obtain a suitable genotype 

diversity.  The mutation vector  is then mixed with the so-called target vector  

(where ) through the classic variant of diversity enhancement, the crossover, 
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which allow to properly mix the parameters of the mutation vector  to generate the 

trial vector .  

The crossover is defined as:  

 .      [4.9] 

The parameter  is uniformly distributed over intervals whose range is subjected to the 

value of . As for the mutant factor, the crossover parameter, is generated with Eq. 4.8. 

Here the amplitude of the random intervals is chosen between 0.5 and 0.98 to modulate 
the intensity of the vector mix and thus keep an optimal genotype diversity. The 

situation where:  is avoided with at least one element of the array  is taken 

from the mutation vector .  

The crossover has the potential to destroy the directional information provided by the 
difference vectors and thus, it can reduce genotype diversity. It happens when strong 

crossover is used (e.g., ). In this case, DE has a strong tendency to search 

along the target points; in contrast to a weak cross over (e.g., ) which 

addresses the DE to search far away from the target, i.e., nearby the mutant.  

The role of the parameter  is to enhance the control of the diversity over all the 

process of generation of the trial vector. The trial vector  is finally utilized to 

compete against the target vector  as follow: 

 .    [4.10] 

The one between the trial and target vector that yields the lowest objective function 
result (fitness value) will survive and become a member of the next generation g+1. For 
each generation, the individual within the g-population having the best fitness i.e., the 
best-so-far (BSF) value, is preserved to keep track of the progress that is made during 
the minimization process. Figure 4.2 shows the overall framework of the AIE. 
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Figure 4.2 Flowchart of self-adaptive differential evolution algorithm



4 . 3 . 3  S e l f - a d a p t i v e  a r t i f i c i a l  i m m u n e  a l g o r i t h m  
( A I E )  

In 2020 our life has been deeply influenced by the corona virus disease (COVID-19). 
The spread of this pandemic across the globe was an inspiration to imitate how the 
immune system fights harmful viruses that enter the body. The basic function of the 
immune system is to identify and destroy the virus. The pathogen is recognized by 
special structure molecules, known as an antigen. An early example of an autoimmune 
algorithm has been proposed by De Castro et al. in 2002 [27]. 

Their algorithm mimics the clonal principle. In artificial immune algorithms, the 
term of “individuals” (in ADE represented as a “vector”)  is replaced by “antibodies”, 
the objective function is replaced by “antigen”, the fitness values with the term “affinity 
measure”, the population with the “repertoire” and the mutation with somatic 
“hypermutation”. 

An innovative version of the EA, hereafter named self-adaptive artificial immune 
evolutionary algorithm (AIE) is proposed. In the early generations, a mutant antibody is 
created with a random generator. In the later number of generations, a difference vector-
based mutant is randomly recombined with external antibodies. The latter is randomly 
chosen by the horizontal gene transfer (HGT) and vertical gene transfer (VGT) 
techniques. The first method to create a mutant object mimics the early stage 
mechanisms to generate an antibody to unknown antigens. The subsequent method is 
based on the difference between a couple of antibodies. It imitates a more sophisticated 
mechanism to evolve an antibody in the acquired immune system. The recombination 
method (HGT/VGT) imitates the improvement of the immunity deriving from external 
genetic pieces (i.e., RNA) having beneficial properties. The initialization is performed 
with an equivalent method as described in Paragraph 4.3.2. The parameters i.e., popsize, 
generations, boundaries are assigned to the matrix repertoire described in Eq. 4.3. Then, 
the main loop is repeated until the stop criterion (e.g., maximum generation, minimum 
affinity measure) is reached. 

In the AIE loop, the mutant is generated by following two different methods. The 
selection of the methods is correlated to the generation g  (i.e., g < gade, where gade = 20) 

and g-diversity of repertoire (DRg) obtained by computing the standard deviation of the 

g-repertoire. The parameter DRg measures the genetic diversity of the g-repertoire. 
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Thus, at the early generations or if DRg < 0.4, the mutation vector is drawn from the 

parameterized normal distribution of Eq. 4.11, then it switches to ADE method. 

 .  [4.11] 

 It has been observed that the early populations affect the investigation of the 
promising regions of the best-so-far fitness values obtained later. The purpose of the 
AIE-based mutant strategy in Eq. 4.11 is to enhance the initialization phase.  

Switching after the first 20 generations to the differences vector-based mutant of Eq. 
4.5, allows enhance the search with the direction-based method. The elements of mutant 

are within the normal range:  . The parameters  are respectively the 

mean and the standard deviation of the i-mutant.The term  is set equal to the mean of 

the i-individual. The term  is self-adapted based on the value of i-convergence of 

antibody (CA
i,g) and DRg. CA

i,g is obtained by computing the standard deviation of the 

1d-array that embeds the i-affinity measure of the i-genotype and the i-best-so-far 

affinity, minus a constant ( ) chosen to strengthen the tendency toward the 

convergence. This term gives an indication of the location of the antibody in the space 

area. The correlation between DRg and CA
i,g is an indicator of the convergence toward a 

local minimum. It is used to adapt  and determine the crossover parameter. 

To tune the adaptive parameters, the AIE has been executed for 100 queries. From 

the best 60 queries, it has been observed that if the DRg remains within a bandwidth from 

0.30 to 0.44 , and the CA gets down from a high value (i.e., 0.90) to a lower one (i.e., 
0.1), the trial vector population adapts to search the most promising regions of the 
search area.  

The scatter pattern in Figure 4.3 shows the three clusters of pair-wise data obtained 
in 5.741 generations, corresponding to the optimal 60 queries. The upper cluster embeds 
the features of early generations of each query (brown dots). The cluster of yellow dots 
is the features of the intermediate generations. The lower cluster groups the final 
generations whose j-convergence is centered on 0.10 while the corresponding value for 
the j-diversity is 0.38. The centers of the three clusters (large orange dots in Figure 4.3) 
have been obtained with the KMeans clustering method to separate samples in groups of 

Vi,g+1 =
Vi,g = N [μi,g, σi,g] i f f (DR

g , g) = False

Eq . 4.5 other wise

0 ≤ vi, j,g ≤ 1 μi,g, σi,g

μi,g

σi,g

kc ≅ 0,3

μi,g, σi,g
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equal variance [28]. The cluster centroids are used to adapt  in Eq. 4.11. The 

cluster centroids are further employed to parametrize the crossover to further control the 
diversity of the repertoire. A strong crossover is set when the CA is between 0.15 and 

0.30 and the DRg is between 0.30 and 0.40 (i.e., the affinity measure is keeping a 

moderate convergence while the repertoire still remains diverse). If these conditions are 
not respected, the search is moving away from the most promising area and the 
crossover is set to weaker values. After setting the mutant and crossover parameters, a 
somatic hypermutation is performed. Here the mutant antibody is randomly recombined 
with the target antibody (VGT) or with pieces of an external genotype (HGT). The 
external vector is randomly chosen within a dataset of optimal solutions obtained from 
previous queries. HGT technique, imitates the imaginary alien organisms (e.g., spike 
proteins) that latch on to antibodies and prevents the virus from getting into cells, 
stopping the virus from causing disease (i.e., minimization of the affinity measure).  

HGT has been recently recognized to play a relevant role in the evolution of living 
organisms in combination to vertical transfers of genes. In biological eukaryotic and 
prokaryotic organisms share a large portion of non-coding DNA/RNA transferred with 

μi,g, σi,g

1 2 3

Figure 4.3 Clusters of fitness convergence and genes diversity by KMeans algorithm
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lateral mechanisms (e.g., virus). Parts of DNA/RNA from a dead, disintegrated organism 
can, in some rare cases, penetrate the cellular organism wall and be incorporated into 
living cell DNA. Rafajłowicz W. in 2018 [29] proposed HGT to transfer genes from a 
random individual in old repertoire. Numerical results indicate the usefulness of HGT 
when applied to optimization problems of moderate size. When the vertical/horizontal 
recombination is executed, the affinity measure is computed and hence, the loop ends. 
Hence, the j-trial antibody vector and the j-target antibody are evaluated according to 
Eq. 4.9, returning the minimum affinity measure. Figure 4.4 shows the overall 
framework of AIE. 

Figure 4.5 shows the comparison between AIE and the original DE algorithm 

proposed by Storn [6] in which the mutant factor is set  and crossover .  

The plot is based on 24 queries (i.e., 12 queries with AIE and 12 with DE) to search the 
optimal configuration and size of DER in a CHP-MMG located in Bremen.  

F = 0.5 Cr = 0.8

1 2 5

Figure 4.5 Comparison of the fitness spread, 350 generations, AIE and DE (original algorithm by Storn) 
with objective function based on ATE



The correlation between the slope of the standard deviation of the affinity measures 
and the slope of the DR has been used as stopping criterion. The results for AIE are 
represented with blue bandwidth and for DE with the red bandwidth. The vertical axis 
indicates the best-so-far fitness values found by the algorithm for each evaluation in 
each query. The horizontal axis indicates the number of fitness evaluations (NOFE). The 
curves aggregate the measurements at each iteration for the mean and the 95% 
confidence interval around the mean. The behavior of the curves demonstrates an 
overall better quality of solutions with AIE. The gap between the means values of the 
AIE (dashed blue line) and DE (dashed red line) widens since 120 generations.  

The plot in Appendix B is obtained with 20 queries (i.e., 10 queries with AIE and 10 
with DE). The quality of the best-so-far fitness values of AIE is still better than ADE but 
the deviation between the bands is less marked. Thereby, the adaptation of mutant 
parameters even without HGT, contributes to improve the quality.  

The overall results demonstrate the effectiveness of the strategy implemented in AIE. 
At the beginning, the random mutant enhances the initialization phase, then the mutant 
based on ADE combined with the HGT/VGT crossover enhances the search direction.  
The AIE method avoids that parents suffer from a loss of diversity, and thus it prevents 
that populations are stalled in a low-fitness valley. After the initial generations, the 
search area is in a better position where it proceeds with the differential mutant vectors. 
The initial control of mutant and crossover enhances the exploration of wide regions of 
the search space.  

Therefore, the risk that a repertoire converges a local optimum is mitigated. HGT 
gives a contribution to accelerate the search and it attenuates the fitness error. The 
method mimics antibodies that randomly mutate and casually recombine thru HGT with 
external organisms. This approach strengthens the ability to confer protection against an 
aggressive antigen that evolves over the RNA. The mutation of the antigens in this case, 
is represented by the stochastic terms in the fitness function [25]. The aleatory 
recombination with pieces of external RNA secretes quicker and better repertoire of 
antibodies. These mechanisms enable to successfully evolve generation by generation to 
improve faster the affinity measures and to effectively converge into global minimum 
locations. 
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4 . 4  T h e  f i t n e s s  f u n c t i o n  

Each solution (i.e., the j-individual) of the g-population has associated a performance 
indicator: the fitness value. The latter is derived from a fitness function (FF) that is 
designed to search for the most profitable solution among a mix of DER type (design 
objective), size (sizing objective) and geo-locations (siting objective). FF is a multi-
objective relation that combines three terms: the levelized cost of energy, the internal 
rate of return, and penalties on unusual configurations and energy unbalances. The IRR 
is used to rank the profitability of the potential investment in the j-solution. The latter 
measures the rate of return on an investment, calculated from the discount rate that 
equates the present value of future cash inflows to the CHP-MMG’s total cost of 
ownership. The LCOE gives the cost of generating electric and thermal energy for the 
CHP-MMG including the cost of the energy-generating system, including all the costs 
over its lifetime, initial investment, operations and maintenance (O&M), cost of fuel, 
and cost of capital [25]. The LCOE is a measure of the marginal cost (the cost of 
producing one extra unit) of electricity and heating over an extended period. The 
combination of these two objectives and the penalties (P) associated to undesired 
configurations is given in the following relation: 

  .  [4.12] 

Where  are different constant empiric weights. They are set with trials and 

their role is to balance the contribution of each term (i.e., LCOE, IRR, P). LCOE is 
widely used to compare the economic competitiveness of the energy mix (S. Sung et al. , 
2019 [29]). This term is easy to understand and straightforward to apply which is the 
reason why it preferred by many energy policymakers. However, the method is not 
exhaustive from the business point of view. The LCOE approach does not consider 
revenues. Additionally, the LCOE does not consider equity, loan which influence the 
economic attractiveness of an investment. LCOE and IRR are not in conflict, but they 
are not necessarily proportionally correlated. LCOE is correlated to the total cost of 
ownership per energy generated, while IRR is subjected to the contribution of each 
product to the revenue stream. Eq. 4.12 measures both the financial objectives (i.e., 
LCOE and IRR) and penalties (P) associated to undesired configurations and underflow 
energies (i.e., unbalanced energy flows). The penalties, discourage the selection of 

f (xj,i,g) = ka ⋅
m

∑
j=1

Pj + kb ⋅
n

∑
i=1

LCOEi − kc ⋅
n

∑
i=1

IR Ri
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individuals with unusual configurations (i.e., generators without tanks and vice-versa) 
and thus contribute to accelerate the search of the best LCOE and IRR. The weighted 
sum method gives to the decision-maker the possibility to assign the importance for 
each objective with the calibration of the weights. The correlation between the standard 
deviation of fitness array and population’s genes reflects the quality of the sought design 
and this correlation can be used as stop criterion. Moreover, the FF incorporates 
stochastic terms (i.e., climate variables, grid outage, load profiles) [25]. Hence, this 
problem returns clusters of global solutions (i.e., PBS) having a similar fitness value. To 
find the best configuration, the optimization must be repeated until the standard 
deviation of the PBS genotypes reach the desired value. The PBS having the lowest 
fitness value can be assumed as the candidate of being the “best of the best probabilistic 
solution”. The final task is to verify with the sample average approximation method [30] 
if the latter solution returns the best expected performance over all the uncertain 
scenarios. This approach can be defined as “simulation-optimization” [2] [31]. 

4 . 5  R e s u l t s  a n d  d i s c u s s i o n  

The first part of this work is addressed to investigate how the geographical location 
affects the size and performance of CHP-MMG configurations in on-grid and off-grid 
scenarios. Moreover, the study investigates how the cost and type of hydrogen impact 
the selection of the CHP-MMG settings.  

Three options for the supply of hydrogen are discussed. The first is the on-site 
production by electrolyzers embedded into the CHP-MMG. The second is hydrogen 
sourced from large renewable-to-hydrogen (R2H2) plants. The third deals with on-site 
production by plasma assisted decomposition of methane.  

R2H2 links WT and PV to electrolyzer stacks which pass the excess electricity 
through water to split it into hydrogen and oxygen. In our simulations, hydrogen 
delivered by R2H2 plants, is stored at the CHP-MMG site for later use with FC. R2H2 
is the most promising scenario for generation of green hydrogen over the coming 
decade. For regions where renewable energy costs are on average higher, e.g., Northern 
Europe, there are areas with favorable conditions for large scale renewable energy. This 
makes it possible to produce hydrogen at lower-than-average costs and site selection for 
renewable hydrogen production becomes critically important. A.Ochoa Bique et al. [32] 
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show how mathematical modeling and mixed integer linear optimization allow to 
identify optimal decentralized green hydrogen production fields, infrastructure pathways 
and supply chain networks. In the present study, the green hydrogen is outsourced to 
FCs thru R2H2 fields is not counted into the fraction of energy generated with RES. The 
RES factor contemplates only the portion of energy generated by the RES locally 
integrated in the CHP-MMG. Although in the on-grid scenario both choices for the 
hydrogen supply are considered, configurations with hydrogen generation on-site are not 
selected (i.e., the size of EC in Table 4.3 is zero). Hence, it is inferred that the optimal 
CHP-MMG’s configurations are those that store electric energy or convert in thermal 
energy or exchange it with other grids rather than converting electricity into the 
hydrogen. 

Two sites displaced in different area of Europe has been considered to examine the 
impact of the geo-location. Their geo-coordinates and costs for the delivered fuel are 
indicated in Table 4.1. 

4 . 5 . 1  T h e  o n - g r i d  s c e n a r i o  w i t h  g r e e n  h y d r o g e n  

This first scenario considers two CHP-MMG connected to the main grid. Each MG 
can embed a PEMFC-CHP powered with hydrogen generated on-site and green 
hydrogen supplied by R2H2. The optimization is executed with the ADE using a 
population of 12 individuals evolving over 220 generations. In Appendix A the 
boundaries of the 38 genes of each individual are listed. 

The fitness values are computed for 85% of the generation in “low resolution” (LR). 
Namely, the time series are sliced to select one day each month. Hence SLSQP executes 
only 288 loops (i.e, 24 time-steps/month). The remaining generations (15%) are 
computed in “high-resolution” (HR); it means that SLSQP executes 8760 loops. Before 
switching in HR, the algorithm recalculates the fitness values of the latest population to 
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Cost of Hydrogen

Location Lat Long actual future

Bremen 53.07 8.80
13€/kg 3€/kg

Catania 37.50 15.08

Table 4.1 cost of fuel and geolocations for the simulated scenario 



check the consistency of the best-so-far solution. It is remarkable to note that LR 
computes in 3 minutes a generation instead of 12 minutes/generation in HR. 

In Table 4.2 the price’s structures of products (heat, electricity and water of FC), 
which are sold to the nearby MG and of the delivered energy demand services to the 
main grids (GRID) are listed. The boundaries applied to the ADE algorithm are 
indicated in Appendix A (Table A.1). Based on these assumptions, the best solutions 
(optimal design and sizing) of the best query obtained in the southern (Catania - Italy) 
and northern (Bremen - Germany) sites are computed.  

Table 4.3 shows the results for the scenarios in each location with the different cost 
structure of hydrogen. It can be observed, that in South Europe, the increase of the 
hydrogen costs does not affect the optimal mix of RES: the role of PV, WT, ST remains 
marginal in all cases. Here, a cost of hydrogen 1-3 €/kg boosts FCs to lead the 
production of electricity and heat. On the contrary, with the actual cost of hydrogen (i.e., 
13 €/kg), the optimal supplier of energy still remains the GRID with tariff rates ranging 
between 0,24 and 0,36 €/kWh. The cost of hydrogen heavily impacts the financial 
performance (IRR) of the optimal CHP-MMG. IRR almost halves when the hydrogen 
costs doubles. This is mainly due to substantial differences in CAPEX but a similar 
structure for revenues in the two scenarios.  

In Northern Europe, a high supply cost of hydrogen causes a consistent increment of 
the PV and WT sizes while FC are still replaced by the main grid. The RES factor, a 
ratio that correlates the energy generated by RES installed into the MG with the energy 
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Service Grid-tied  
 

Off-grid 
 

Electric energy to user 38 c€/kWh  45 c€/kWh  

Thermal energy to user 22 c€/kWh  22 c€/kWh  

Sellback of electric energy among MG    5 - 28 c€/kWh  23 c€/kWh  

Sellback of thermal energy among MG     5 - 18 c€/kWh  12 c€/kWh  

Sellback of electric energy to grid utility    11 - 18 c€/kWh    
 Demand response to grid utility    -5 - 28 c€/kWh  

Water 15 c€/lt  15c€/lt  

Table 4.2 Price structure of the services offered in isolated CHP-MMG



to sell, from 3% jumps up to 100%. The IRR drops by almost 50% if the hydrogen costs 
raise from 1,00 to 3,00 €/kg €/kgH2  

From 3,00 to 13,00 €/kgH2, the IRR is almost the same. This result can be explained 
by a similar structure of net cash flows, which does not produce any substantial change 
in IRR.  

It can be concluded that cost of hydrogen and availability of local renewables 
resource both deeply influence the optimal design, sizing of DER and their IRR. 
Contrarily, LCOE assumes a similar value in each location and scenario. Moreover, the 
outcomes demonstrate that in different locations it is always possible to find an optimal 
mix of DER that keeps the cost of energy at the same level. Hence, these simulations 
prove the versatility of CHP-MMG technology which can adapt to different climate 
conditions of Southern and Northern Europe. However, this flexibility affects the return 
on investment. The simulations indicate that the optimal location in Southern Europe.  

1 3 1

DER Size

1,00 € / kgH2 3,00 € / kgH2 13,00 € / kg € / kgH2

Bremen (GE) Bremen (GE) Catania (IT) Bremen (GE) Catania (IT)
MG_A MG_B MG_A MG_B MG_A MG_

B
MG_A MG_B MG_A MG_B

PV 5 kW 5 kW 5 kW 8 kW 5 kW 5 kW 29 kW 141 kW 9 kW 5 kW
WT 3 kW 3 kW 3 kW 3 kW 3 kW 3 kW 140 kW 131 kW 3 kW 3 kW
ESS - - 100 kWh 14 kWh - - - - - -
FC 12 kW 18 kW 41 kW 40 kW 13 kW 10 kW  - 2 kW  -  -
EC - - - - 3 kW  -  -  -  -  -
OG - - - - - - - - - - 

GRID - - - -  -  - 100 kW 100 kW 22 kW 100 kW
ITCEL 100 kW 100 kW 6 kW 6 kW 3 kW 3 kW 3 kW 3 kW 3 kW 3 kW

ST  - 5 kW 5 kW 5 kW  - 5 kW 5 kW  -  - 5 kW
EBOY  -  -  - 157 kW 23 kW 70 kW 26 kW 126 kW 121 kW  -

HP 300 kW 300 kW  - 300 kW 81 kW  - 281 kW 281 kW 242 kW  -
STHP  -  - 300 kW  -  - 98 kW  -  -  - 243 kW
ITCTH 5 kW 5 kW 5 kW 5 kW 5 kW 5 kW 5 kW 5 kW 5 kW 5 kW
LCOE 0,15 0,161 0,155 0,223 0,136 0,116 0,114 0,165 0,164 0,172
IRR 32,7% 31,7% 19,7% 12,6% 51,1% 55,4% 19,9% 12,4% 27,4% 28,3%
NPV 542.586 596.401 461.218 240.464 622.123 841.975 849.888 434.543 434.533 401.888

RES_factor 2,9% 2,9% 3,4% 2,9% 2,4% 3,3% 100% 100% 3,2% 3,3%

Table 4.3 DER size, key financial ratios in different scenarios (25 years project lifetime, 5% discount 
rate)



While the precedent optimizations refer to fixed geo-locations (i.e., Bremen, 
Catania), a further study was conducted by setting the boundaries of geo-locations in 
Northern Europe centered in Bremen +/- 7 decimal degree both for latitude and 
longitude and the same in Catania for South Europe. The scope was to search the best 
siting and design of CHP-MMG in two regions of Europe with different climate 
conditions.  

These further optimizations were performed with AIE, the same inputs, with the 
exception of fuel cells for which a more realistic operating condition was set. The start-
up/shut-down procedures have been constrained as follows: at startup, the FC supply a 
maximum 10% of nominal power and then they have to run for at least 1 hour before 
executing the shut-down. Additionally, an average random grid outage at 10% is 
assumed. It is noted that these conditions affect the search area in both European 
regions. The sell-back to the main grid accounts for over 80% of the overall revenue 
streams in both regions. Thus, remuneration of energy demand response services has a 
relevant role in the IRR. When sell-back policies are not in place, IRR is null and thus 
there is not any payback of the investments.  

Within the cluster of best solutions, the AIE selects in Denmark the best siting of 
Northern Europe for CHP-MMG. This region has favorable wind conditions and thus 
WT are the best choice for RES coupled with FC and the main grid. Thermal energy is 
generated with heat pumps and exchanged between the MG. Similarly, in Southern 
Europe the best configurations comprise a mix of PV with WT associated with FC and 
the main grid. Here the best siting from Catania is the East part of the Mediterranean 
Area (i.e., Greece) where the combination of solar radiation, wind speed and cloudiness 
conditions are more favorable.  

These simulations have brought out a scheme of collaboration between the two 
microgrids (i.e., ‘swarm effect’, Chapter 6) fostering the overall efficiency, energy 
resilience to uncertainty, and optimal financial performance [25]. Interconnections are 
used to permit crossflows of thermal and electrical energies.  

Notably, a fraction of the exceeding electrical energy (i.e., not used to feed the loads 
or charge batteries), flows via the interconnections back and it is converted into thermal 
energy. Thus, a portion of heat swarms to the other microgrid. 
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4 . 5 . 2  T h e  o f f - g r i d  s c e n a r i o  

The analysis in this paragraph is extended to off-grid. It is assumed that the CHP-
MMG does not have access to hydrogen refilling as well to the main grid. The refilling 
of OG is still considered. To simulate the off-grid scenarios, the boundaries of AIE 
indicated in Appendix A / Table A.1 have been set to zero for the GRID_SIZE genes 
(i.e., MG are disconnected to the main grid). At the initial start-up of the plant, the 
thermal storage tanks and hydrogen fuel tanks are empty and the initial state of charge 
of the lithium battery is 30%. Based on these harsh conditions it is intended to simulate 
the resilience of the CHP-MMG at the beginning of the operations, and the financial 
sustainability of the entire off-grid configurations in Europe.  

It is relevant to note that as indicated in Table 4.2 the price structures for off-grid 
(i.e., third column) are set equal to the on-grid except for: 1) the tariff rates of electricity 
to the end-users which has been set slightly higher (i.e., 18%) than on-grid; 2) the sell-
back tariffs of thermal and electric energy which are exchanged between MG are 
reduced.  

The off-grid optimization problem has been solved by EA in two queries without 
slicing the time series (i.e., high-resolution). The first query has processed 120 
generations. In the second query, 90 generations were enough as the boundaries have 
been narrowed  values nearby the best solutions given in the first run. The overall results 
are presented in Table 4.4.  

AIE has selected a similar mix of DER in both sites. It is worth noting that the range 
of LCOE in off-grid (i.e., 0,11 - 0,16 €/kWh) is narrower than to in on-grid scenarios 
(0,11 - 0,22€/kWh). The optimal configuration combines WT, ESS, the electrical 
interconnection among MG, direct thermal energy generation with ST and its heat hump 
(STHP). This MG setting is demonstrated to be an effective solution to overcome the 
missing refilling of hydrogen and the electricity supplied by the main grid.  

It is noted that both locations do not include FC and OG. The AIE penalizes 
candidate configurations generating on-site hydrogen with EC or OG (i.e., diesel 
gensets). In Northern Europe, the TCO is lower than on-grid scenarios where the 
hydrogen cost is 3 - 13 €/kg.  

The revenues are slightly lower as the demand response services are not furnished. 
However, with the price of selling electricity and heat indicated in Table 4.2. On the 
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contrary, in Southern Europe, TCO are higher than the correspondent on-grid cases 
depicted in Table 4.3. This is explained by the different sizes of RES which have lower 
specific yields than in Northern Europe. In both locations, the deprivation of income 
given by energy demand services and sell-back to a main grid in on-grid, lower the 
financial performances. However, the effect is marginal. The IRR still remains with 13% 
in South Europe and 22% in North Europe attractive. Besides, it is noted that RES factor 
is not 100% as it should be expected in off-grid contests, without any external outer 
energy contribution. Indirect generation of energy by STHP thru RES is not considered.  

These simulations have demonstrated the resilience of the off-grid CHP-MMG 
system. The SLSQP algorithm is able to perform a full balance of both thermal and 
electric energies with the PBS. No thermal and electric energy underflows have been 
computed during the whole time horizon (i.e., 8760 hours). It can be concluded that with 
a structure of energy tariffs somewhat higher than on-grid CHP-MMG, islanded systems 
ensure a reliable, regular supply of energy with highly attractive IRR, and convenient 
LCOE. 
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DER Type
Bremen (DE) Catania (IT)

MG_A MG_B MG_A MG_B
PV 10 kW 45 kW 10 kW 11 kW
WT 60 kW 79 kW 111 kW 109 kW
ESS 49 kWh 45 kWh 41 kWh 50 kWh
FC - - - -
EC - - - -
OG - - - -
GRID - - - -
ITCEL 21 kW 21 kW 74 kW 74 kW
ST 59 kW 114 kW 109 kW 300 kW
EBOY - - - -
HP - - - -
STHP 272 kW 300 kW 259 kW 262 kW
ITCTH - - 74 kW 74 kW
LCOE 0,11€/kWh 0,12€/kWh 0,16€/kWh 0,15€/kWh
IRR 24,70% 22,70% 13,60% 14,00%
NPV 657.634 € 756.342 € 391.721 € 475.883 €
RES_factor 57% 68% 81% 100%

Table 4.4 Size of DER, key financial ratios for off-grid CHP-MMG (25 years project lifetime, discount 
rate of 5%, no daily refilling of hydrogen)



4 . 5 . 3  S c e n a r i o  w i t h  f u e l  c e l l s  p o w e r e d  b y  b l u e  
h y d r o g e n  

Another set of optimization-simulations has been conducted replacing green 
hydrogen with blue hydrogen in combination with FC. Although green hydrogen leads 
to the lowest greenhouse gas (GHG) emissions, networks, infrastructures for storage and 
transport of hydrogen are not yet established. On the contrary, the infrastructure of 
natural gas containing methane is available worldwide and hydrogen is already 
produced industrially from steam methane reforming (SMR). The drawback of SMR is 
the generation of significant carbon emissions. Thus, this type of hydrogen is known as 
“grey” hydrogen. In the cleaner version (SMR with CCS) named as “blue hydrogen”, 
carbon emissions are captured and stored, or reused. These processes emit few GHG 
because the reaction from methane to hydrogen yields only solid carbon and no CO2. 
S.Timmerberg et al. in 2020 [33] have assessed the life-cycle GHG emissions and the 
levelized costs for hydrogen provision from three types of methane pyrolysis (plasma, 
molten metal, and thermal gas).  

The results of these configurations have been then compared to electrolysis and SMR 
with and without CO2 capture and storage (CCS). In methane pyrolysis, GHG are 
between 43 and 97 g CO2-eq./MJ which is mainly caused by the primary energy source. 

They have concluded that the lowest emissions are obtained with the combination of 
plasma-based methane decomposition with renewable electricity. This configuration 
shows lower GHG emissions compared to the “classical” SMR (99 g CO2-eq./MJ), but 
similar emissions to the SMR with CCS (46 gCO2-eq./MJ). Two types of plasma can be 
applied to methane decomposition: cold and thermal (hot) plasma. Cold plasma 
processes typically show lower conversion efficiencies compared to hot plasma 
processes.  

Hence, a further optimization study based on Southern Europe has been launched 
again. The latter work intends to analyze the financial performance of optimal CHP-
MMG embedding PEMFC-CHP and on-site hydrogen generation thermal plasma (TP) 
systems operating on-grid.  

Table 4.5 shows the comparison between two optimal on-grid CHP-MMG 
configurations delivered by AIE after 350 generations. The first comprises PEMFC-CHP 
powered by green-hydrogen (i.e., hydrogen supply by remote R2H2) and the other 
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powered by blue-hydrogen (i.e., hydrogen supplied by local TP systems). Both are 
located in Northern Europe, nearby Bremen. In the latter, the carbon black is generating 
a revenue stream being a valuable by-product produced during methane decomposition. 

The outcomes are in agreement with the techno-economic analysis prepared by T. 
Keipi et al. in 2016 [34] and by Dagle R. et al. [35] in 2017, concerning the carbon 
dioxide-free production of hydrogen using natural gas to make solid carbon and 
hydrogen.  

These studies investigate the impact of the production of solid carbon as byproducts. 
Carbon black produced, so far, is used in tires and other rubber products as reinforcing 
fill – among others – increasing the abrasion resistance of the product. Market prices for 
carbon black products range from 0.40 to > 2,00 €/kgC and it can be higher for graphite, 

carbon nanotubes (CNT). In our CHP-MMG problem, the selling price for carbon 
products is set at 2,50 €/kgC. It should be noted that the TP-based methane 

decomposition subsystem, yields additional total costs of ownership. Thus the overall 
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On-grid with blue hydrogen On-grid with green hydrogen

MG_A MG_B MG_A MG_B

Energy to loads 33.815 € 33.265 € 33.912 € 33.880 €

Energy services to 
main grid and 

microgrid
111.553 € 49.802 € 67.130 € 64.033 €

Water by FC 21.370 € -  € 33.097 € 31.498 €

Carbon by TP 142.465 € -  € - -

Total revenues 309.203 € 83.067 € 134.139 € 129.411 €

Total costs of 
ownership 1.053.678 € 320.379 € 268.224 € 273.174 €

LCOE 0,28€/kWh 0,16€/kWh 0,21€/kWh 0,21€/kWh

NPV 478.297 € 239.528 € 280.000 € 297.199 €

IRR 9,80% 12,20% 17,90% 17,90%

Table 4.5 Key financial ratios of the on-grid scenarios in North Europe (Bremen) with green hydrogen at 
3€\kg (0,25€\Nm3) and blue hydrogen at 0,85 €\Nm3, 25 project lifetime, 5% discount rate, revenues and 
TCO refer to the first year



CAPEX of FC integrated with TP are assumed to be: 3.500€/kW instead of 2.200€/kW 
(fuel cell powered directly with TP).  

Assuming the cost of methane to 1,20 €/kgCH4 (0,85 €/Nm3), electricity tariff at 0,38 
€/kWh, consumption of methane 223 MJ/kgH2, 13,90 kWhel/kgH2 of electricity [33] TP 
leads to a net hydrogen cost of 2,59 €/kgH2 (i.e., cost of productions deduced of the 
selling price of carbon). The operational costs are also affected by the unfavorable 
energy conversion efficiency (from methane to electricity) that drops with CHP-PEMFC 
power with blue hydrogen from 44% to 21%. 

Under this assumption and the remaining input data equivalent to those indicated in 
Paragraph 4.5.1, the outcome of the CHP-MMG simulations in grid-on configuration 
does not show any reduction of LCOE versus a fuel cell-powered with outsourced green 
hydrogen at 3,00 €/kgH2. Nonetheless, the TP yields 3 kgC/kgH2 which contributes to the 
revenue stream.  

The result shows that the overall financial performances (IRR) although lower than 
the configuration based on green hydrogen are still very attractive. Thus TP should be 
considered as a viable technology until R2H2 will not be massively diffused. 

4 . 6  C o n c l u s i o n s  

Techno-economic optimizations of multiple interconnected heat and power 
microgrids require to solve stochastic optimization problems subjected to uncertain, 
different local climatic conditions that make energy generation by RES not 
programmable, unpredictable loads, grid availability, flexible energy. In this chapter, a 
two-layer optimization method combining SLSQP with novels self-adaptive 
evolutionary algorithms is proposed to solve this problem. The latter is able to 
simultaneously identify the optimal design, configurations and siting of heat and power 
multi-microgrids while the power dispatch balance is delivered at each time-step. The 
multi-objective function is formulated to obtain the highest IRR to investors and the 
lowest LCOE for users. The candidate configuration generated with evolutionary 
algorithms feeds the analytical techno-economic model. Two novel self-adaptive 
evolutionary algorithms based on different mutant and crossover strategies are proposed. 
The results show that AIE performs 70% better on average than ADE. The optimization 
tool has been used to conduct sensitivity analysis of hydrogen costs in two locations 
placed in different latitudes. In Southern Europe, the optimal mix of RESs is selected in 
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combination with FC if the cost of hydrogen is 3 €/kgH2 or lower, otherwise, the main 
grid replaces the FC.  

The overall analysis demonstrates that the cost of hydrogen and the availability of 
renewable resources affects the optimal design and sizing of CHP-MMG and IRR. The 
study of CHP-MMG in off-grid scenarios shows that can be obtained optimal 
configuration with LCOE similar to on-grid scenarios. Finally, these optimization-
simulations demonstrate the resilience of the off-grid CHP-MMG systems: the selected 
best configurations do not exhibit energy underflows. Further optimizations have been 
carried out with on-site hydrogen generation by TP methane decomposition. This 
technology leads to a substantial increment of the revenue stream if carbon black is 
taken into account.  

The optimal on-grid CHP-MMG configuration with TP, deliver an IRR: 17% to 21%; 
this performance leads to the conclusion that it can be considered as a viable bridge 
hydrogen generation technology. The whole study brings out the versatility of CHP-
MMG technology.  

Different settings of operating conditions, costs of fuels, energy demand price 
policies, locations, are not obstacles to achieve optimal configurations, sizing, and siting 
of CHP-MMG delivering high-quality energy and attractive financial performances. 
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C H A P T E R  5 :  Te c h n i q u e s  e n h a n c i n g  c o m p u t i n g  
p e r f o r m a n c e   

Due to the nature of uncertainty, the CHP-MMG problem returns clusters of solutions. The 
challenge is to find the solution returning the best fitness value over the most probable scenarios. 
The correlation between the gradients along the generations of the standard deviation of fitness 
values and the population’s genes reflects the quality of the sought design and it can be used as a 
stopping criterion. In the first section, a method based on this interrelationship is discussed. 
Moreover, a criterion to select the best probabilistic solution and verify the globally optimal 
setting with the sample average approximation method is discussed. The second section discusses 
different strategies to overcome the drawback of required computing resources. Multiprocessing 
computing is used to efficiently parallelize tasks and thus to shorten the elaboration time. The 
next step is to extend the approach by slicing the time series. Searching globally optimal 
configurations with the ATE model requires several hours if the time series are not sliced. In the 
latter case, the quality of the results is worse if the sizes of the boundaries are too large or if the 
optimization is addressed to off-grid scenarios. Moreover, for the early queries ATE can be 
replaced with MLTE. The training is fast and the run of a query takes just a few minutes. The 
overall optimization with MLTE can be considered as a first step in solving our optimization 
problem. 
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5 . 1  M e t h o d s  f o r  s e a r c h i n g  g l o b a l  m i n i m u m  i n  
u n c e r t a i n  l a n d s c a p e  

In Chapter 2 the techno-economic model (ATE) for the optimization problem of 
combined heat and power multi-microgrids (CHP-MMG) has been discussed. The ATE 
incorporates a subset of stochastic models of thermal-electric weather-dependent 
distributed renewable power generators, loads and unpredictable grid outages.  

The electrical and thermal operation of the distributed energy resources (DER) 
embedded in the ATE are optimized in each time-step with Sequential Least Squares 
Programming. At the upper level, the self-adaptive differential evolutionary algorithms 
(ADE/AIE) simultaneously identify the best configurations and siting of the CHP-
MMG. This multi-objective optimization minimizes an objective function based on the 
ATE to obtain the highest IRR for investors and the lowest LCOE for users. Due to the 
stochastic terms in the ATE , the fitness function is subject to noise.  

B. Doerr et al. in 2020 [1] have investigated noise models in the area of the 
theoretical analysis of evolutionary computation. In their work, it has been highlighted 
that the fitness function returns a value that differs from time to time for the given 
solution, because of the disturbance. Similarly, in the problem of interest, it is observed 
that the noise causes a severe un-linearity among the candidate solution and the fitness 
value.  
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Figure 5.1 Overall framework of the stochastic CHP-MMG optimization problem



In Figure 5.1 the main categories of deterministic- and stochastic variables causing 
noise, for the ATE model are listed. The direct consequence of noise is a stochastic 
objective function that returns for each candidate solution, a distribution of fitness 
values. On the contrary, a fitness value is bonded to a cluster of solutions. Thus, AIE/
ADE has to search for optimal solutions in an uncertain landscape. In such environment, 
the problem of finding the global minimum is cumbersome as the noise misleads the 
search of each computing run. The final objective is to find the configuration for a CHP-
MMG that delivers the best performance for all random scenarios.  

Friedrich T., et Al. (2010) [2] have proven that simple evolutionary algorithms 
behave very well when facing a stochastic optimizations problem. Moreover, Akimoto et 
al. in 2015 [3] proposed that the evaluation of a solution of noisy fitness functions must 
be repeated k-times. The algorithm then should take the average of the k-noisy values as 
the fitness value of the solution. The aim of such an approach is to obtain a robust (i.e., 
“uncertainty-immunized”) solution to the optimization problem.  

In this chapter an approach to find a probabilistic global minimum is based on the 
following method is proposed consisting of five steps: 1) run an optimization 
computation with multiple queries (k-time); 2) search the best probabilistic solution of 
each query; 3) identify a cluster of best probabilistic solutions having a genotype 
diversity lower than a defined target; 4) select the best of the best probabilistic solution 
in the cluster (e.g., best probabilistic solution returning the lowest fitness value); 5) 
check if the best of the best probabilistic solution (i.e., probable global solution) delivers 
the expected performance over all the scenarios.  

To find the best probabilistic solution of a query, the tendency of the standard 
deviation of fitness values (i.e., the convergence of the fitness) associated to the 
individuals of the population is correlated to the population’s genes diversity in the latest 
generations.  

Figure 5.2 shows the slopes of the diversity’s genotypes (i.e., divX_pop) and the 
correspondent slope of the fitness’s convergence (i.e., divY_fit) for 281 generations. In 
this plot, the latest values of divY_fit gradually converge to similar values while the 
values of divX_pop increase from 0,30 to 0,40. In other words, despite AIE/ADE trying 
to keep population diversity high, the fitness values tend to assume similar values. This 
behavior in the latest generations indicates that the flat depression region of the global 
minimum has been reached. 
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The CHP-MMG stochastic optimization problem must be repeated k-times until the 
spread of fitness values associated to the best probabilistic solutions are within the 
desired target (e.g., < 0,005). 

It has been observed that 3 queries (i.e., k = 3) are enough to obtain a spread of 
fitness values < 0,005 when in the latest 5-10 generations of each query the gradient of 
divY_fit remains negative, while the gradient of divX_pop remains null or positive. It is 
worth noting that with datasets of reduced-size a number of generations, g > 400 for 
grid-tied scenarios (i.e., genes of grid power size, not null) and g > 1500 in case of off-
grid scenarios are usually sufficient to obtain this correlation between the gradients. 
Furthermore, the latter condition is usually indicative of clusters of solutions with small 
dimensions. 

Subsequently, two methods are investigated to select the “best of best probabilistic 
solution” of the cluster (i.e., probable global solution): 1) take the mean values of the 
best solutions or 2) select the solution having the best fitness value. The second choice 
demonstrates to be the most effective in most of the cases. The validation of a solution 
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Figure 5.2 Slope of population’s diversity (divX_pop) and fitness convergence (divY_fit) and bsf’s fitness 
(bsf) along 163 generations



array based on the mean values usually returns a fitness value much larger than those 
associated the best probabilistic solutions.  

 The radar-plot in Figure 5.3 provides the outlook of the best probabilistic 
configurations and the mean of 3 queries, 400 generations each. The boxplot in Figure 
5.4 shows the spread from the lower to upper quartile of the genes of the same solutions. 
Both graphical representations support the evaluation of the quality of the results. It is 
worth noting that if the cluster embeds individuals with similar genes, the overall lines 
in the radar overlap and the rectangular body of the boxplot is shrunk.  

The quality of the selected “probable global solution” must be measured by repeating 
the simulation N-times. The number N of queries (N) should be representative of the 
whole domain of stochastic scenarios. The objective is to verify that the selected setting 
is performing similarly over all scenarios. 

To find the optimal value of N, the sample average approximation method (SAA) 
proposed by A. J. Kleywegt et al., 2002 [4] is used. For SAA, to achieve an optimal 
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solution with probability at least: , the problem should be iterated: 

,        [5.1] 

where  being the variance,  the deviation of the fitness values assigned to the 

selected solution of the problem and  a number such as: . 

Optimization-simulation of off-grid scenarios which are computed with 3 queries, 

1500 generation each, a target variance’s value sufficiently small (e.g., < 0,002), 

, the global solution have a probability at least 99,00%, to be achieved in  

. 

5 . 2  P e r f o r m a n c e s  o f  m a c h i n e  l e a r n i n g ,  a n a l y t i c a l  
m o d e l s  w i t h  f u l l  a n d  r e d u c e d  d a t a s e t s  

The performances of the ATE model and MLTE models have been evaluated in 170 
simulations. In Table 5.1, the quality of results, the computation times in relation to the 
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different methods and time series approximations are summarized. A common route to 
all the computing methods is running in parallel processing the tasks of each generation. 
Parallel processing is a mode of operation where the task is executed simultaneously in 
multiple processors on the same computer.  

It is meant to reduce the overall processing time. The algorithm (Appendix C) has 
been structured with python standard multiprocessing libraries [10][11]. They efficiently 
parallelize tasks by creating child processes and thus it allows to fully leverage multiple 
processors on a given machine. The Pool class has been used. The pool distributes the 
tasks to the available processors using a first-input first-output (FIFO) scheduling. It 
maps the input to the different processors and collects the output from all the processors. 
After the execution of the code, it waits for all the tasks to finish and then returns the 
output. The processes in execution are stored in memory and other non-executing 
processes are stored out of memory. The Pool class synchronizes the calculation of the 
fitness values of the entire population before proceeding to the selection phase. 

Two methods have been used to compute OP with the ATE model: 1) hybrid-
resolution mode that consists in slicing in 85% of generations the yearly time series into 
a set of representative daily periods, notably 248 time-steps (12 day / year), then switch 
to full datasets (360 days / year) for remaining 15% of the query; 2) high-resolution 
mode that is based on full datasets of 8760 time-steps (360 days / year). 

 As discussed in Chapter 3, optimization based on the MLTE models can be 
combined with ATE-based models to tighten the search area. Moreover, as demonstrated 
in Chapter 4, the use of the AIE algorithm instead of ADE improves the quality of 
results and reduces the elaboration time. 

In hybrid-resolution, the AIE algorithm solving the ATE fitness function has the 
ability to find clusters of solutions for on-grid scenarios in 350-400 generations with a 
population size of 12 individuals. The computing time is about 8 hours each query. In 
on-grid, the hybrid-resolution is satisfactory to achieve a high quality of the results as 
thermal- and electric storage components play a minor role than continuous power 
sources (e.g., FC, OG, main grid). It is worth noting that boundaries must have limited 
values. A good practice is to launch the first set of trials with large boundaries (e.g., with 
MLTE) and then shrink the bandwidth. 

The hybrid-resolution permits to collapse the computation time of each generation 
from 10-15 minutes of high-resolution mode to 1-3 minutes. However, off-grid 
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scenarios simulated with sliced datasets, the configurations that combine renewable 
energy sources with energy storage can return misleading results. In fact, stochastic 
climate variables impact the calculation of cumulative energy storage.  

In off-grid scenarios, the number of generations should be extended at values higher 
than 1500 otherwise queries in high-resolution with at least 200 generations are 
preferred.  

Moreover, it is noteworthy to consider the computing resources required to solve the 
CHP-MMG optimization problems. For Example, a query of 1500 generations executed 
in hybrid-resolution requires 28 hours with an iMac with 8 microprocessors 3,6 GHz 
Intel Core i7 quad-core. The corresponding consumption of energy is 3,67 kWh. The 
estimated C02 emissions are 1,01 kg and the costs of electricity are 0,85 € (based on the 
energy mix of Italy). This example explains why a research effort has been devoted to 
investigating efficient approaches to save computation time in microgrids optimization.  

K. Fahy et al., in 2019 [5] proposed a method to save computational time in 
optimization models that scales with the number of time steps. To save computing time, 
the solver resolution is reduced and input data are down sampled into representative 
periods such as one or a few representative days per month. However, such data 
reduction can come at the expense of solution accuracy. In their work, the impact of 
reduction of input data is systematically isolated considering an optimization that solves 
an energy system using representative days. A new data reduction method aggregates 
annual hourly demand data into representative days which preserves demand peaks in 
the original profiles. The proposed data reduction approach is tested on a real energy 
system and real annual hourly demand data where the system is optimized to minimize 
total annual costs. Compared to the full resolution optimization of the energy system, 
the total annual energy cost error is < 0,22% when peaks in customer demand are 
preserved. Errors are significantly larger for reduction methods that do not preserve 
peak demand. In another recent work issued in 2020, Zachary K. et al. [6] proposed a 
novel hybrid optimization framework to study power resilience to macro-grid outages. 
In their work, hybrid approaches to microgrid techno-economic planning are used. A 
reduced model is used to optimize DER sizing. A full model optimizes operation and 
dispatch. 

Although these hybrid models save relevant computation time, during grid outages, 
these models are susceptible to infeasibility, when the size of the DER is insufficient to 
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meet the energy balance with full model. The authors counter this problem by executing 
the same optimization problem twice, where the second solution using full data is 
informed by the first solution using representative data to size and select DER. 
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T/E Models Optimization Pre-
processing Generations Time Results

MLR
 
ADE/AIE 

normalization, 
standardization 

  
 

 30-50 3 minutes

Training ultra-fast. 
Query ultra-fast 
with fitness limit 

setting. Fair 
results.

DNN
 
ADE/AIE 

normalization, 
standardization 

  
 

30-50 10 minutes
Training very-fast. 
Query fast, poor 

results.

NN
 
ADE/AIE 

normalization, 
standardization 

  
 

30-50 45 minutes
Training time 

consuming. Query 
fast, poor results.

ATE 
(high-resolution) SLSQP/ADE   - 70-200 12 - 18 

hours
Query time 

consuming. Good 
quality of results.

ATE 
(hybrid-resolution)

SLSQP/ADE   - 400- 
2000

10 - 30 
hours

Query time 
efficient.  

Information lost in 
off-grid with 

minimum 
generations. Good 
quality of results.

ATE 
(high-resolution) SLSQP/AIE  - 50-1500 6 - 24 

hours

Query very 
efficient. 

Information lost in 
off-grid with 

minimum 
generations.  

Results better than 
ADE.

MLTE / ATE 
(hybrid-resolution) SLSQP/AIE normalization 50-120 6 - 12 

hours

Query ultra-
efficient. 

Information lost in 
off-grid scenarios 

with minimum 
generations. Good 
quality of results.

Table 5.1 comparison among different models, computing methods and optimization algorithms



5 . 3  C o n c l u s i o n s  

The techno-economic optimization of the CHP-MMG is a stochastic problem. If 
multiple queries are executed, clusters of best solutions are obtained. In this chapter, a 
five-step method suitable to identify the best solution within such clusters is discussed. 
It is based on the following steps: 1) run an optimization computation with multiple 
queries; 2) search the best probabilistic solution of each query; 3) identify a cluster of 
best probabilistic solutions having a genotype diversity lower than a defined target; 4) 
select the best of the best probabilistic solution in the cluster; 5) validate performance 
over all the scenarios of the best probabilistic solution. Moreover, it has been 
demonstrated that the correlation between the standard deviation of both fitness values 
and genotype over the generations is an effective stopping criterion for a query. 

The execution of techno-economic optimization of the CHP-MMG is a complex task 
that requires relevant computing resources. Multiple strategies have been put in place to 
overcome this problem. Multiprocessing computing has been used to efficiently 
parallelize tasks and thus to shorten the elaboration time. Moreover the elaboration of 
the algorithm's time-series has been sliced from 8760 to 288 (i.e., 24 time-steps for each 
month).  

Finally, to further speed up the computation, ATE can be substituted for MLTE for 
first runs. The optimization with MLTE can be considered as a first step in solving the 
problem. The optimal solution given by MLTE can be utilized to override the 
boundaries of a subsequent search with the ATE-based model.  

The overall approaches proposed in this chapter provide an innovative contribution 
to the techno-economic optimization of CHP-MMG. 
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C H A P T E R  6 :  C o n c l u s i o n s  a n d  o u t l o o k  

6 . 1  L e s s o n s  l e a r n e d  a n d  o u t c o m e s  a c h i e v e d  

The increase of energy demand and environmental issues are fostering a clean energy 
revolution across the world, underlined by the steady expansion of the renewable energy 
sector. The microgrid is the technology of choice to speed up this scenario. The latest 
information and communication technologies are instrumental to the roll-out of the 
distributed energy resources, e.g., wind turbines, photovoltaic panels. The new energy 
paradigm will lead to the deployment of intelligent microgrids to ensure peer-to-peer 
connectivity of decentralized, uncertain renewable systems. The microgrids embody the 
generation, transmission, distribution and consumption of energy as a whole. They 
enable an interaction among all nodes of the system to secure demand-side flexibility 
and the optimum operation, while maintaining second-to-second power balance, quality 
and security of the supply. There is a tremendous opportunity to deliver innovative, 
sustainable and efficient energy systems with microgrid.  

This groundbreaking technology can step-up investments, fostering the transition to a 
low-carbon competitive economy. However, its design and management must meet 
multiple challenging requirements. The minimum cost of energy, the highest 
profitability and the highest power quality must be achieved by matching the uncertainty 
of energy subjected to the weather conditions and the variability of the load profiles. The 
choice of the distributed generators and the geographical sites have a great impact on the 
economic and technical performance of MG. The long useful life of installations (e.g., 
20 to 40 years for PV and 20 years for WT) may cause lock-in situations until payback 
is not reached. The combination of DG may influence their lifetime and overall 
efficiency.  

Stakeholders look at the problem from different perspectives. The investors look for 
projects with the lowest cost of the installations, operations, the most favorable 
environmental condition and local power policies (i.e., utility grid’s price, incentives, 
demand response compensations), to obtain the most attractive financial performance 
(i.e., IRR). The users look for an energy supply with the most convenient tariff and the 
best reliable services. The energy providers aim to predict and balance correctly the 
energy demand to fulfill the user’s requirement at lowest cost.  
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To find the best siting, sizing, and operation of the MG, the simulation of a large 
number of configurations is required. It is noteworthy that this is a stochastic problem as 
it contains uncertain parameters (i.e., weather forecast, user’s demand).  

In this thesis, a novel two-layer optimization method based on the combination of 
self-adaptive differential evolution algorithms with the SLSQP optimization method has 
been proposed to solve the latter problem. Moreover, several techniques (i.e., parallel 
processing, slicing datasets) have been applied to reduce the computing time.  

The overall approach has allowed to achieve the optimal design, configuration and 
siting of heat and power multi-microgrids simultaneously while the power dispatch 
balance is satisfied at each time-step. The candidates of the DER configuration and the 
geo-coordinates of the evolutionary algorithms are represented by an individual having 
two properties: genotype and its quality. The genotype embeds two chromosomes (the 
first composed of 36 genes and the second 2 genes. The quality of the individual is the 
fitness value.  

Twelve individuals of a population undergo a number of  evolutions to mimic genetic 
gene changes and search the solution space. In the self-adaptive differential evolution 
algorithm (ADE), the mutation factor and cross-over, are adapted to the variation of the 
fitness value to optimize the search radius and converge faster. In the self-adaptive 
artificial immune algorithm (AIE) the mutant vector is obtained with a normal random 
distribution whose standard deviation and mean are driven by the diversity of population 
and fitness convergence. A crossover is obtained by applying horizontal and vertical 
gene transfer techniques.  

The stochastic multi-objective function (i.e., fitness function) is formulated to obtain 
the highest IRR for investors and the lowest LCOE for users. The candidate 
configuration generated with evolutionary algorithms feeds a techno-economic model 
that measures the quality of the trial configuration. Due to the stochastic nature of this 
problem, clusters of global solutions, namely PBS, of similar quality are obtained. To 
find the best setting, the optimization must be repeated until the standard deviation of 
the PBS’s genotypes reaches the desired value. The solution associated with the lowest 
fitness value can be assumed as the candidate of being the best probabilistic solution. 
The final task is to verify if the latter solution returns the best expected performance 
over all the uncertain scenarios. 
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The thesis discussed four different versions of the objective fitness function. The first 
is an analytical model (ATE). The others are different versions of machine learning 
algorithms (MLTE). The ATE uses the SLSQP method to balance at each time-step the 
energy flows and minimize a cost-revenues function inferred by the DER equations.  

The machine learning models, in particular, the MLR can be used to quickly compute 
the fitness function. It should be noted that MLTE returns low-quality solutions from a 
narrow domain; however, MLTE model-based optimizations can be combined with 
ATE-based models to tighten the search area and thus further reduce computation time. 

The simulation-optimization tool proposed in this thesis will lead to 
recommendations regarding the best configurations of CHP-MMG in Southern Europe 
(Catania, IT) and Northern Europe (Bremen, GE). The outcomes are subsequently used 
to examine the impact of the location of the sites, the costs of the fuels, the price policies 
and their financial implication. It has been observed that with a cost of the fuel fixed at 
3,00 €/kgH2, hydrogen-powered fuel cells are selected to be a predominant source of 
electricity and heat; whenever the cost raises to 13,00 €/kgH2, the utility grid turns into 
the principal supplier, and the high fuel cost causes a substantial increment of the PV 
and WT. Nevertheless, LCOE values are comparable in almost all scenarios. By setting 
the boundaries of geo-locations covering for Northern Europe a region with its center in 
Bremen +/- 7 decimal degree both for latitude and longitude and Catania for Southern 
Europe, the best siting and design of CHP-MMG in two regions of Europe with different 
climate conditions could be found.  

Within the cluster of best solutions, AIE selects in Denmark the best siting of 
Northern Europe for CHP-MMG. This region has favorable wind conditions and thus 
WT are the best choice coupled with FC and the macro-grid. Thermal energy is 
generated with heat pumps and exchanged between the microgrids.  

In Southern Europe, the best configurations comprise a PV combined with WT, FC 
and the main grid. Here the best siting, if the search start from Catania, is the East part 
of the Mediterranean Area (i.e., Greece). Here, the combination of solar radiation, wind 
speed and cloudiness conditions are more favorable.  

These simulations have brought out a scheme of collaboration between the two 
microgrids (i.e.,‘swarm effect’, Paragraph 6.2.5) fostering the overall efficiency, energy 
resilience to uncertainty, and optimal financial performance. Interconnections are used 
to permit crossflows of thermal and electrical energies. Notably, a fraction of the 
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exceeding electrical energy (i.e., not used to feed the loads or charge batteries), flows 
via the interconnections back and it is converted into thermal energy. Thus, a portion of 
heat swarms to the other microgrid. 

Subsequent optimization dealing with off-grid scenarios, has demonstrated that 
LCOE can remain aligned to grid-tie scenarios. Revenues streams deprived of incomes 
delivered with energy demand services do not consistently affect IRR that still remain 
attractive (e.g., IRR reaches 20% if the cost of hydrogen is setup at 1,00 €/kgH2). The 
optimal DER configurations even with unfavorable initial conditions craft a full balance 
of both thermal and electric energies.  

Considering blue-hydrogen on-site generation with TP-based methane decomposition 
technology leads to a substantial increment of the revenue stream as compared to green 
hydrogen, if carbon black as a by-product is taken into account. These results exhibit 
how blue hydrogen can be a bridging technology to make CHP-MMG profitable. 

The whole study demonstrates the versatility of CHP-MMG technology. In every 
latitude and longitude, with different settings of operating conditions, cost of fuels, and 
energy demand price policies, the self-adaptive evolutionary algorithms (AIE, ADE) are 
always able to find - for different space search regions - the optimal configurations, 
sizing and siting in which an interconnected heat and power microgrid can deliver a 
good quality of energy, attractive financial performance, and out-competing costs’ 
drawbacks.  

This thesis has extended the state-of-art in techno-economic analysis of multiple 
interconnected microgrids that aggregate a wide variety of electrical, thermal and 
interconnection devices. Innovative business scenarios with CHP-MMG acting as 
virtual power and manufacturing plant have been investigated. They showed that 
thermal and electrical energy exchanged between the MG, DER, utility grids and further 
by-products e.g., water, carbon black produced by the fuel cells and hydrogen made by 
electrolyzers provide a high return on investment (e.g., IRR> 50%). 

The techno-economic model embeds several methods to correlate climate datasets 
issued recently by ECMWF, giving the ability to investigate locations all over the globe. 
Three alternative machine learning models have been also setup to speed up the 
computing time. A procedure to identify the valid domain of solutions furnished by 
highly non-linear numerical models was proposed. 
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Moreover, two-novel two-layers optimization algorithms and the computing methods 
to speed-up the code’s execution were developed. They have successfully demonstrated 
that simultaneous multi-objective optimization of CHP-MMG is possible including a 
method for detecting the global probabilistic solution over all the uncertain. 

6 . 2  T h e  i n n o v a t i o n  c o n t e n t  

The techno-economic study of this thesis considers two interconnected combined 
heat and power microgrids aggregating a wide variety of electrical, thermal systems and 
interconnection devices.  

Due to the high computing resources required to research optimal CHP-MMG 
configurations, a newly developed simulation-optimization framework is proposed and 
validated with experimental data. The proposed framework is capable of performing 
simultaneously: 

- design and sizing optimization of the interconnected heat and power microgrids 
(i.e., to search optimal DER configurations in a certain site, giving the most 
profitable return of investment, the lowest cost of energy); 

- siting optimization (i.e., to find the most suitable location of DER 
configurations with a global geo-resolution); 

- optimization of operation (i.e., to minimize at each time-step the cost-revenues 
while ensuring the balance of the thermal and electrical energy flows). 

Overall, there are four major contributions introduced by this thesis in the area 
techno-economic optimization of a microgrid: 

- First, novel methods based on Fast Fourier Transform (FFT) and polynomial 
regression to manipulate climate datasets issued by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) for accurate prediction of climate 
variables is presented. The latter represent a valuable and relevant contribution as 
the climate variables have a strong impact on the selection of DER, their sizing, 
siting choice, optimization of operations. 

- Second, a novel two-layer stochastic optimization algorithm is introduced. The 
lower level is a time-step optimization of cost-revenues while constrained electric 
and thermal energy flows are balanced. The outer level of simultaneous design, 
sizing and siting optimizations are solved with two novel evolutionary computing 
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algorithms (ADE, AIE). As summarized in Figure 6.1 this represents the horizontal 
dimension of the optimization procedure. 

- Third, three novel machine learning models (MLTE) are proposed to improve the 
overall computational performance of the technical-economic optimizations. These 
algorithms represent the vertical dimension of the optimization flow shown in 
Figure 6.1. The training of machine learning LR/NN/DNN algorithms is based on 
the results of a SLSQP algorithm embedded into the ATE deterministic model. The 
stochastic behavior of CHP-MMG permits MLTE to correlate solutions and fitness 
values similarly to ATE model, for fitness values nearby zero. MLTE used in 
combination with ATE-based optimization allows tightening the search area of the 
best CHP-MMG siting and sizing. Such a hybrid approach allows to exploit on one 
side the accurate prediction of an ATE analytical model, and at the same time exploit 
the fastest computation and performance that is offered by machine learning 
algorithms. This approach allows to find solutions that have the highest quality by 
minimizing the computing resources. 
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- Fourth, all methods have been used to investigate novel scenarios of energy 
services and to conduct sensitivity analysis of hydrogen costs in two locations 
placed in different latitudes. The whole study highlights the versatility of CHP-
MMG technology. Different settings of operating conditions, costs of fuels, energy 
demand price policies, locations, are not obstacles to achieve optimal 
configurations, sizing and siting of CHP-MMG delivering high quality of energy, 
attractive financial performance, outcompeting costs’ drawbacks. 

As a further relevant aspect, the analytical techno-economic model proposed in this 
thesis covers a large variety of different DER, since all the following DG systems have 
been considered: internal combustion engines (OG), fuel cells (FC), photovoltaic panels 
(PV), wind turbines (WT), thermal solar collectors (ST), electric boilers (EBOY), 
standalone heat pumps (HP) and integrated with solar thermal-collectors (STHP). 
Lithium-ion batteries (ESS) and thermal water tanks (TES) are the ES considered in the 
MG configurations of this work. The cases discussed in Chapters 2 to 5 evaluate the best 
combinations and location of these DER. 

Moreover to the writer’s best knowledge, interconnected heat and power microgrids 
have not yet been fully investigated in the literature. Furthermore, techno-economic 
simultaneous optimization of siting, sizing, and operation of CHP-MMG has still not 
been addressed so far in detail by other scientific studies. This constitutes another 
relevant contribution of this thesis. 

A more detailed description of the above scientific and original contributions is 
reported in the following paragraphs. 

6 . 2 . 1  N o v e l  m e t h o d s  f o r  a c c u r a t e  c l i m a t e  v a r i a b l e s  
p r e d i c t i o n  

A novel climate model based on recent data released by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) which provides access to locations all 
over the globe is proposed in this work. Fast Fourier Transform (FFT) and polynomial 
regression are used to manipulate the climate datasets for accurate prediction of climate 
variables. The climate model is embedded into the ATE model of two interconnected 
hybrid microgrids whose electricity and thermal dispatch strategies are managed with 
SLSQP optimization technique. The ATE model allows to combine a large variety of 
thermal and electric power generation, transmission, and distribution systems as a whole 
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with weather-dependent distributed renewable generators and multiple stochastic load 
profiles.  

The ATE model considers the inner- and outer exchanges of thermal, electric energy 
as indicated in Figure 6.2. Hydrogen is taken into consideration as the energy carrier 
next to heat and electricity. It stems from the inner generation by an electrolyzer and is 
also transported from outer generation fields. Water is a reaction product of fuel cells. 
Moreover, if fuel cells are coupled on-site with a hydrogen generation system based on 
methane decomposition with thermal plasma (TP), the reaction will yield carbon black. 
Hence, water and carbon black are side products from the fuel cell systems. 

6 . 2 . 2  T w o - l a y e r  o p t i m i z a t i o n  a p p r o a c h  

Typical optimal techno-economic optimizations of MG deals usually with 
minimizations of the costs; stochastic models are approximated with linear models 
representing different scenarios. The simplified models are usually solved with mixed-
integer linear programming (MILP) with a top-down approach (i.e., from the scenario to 
the solution).  

Several papers address the optimization of MG with this approach [1],[2],[3],[4]. 
E.g., in their latest publication [5]. M.A. Hannan et al. provided a review of optimal 
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methods for sizing energy storage, outlining how typically used methods make use of 
stochastic properties of the forecasting error, i.e., mean, standard deviation and 
confidence intervals, for optimizing ESS sizing. M. Cao et al., (2019) [6] proposed a 
MILP (mixed-integer linear programming) methodology to optimize the sizing of the 
energy storage systems and the hourly dispatch by transforming stochastic constraints to 
deterministic ones. D. Wu et al. in 2020 [7] proposed to convert the two-stage (operation 
and sizing) stochastic problem into a finite number of possible realizations (scenarios) to 
solve with MILP methods. 

In this work, the two-stage stochastic optimization problem is solved without 
approximations in finite scenarios by implementing a novel two-layer optimization and 
a further method to validate the best solution over all scenarios. 

Figure 6.3 shows the two-layer optimization framework and the overall interrelations 
among the optimization methods, the analytical techno-economic model (ATE), and the 
machine learning models (MLTE). The lower level is a time-step optimization of cost-
revenues while constrained electric and thermal energy flows are balanced. This convex 
not-linear problem is solved by the SLSQP (Sequential Least Squares Programming) 
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method. The upper level of simultaneous design, sizing and siting optimizations are 
solved with two novel evolutionary computing algorithms (ADE, AIE). Due to the 
stochastic nature of this problem, clusters of probabilistic best solutions (PBS) of similar 
quality are obtained. To find the best configuration, the optimization must be repeated 
until the standard deviation of the PBS reaches the desired fitness value. Then, the PBS 
having the lowest fitness value can be assumed as the candidate of being the PBS. The 
final task is to verify with the sample average approximation method if the latter 
solution returns the best-expected performance over all the scenarios. The results shows 
that AIE performs over 70% better than the original version of Differential Evolution 
(DE) introduced by Storn at al. in 1995 and it is well suited to compute complex CHP-
MMG optimizations and obtain high quality of solutions validated over all the scenarios. 

6 . 2 . 3  S i m u l t a n e o u s  o p t i m i z a t i o n  w i t h  t h e  h y b r i d  
m o d e l  a p p r o a c h  

In this work, a hybrid model approach based on the combination of an analytical 
technical-economic model with different machine learning models is proposed to further 
speed up the computing time. ATE model incorporates the techno-economic models of a 
large variety of thermal and electrical DER used in 1) the objective function of the 
SLSQP algorithm, 2) the energy balance equations, 3) the financial models that at the 
end, return the fitness value of the MG trial settings. 

Three algorithms have been developed and tested to approximate the ATE model 
with machine learning (MLTE). The first MLTE model is based on a multiple linear 
regression (MLR), fitting a linear model with coefficients to minimize the residual sum 
of squares between the observed targets in the dataset (DER sizes and geolocations), and 
the targets predicted (fitness values) by the linear approximation. A second algorithm 
uses a 1-layer neural network (NN), whose input and output neurons, connected by 
weighed synapses. A third algorithm is a deep neural network (DNN) where the NN is 
expanded into 3 dynamic layers.  

The stochastic behaviour of CHP-MMG permits MLTE to correlate solutions and 
fitness values similarly to ATE model, for fitness values nearby zero. MLTE can be used 
in combination with ATE-based optimization to tighten the search area of the best CHP-
MMG siting and sizing. 

1 6 2



6 . 2 . 4  Va l i d a t i o n  i n  i n n o v a t i v e  c a s e  s t u d i e s   

As a further result, the two-layer algorithms were used in this work to simulate 
innovative business scenarios for residential communities where the CHP-MMG fulfill 
electrical and thermal loads and provides energy services to the utility grid. 

Synergies established by electric and thermal DER installed in stand-alone CHP-MG 
are investigated. The latter configurations are compared with interconnected CHP-MG; 
crossflows of energies among interconnected MG are investigated.  

Moreover, it has been particularly useful to investigate how prices!#policies of energy 

services and the cost, type of hydrogen impacts the competitiveness of CHP-MMG in 
different geographical sites, both in on-grid and off-grid contests. 

6 . 2 . 5  T h e  s w a r m  e f f e c t  

The results of simulations carried on in this thesis have highlighted a scheme of 
collaboration between CHP-MMG which has been called: swarm effect. With this term 
is intended optimal conversions and exchanges of thermal, electrical, chemical energies 
among MG that improve their efficiency, energy resilience to uncertainty, and best 
financial performances.  

Figure 6.4 shows an example of the swarm effect between two CHP-MMG operating 
in islanded mode. The optimal setting has been obtained in 1 query, 150 generations 
with AIE running in high-resolution mode. The CHP-MMG configuration comprises in 
MG_A as primary power generation WT.  

The exceeding electric energy not consumed by the load and not stored in ESS is 
transferred from MG_A to MG_B (i.e., ITCEL). 

The latter is added to the electricity produced by WT. This electric energy is used to 
supply the electric load and to convert it in heat with HP. Finally, the exceeding thermal 
energy not consumed by the load is transferred back from MG_B to MG_A. 
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Figure 6.4 Example of swarm effect between two CHP-MMG operating in islanded mode



6 . 3  F u t u r e  r e s e a r c h  d i r e c t i o n s  

The results of this thesis indicate three further research topics for a better 
understanding of CHP-MMG role in future energy systems.  

The first concerns the impact of solar radiation, temperature changes on energy 
yields of renewables systems under different greenhouse gas emissions scenario (e.g., 
RPC 4.5 and 8.5). The Representative Concentration Pathways (RCP) form a set of 
greenhouse gas concentration and emissions pathways designed to support research on 
impacts and potential policy responses to climate change. The RCP - RCP2.6, RCP4.5, 
RCP6, and RCP8.5 – are labelled after a possible range of radiative forcing values in the 
year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively). RPC 2.6 is associated to the most 
stringent mitigation scenario while RCP 4.5 is an intermediate scenario, where 
emissions peak around 2040, then decline. The RCP8.5 combines assumptions about 
high population and relatively slow income growth with modest rates of technological 
change and energy intensity improvements, leading in the long term to high energy 
demand and GHG emissions in absence of climate change policies. Compared to the 
total set of Representative Concentration Pathways, RCP8.5 thus corresponds to the 
pathway with the highest greenhouse gas emissions [8].  

The solar radiation incident on the Earth's surface in this thesis is based on historical 
datasets. However, with changes in climate and air pollution levels, solar resources may 
no longer be stable over time and undergo substantial decadal changes. Observational 
records covering the past decades confirm long-term changes in this quantity. Wild et al. 
[9] examine how the latest generation of climate models used for the 5th IPCC report 
projects potential changes in surface solar radiation over the coming decades, and how 
this may affect, in combination with the expected greenhouse warming, solar power 
output from photovoltaic (PV) systems. J. Wu et al. [10] provide a scientific basis for the 
policies for the development of wind energy and towards the goal of carbon neutrality in 
China and local governments, changes in wind energy potential over China using the 
RCP2.6, RCP4.5 and RCP8.5 emission scenarios. The results of this work indicate that  
the implementation of newly developed wind power technology should consider the 
impact of changes in wind energy in different sub-regions. 

However, the state of the art does not include any study addressing the impact of 
RPC scenarios in microgrids’ techno-economic optimizations. 

1 6 5



 A second future area of investigation concerns the extension of number of 
microgrids. The idea is to study multiple interconnected residential- and industrial 
microgrids installed nearby. Further work should be focus on research on optimal 
configurations of a wide network of interconnected hybrid microgrids to achieve a 
higher quality of energy, financial performance, and lower cost of energy than an actual 
vertical electrical grid (utility grids) and stand/alone thermal systems. In such new 
energy framework, multiple industrial production and residential users of districts will 
act as virtual power plants. The improved optimization tool will permit to evaluate 
scenarios where each microgrid energy provider can decide dynamic pricing policies in 
response to the power demand of neighbors to maximize its rewards. A sort of peer-to-
peer game to be settled at each time-step according to potential synergy schemes to 
dynamically establish the Nash Equilibrium [11] between the energy supplier and the 
users of each microgrid. Shunping et al. in 2021 [12] proposed a structure of a microgrid 
based on multi-agent system. A game-theory-based optimization model is proposed for 
the capacity configuration of these agents. The economic interests between the agents 
and their actions are analyzed by the game model. The Nash Equilibrium of the game is 
worked out by particle swarm optimization, as the reference for the configuration of the 
agents. Aihua et al. in 2021 [13] proposed a two-stage optimization approach on the 
optimal strategies to maximize the peer-to-peer (P2P) energy sharing trading of the 
prosumer within a community. In the first-stage optimization model, the decision on 
whether to participate in the P2P energy sharing trading is obtained based on the 
maximization of social utility function. The second-stage optimization problem is based 
on a payment bargaining model. They demonstrate that the customers who participate in 
P2P energy sharing trading can improve their utilities compared with an individual 
optimization method based on a case study. Zhenhao et al. [14] presented a novel day-
ahead power market for distribution systems. Based on the linearized AC power flow 
model, the distribution locational marginal price for coupled active and reactive power 
is calculated and decomposed into different components (e.g., energy price, loss price, 
congestion price, and voltage support price) which can provide price signals for 
distributed generator and aggregator in a distribution system to respond. The nodes of 
the smart grid can trade with each other and optimize their profit based on distribution 
locational marginal prices. Game theory is applied to solve the energy trading payment 
problem. The latter recent research works inspire the adoption of the multi-agent 
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approach for setting the optimal trading policies among multiple nearby heat and power 
microgrids. 

Moreover, a third innovative area of investigation concerns the fault-tolerant design 
optimization of microgrids to power manned lunar bases. Future steps in human space 
exploration foresee the deployment of a permanently manned moon base, an endeavor 
that is fully dependent on lightweight, efficient, scalable, resilient heat- and power 
systems. There are only a few publications in literature that are focused on microgrids in 
space environments. The current state-of-the-art of power systems architectures follows 
centralized schemes with redundancies. Such approaches, however, lead to increased 
budget and pre-set fault tolerance. Furthermore, power systems are not designed in a 
scalable manner. Thus, these established practices may not be sufficient for future 
exploration missions, which may demand gradual module-wise deployment. A. Bintoudi 
et al. in 2019 [15] proposed a meshed grid topology to satisfy the high reliability 
requirements of a manned space mission and, at the same time, to reduce the mass/ 
volume budget of the mission.  

A series of microgrid-related technologies are suggested, covering all levels of grid 
design, control and protection; however, this works limits the DER to PV and ES sizing. 
In the proposed future work, terrestrial dataset for solar radiation should be replaced 
with moon surface radiation data. The available solar energy is a key information to 
allow the search of the ideal base location for future explorations and missions in the 
moon soil. Moreover, the techno-economic analysis could be extended to hydrogen 
microgrids’ configurations in which hydrogen is delivered from the earth and generated 
on-site. The search of optimal moon siting should compare the availability of crude fuel 
(i.e., ice, hydrogen) [16][17][18] and the related cost to convert hydrogen with the 
option to transport a fuel from the earth. Additionally, the novel concept of heat and 
power multiple-microgrid applied to the moon contest [19][20][21]22] could be 
investigated under the scope of maximizing the energy reliability with specific 
irradiance of different base siting. 
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Gene Minimum Maximum Gene Minimum Maximum
Latitude 53 53 PV_SIZEB 0 200
Longitude 66 66 WT_SIZEB 0 150
PV_SIZE 0 200 FC_SIZEB 0 100
WT_SIZE 0 150 OG_SIZEB 0 100
FC_SIZE 0 100 ESS_SIZEB 0 100
TKFC_SIZE 0 30.000 TKFC_SIZEB 0 30.000
TKCHP_SIZE 0 30.000 TKOG_SIZEB 0 20.000
EC_SIZE 0 100 EC_SIZEB 0 100
OG_SIZE 0 100 EBOY_SIZEB 0 300
TKOG_SIZE 0 20.000 TKEBOY_SIZEB 0 30.000
ESS_SIZE 0 100 ST_SIZEB 0 300
GRID_SIZE 0 100 TKST_SIZEB 0 30.000
EBOY_SIZE 0 300 STHP_SIZEB 0 300
TKEBOY_SIZE 0 30.000 HP_SIZEB 0 300
ST_SIZE 0 300 TKHP_SIZEB 0 30.000
TKST_SIZE 0 30.000 GRID_SIZEB 0 100
STHP_SIZE 0 30.000 TKCHP_SIZEB 0 30.000
HP_SIZE 0 300 ITCEL_SIZE 0 100
TKHP_SIZE 0 30.000 ITCTH_SIZE 0 300
Table A.1 Boundaries of the genotype. The term ‘SIZE’ and ‘SIZEB’ refers to nominal power (kW) of PV, 
WT, FC, OG, EC, GRID, EBOY, ST, STHP, HP and capacity of ESS (kWh), TKFC (l), TKCHP (l), TKOG 
(l), TKEBOY, (l), TKST,(l), TKHP(l), respectively of MG_A, MG_B
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Genotype Nr. Genes

Chromosome siting Latitude 1
Longitude 2

Chromosome sizing

PV_SIZE 1
WT_SIZE 2
FC_SIZE 3
TKFC_SIZE 4
TKCHP_SIZE 5
EC_SIZE 6
OG_SIZE 7
TKOG_SIZE 8
ESS_SIZE 9
GRID_SIZE 10
EBOY_SIZE 11
TKEBOY_SIZE 12
ST_SIZE 13
TKST_SIZE 14
STHP_SIZE 15
HP_SIZE 16
TKHP_SIZE 17
PV_SIZEB 18
WT_SIZEB 19
FC_SIZEB 20
OG_SIZEB 21
ESS_SIZEB 22
TKFC_SIZEB 23
TKOG_SIZEB 24
EC_SIZEB 25
EBOY_SIZEB 26
TKEBOY_SIZEB 27
ST_SIZEB 28
TKST_SIZEB 29
STHP_SIZEB 30
HP_SIZEB 31
TKHP_SIZEB 32
GRID_SIZEB 33
TKCHP_SIZEB 34
ITCEL_SIZE 35
ITCTH_SIZE 36

Table A.2 Composition of the genotype of the CHP-MMG. The 38 genes (variables of the 
problem) are associated to the chromosome of siting (2 genes) and the chromosome of sizing 
(36 genes)
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Figure B.1 Comparison of the fitness spread, 350 generation, AIE and ADE with objective function 
based on ATE



A P P E N D I X  C  

Within the FCH-JU European Project “Pembeyond” in 2014 [1] a primitive version 
of a SW tool was developed. The simulator was designed to execute technical-economic 
analysis of micro-electrical networks, powering telecom towers. The original version of 
the algorithm was set up in Microsoft Excel. The tool can be used to execute market 
analysis in different areas of the world for potential installations of PEMFC integrated 
with low-grade bioethanol processor units.  

The algorithm was ported into python language [2] to extend the study from 
simulation to optimization of the most general problem concerning best design, siting, 
sizing of heat and power multi-microgrids.  

The current algorithm includes now more than 25.000 lines of code. The main script 
is structured into separated and interrelated functions and libraries [3][4][5] embedding: 
the numerical models of DER, financial models, SLSQP objective, constraints (Chapter 
2) the equations of ATE, AIE, DE (Chapter 4, 5). 

The main script is also interrelated to a set of libraries, created to compute the MLR, 
NN, DNN, processing training datasets (Chapter 3) and finally to plot [6] and save the 
results. 

Due to the large numbers of inputs for each DER, selection criteria for optimization, 
data-processing inputs and output, a Graphical User Interface (GUI) based on Python's 
de-facto standard package, Tkinter [7][8] it has been developed. In the upper part of 
Figure C.1 the popup’s pages (i.e., tabs) of the inputs are shown.  

The first pages are used to input the information about the siting search, discount rate 
and modalities to manage the execution of the script (e.g., print/plot in real-time the trial 
solutions, best-so-far fitness, number of queries, replacement of random input variables 
with mean values).  

The other pages concern the sizing bandwidth of the DER, the definition of their 
main features (i.e., characteristic curves, minimum of state of heaths, unit CAPEX, 
OPEX, REPEX, etc..).  

The following DER are considered to configure two interconnected microgrids 
(MG_A, MG_B): electrical and thermal devices for microgrids’ interconnections, 
photovoltaic panels, wind turbines, electrical storage systems, inverters, fuel cells with 
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thermal and fuel tanks, electrolyzer, traditional gensets with fuel tanks, devices for main 
grids’ interconnections, electric boilers with thermal storage, thermal solar collectors, 
combined with heat pumps and thermal storage, stand-alone heat pumps with thermal 
storage.  

Two tabs are dedicated to sizing and the management of thermal and electric loads, 
grid demand profiles (e.g., load shedding, load shifting, peak shaving, period of peak 
loads), price policies (e.g., unit price energy of electric and thermal loads, remunerations 
and penalties for grid demand response, unit price for water generated by FC, unit price 
for carbon black produced by methane (TP). 

The screenshot of Figure C.1 shows the page to setup the parameters concerning the 
optimization simulation: 1) SLSQP’s objectives of each time-step (e.g., to maximize 
profit of energy generated, maximize states of health, maximize the buy or sell of energy 
from the main grid, maximize the energy generated by RES, FC, OG, EC, EBOY, ST, 
STHP, HP, maximize the efficiency of energy generated by FC, OG, EC); 2) minimum 
number of generation/query; 3) selection of EA optimization’s method (e.g., AIE, ADE, 
DE); 4) EA’s objectives (e.g., to maximize IRR, NPV, LCOE and their combination); 5) 
additional criteria for selections and fitness’s cut-off values; 6) choice of the techno-
economic model (e.g., analytical model, machine learning models) and type of data 
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Figure C.1 GUI of the optimization-simulation tools



transformations; 7) plot the outputs (e.g., time-series, financial performances, key 
optimization’s performance indicators); 8) launch the optimization 9) run the simulation 
of selected configurations. 

The output/inputs are uploaded in a sole dataset and then saved in csv-format file 
which is marked with a serial number to univocally identify the run and query.  

Despite the large number of configurable parameters and options, inputs’ setting is 
defined in a way to prevent errors and override undesired conditions (e.g., if boundaries 
of DER are null, all the other correspondent parameters will be ignored and trial 
solutions associated to locations with vegetation or sea will be discarded).  

Moreover, the tailored-made software based on the high-level programming language 

Python®, is intuitive to read and the vast open-source library support allows to write 
quickly further algorithms to enhance the features the comprehensions of the results. 
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Tool Simulation Scenario Equili
brium

Top-
down

Bottom
-up

Operation Invest
ment

AEOLIUS Yes – – – Yes – –

BCHP Yes – – – Yes Yes –

COMPOSE – – – – Yes Yes Yes

E4cast – Yes Yes – Yes – Yes

EMCAS Yes Yes – – Yes – Yes

EMINENT – Yes – – Yes – –

EnergyPLAN Yes Yes – – Yes Yes Yes

energyPRO Yes Yes – – – Yes Yes

ENPEP – Yes Yes Yes – – –

GTMax Yes – – – – Yes –

H2RES Yes Yes – – Yes Yes –

HOMER Yes – – – Yes Yes Yes

HYDROGEMS – Yes – – – – –

IKARUS – Yes – – Yes – Yes

INFORSE – Yes – – – – –

Invert Yes Yes – – Yes – Yes

LEAP Yes Yes – Yes Yes – –

MARKAL/
TIMES

– Yes Yes Partly Yes – Yes

MESSAGE – Yes Partial – Yes Yes Yes

MiniCAM Yes Yes Partial Yes Yes – –

NEMS – Yes Yes – – – –

ORCED Yes Yes Yes – Yes Yes Yes

PERSEUS – Yes Yes – Yes – Yes

PRIMES – – Yes – – – –

ProdRisk Yes – – – – Yes Yes

RAMSES Yes – – – Yes Yes –

RETScreen – Yes – – Yes – Yes

STREAM Yes – – – – – –

TRNSYS16 Yes Yes – – Yes Yes Yes

UniSyD3.0 – Yes Yes – Yes – –

WASP Yes – – – – – Yes

Table D.1 Guideline of the main tools developed since 2009 by application 
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Model Sectors Math modeltype Georesolution

AnyMOD User-dependent Optimization User-dependent

Backbone All Optimization Depends on user

Balmorel electricity, heating Optimization Zonal

Calliope User-dependent Optimization User-dependent

CAPOW Electric power Simulation Zonal

DESSTinEE All / Electricity Simulation National

DIETER electricity, heating Optimization Germany

ELMOD electricity, heating Optimization power plant block, 
transmission network node

EMLab-Generation Electricity, carbon Simulation Zones

EMMA Electricity Optimization Some countries

Energy Policy Simulator electricity, heating Simulation single region

Energy Transition 
Model

All Simulation Country

EnergyNumbers Electricity Simulation Country

FlexiGIS Electricity Optimization, 
Simulation

building, street, district, city

Genesys Electricity Optimization, 
Simulation

EUMENA, 21 regions

Oemof electricity, heating Optimization, 
Simulation

Depends on user

OSeMOSYS all Optimization Country

POMATO Electricity, heating Optimization Nodal resolution

PowNet Electricity Optimization, 
Simulation

High-voltage substation

PyLESA electricity, heating Simulation Local/Community/District

PyPSA Electricity, heating Optimization, 
Simulation

User dependent

Region4FLEX electricity, heating Optimization Administrative districts

Renpass Electricity Optimization, 
Simulation

Germany

SciGRID Electricity Simulation nodal resolution

StELMOD Electricity Optimization Nodal resolution

Switch electricity, gas Optimization Building to continent

Table D.2 Main open source optimization and simulation tools in the Wiki Workspace of “Openmod 
initiative”

 



A P P E N D I X  E  

The techno-economic analysis that involves wind turbines is subjected to the 
prediction of wind speed. A large number of studies published in scientific literature 
proposed the use of a variety of probability density functions to approximate the 
uncertainty and intermittency of wind speed profiles and their frequency distribution. 
Weibull distributions and Normal distribution has been considered in several 
studies(e.g.,  [1-2]).  

In this thesis, these distributions have been proposed with the aim to convert the 
wind speed daily mean into hourly mean datasets. 

The approach based on Weibull distribution is formulated in Chapter 2, Eq. 2.21. 

The normal distribution used in the simulations of this thesis is indicated in Eq. E.1:  

 .               [E.1]  

Where the wind speed daily mean of each month, here is defined as , and  

 are respectively the latitude and longitude and  is the time-step of the hourly mean.  

The optimal values of the standard deviation  in Eq. E.1 has been computed 

by minimizing the MSE error between the result of Eq. E.1 and the profile for each 
geographic location, can be derived from the NASA Surface meteorology and Solar 
Energy database (https://power.larc.nasa.gov).  

It has been observed that the Weibull distribution usually replicates the original 
profile issued by NASA with a MSE error lower than the normal distribution. E.g., in 
the city of Bremen, with Latitude: 53.0758196 and Longitude: 8.8071646, the normal 
distribution returns a MSE error: 0,4% while for the Weibull distribution the MSE error 
is 0,01% .  

However, due to the high unpredictability of the wind speed variable (as discussed in 
the author's publication [3]) the use of both distributions has been considered valid for 
the purpose of the overall techno-economic analysis. Techno-economic optimization's 
trials executed with the both Normal and Weibull distributions have not influenced the 
final results. The simulations presented in this thesis are based on approximating the 
wind speed with the Normal distribution.  

Ws(ts, θ, ϕ) = {N [w (ts, θ, ϕ), σs (θ, ϕ)]
Ws(ts, θ, ϕ) ≥ 0

w(ts, θ, ϕ)
θ, ϕ ts

σs(θ, ϕ)
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