62,867 research outputs found

    Policy and Contract Management for Semantic Web Services

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.This paper summarizes our efforts to develop capabilities for policy and contract management for Semantic Web Services applications. KAoS services and tools allow for the specification, management, analyzes, disclosure and enforcement of policies represented in OWL. We discuss three current Semantic Web Services applications as examples of the kinds of roles that a policy management framework can play: as an authorization service in grid computing environments, as a distributed policy specification and enforcement capability for a semantic matchmaker, and as a verification tool for services composition and contract management

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    An active, ontology-driven network service for Internet collaboration

    No full text
    Web portals have emerged as an important means of collaboration on the WWW, and the integration of ontologies promises to make them more accurate in how they serve users’ collaboration and information location requirements. However, web portals are essentially a centralised architecture resulting in difficulties supporting seamless roaming between portals and collaboration between groups supported on different portals. This paper proposes an alternative approach to collaboration over the web using ontologies that is de-centralised and exploits content-based networking. We argue that this approach promises a user-centric, timely, secure and location-independent mechanism, which is potentially more scaleable and universal than existing centralised portals

    KAoS Policy Management for Semantic Web Services

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.Despite rapid advances in Web Services, the user community as demanding requirements continue to outstrip available technology solutions. To help close this gap, Semantic Web Services advocates are defining and implementing many new and significant capabilities (www.swsi.org). These new capabilities should more fully harness Web Services' power through explicit representations of Web resources' underlying semantics and the development of an intelligent Web infrastructure that can fully exploit them. Semantic Web languages, such as OWL, extend RDF to let users specify ontologies comprising taxonomies of classes and inference rules. Both people and software agents can effectively use Semantic Web Services. Agents will increasingly use the combination of semantic markup languages and Semantic Web Services to understand and autonomously manipulate Web content in significant ways. Agents will discover, communicate, and cooperate with other agents and services and - as we'll describe - will rely on policy-based management and control mechanisms to ensure respect for human-imposed constraints on agent interaction. Policy-based controls of Semantic Web Services can also help govern interaction with traditional (nonagent) clients. In the mid 1990s, we began to define the initial version of KAoS, a set of platform-independent services that let people define policies ensuring adequate predictability and controllability of both agents and traditional distributed systems. With various research partners, we' re also developing and evaluating a generic model of human-agent teamwork that includes policies to assure natural and effective interaction in mixed teams of people and agents - both software and robotic. We're exploiting the power of Semantic Web representations to address some of the challenges currently limiting Semantic Web Services' widespread deployment

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    Managing semantic Grid metadata in S-OGSA

    Get PDF
    Grid resources such as data, services, and equipment, are increasingly being annotated with descriptive metadata that facilitates their discovery and their use in the context of Virtual Organizations (VO). Making such growing body of metadata explicit and available to Grid services is key to the success of the VO paradigm. In this paper we present a model and management architecture for Semantic Bindings, i.e., firstclass Grid entities that encapsulate metadata on the Grid and make it available through predictable access patterns. The model is at the core of the S-OGSA reference architecture for the Semantic Grid

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors
    • 

    corecore