58 research outputs found

    Synchronization of Complex-Valued Dynamical Networks

    Get PDF
    Dynamical networks (DNs) have been broadly applied to describe natural and human systems consisting of a large number of interactive individuals. Common examples include Internet, food webs, social networks, neural networks, etc. One of the crucial and significant collective behaviors of DNs is known as synchronization. In reality, synchronization phenomena may occur either inside a network or between two or more networks, which are called “inner synchronization” and “outer synchronization”, respectively. On the other hand, many real systems are more suitably characterized by complex-valued dynamical systems, such as quantum systems, complex Lorenz system, and complex-valued neural networks. The main focus of this thesis is on synchronization of complex-valued dynamical networks (CVDNs). In this thesis, we firstly design a delay-dependent pinning impulsive controller to study synchronization of time-delay CVDNs. By taking advantage of the Lyapunov function in the complex field, some delay-independent synchronization criteria of CVDNs are established, which generalizes some existing synchronization results. Then, by employing the Lyapunov functional in the complex field, several delay-dependent sufficient conditions on synchronization of CVDNs with various sizes of delays are constructed. Moreover, we study synchronization of CVDNs with time-varying delays under distributed impulsive controllers. By taking advantage of time-varying Lyapunov function/ functional in the complex domain, several synchronization criteria for CVDNs with time-varying delays are derived in terms of complex-valued linear matrix inequalities (LMIs). Then, we propose a memory-based event-triggered impulsive control (ETIC) scheme with three levels of events in the complex field to investigate the synchronization problem of CVDNs with both discrete and distributed time delays, and we further consider an event-triggered pinning impulsive control (ETPIC) scheme combining the proposed ETIC and a pinning algorithm to study synchronization of time-delay CVDNs. Results show that the proposed ETIC scheme and ETPIC scheme can effectively synchronize CVDNs with the desired trajectory. Secondly, we study generalized outer synchronization of drive-response time-delayed CVDNs via hybrid control. A hybrid controller is proposed in the complex domain to construct response complex-valued networks. Some generalized outer synchronization criteria for drive-response CVDNs are established, which extend the existing generalized outer synchronization results to the complex field. Thirdly, we study the average-consensus problem of potential complex-valued multi-agent systems. A complex-variable hybrid consensus protocol is proposed, and time delays are taken into account in both the continuous-time protocol and the discrete-time protocol. Delay-dependent sufficient conditions are established to guarantee the proposed complex-variable hybrid consensus protocol can solve the average-consensus problem. Lastly, as a practical application for complex-valued networked systems, the synchronization problem of master-slave complex-valued neural networks (CVNNs) is studied via hybrid control and delayed ETPIC, respectively. We also investigate the state estimation problem of CVNNs by designing the adaptive impulsive observer in the complex field

    Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: a robust synchronization problem

    Get PDF
    This sequel is concerned with the analysis of robust synchronization for a multi-weighted complex structure on fractional-order coupled neural networks (MWCFCNNs) with linear coupling delays via state feedback controller. Firstly, by means of fractional order comparison principle, suitable Lyapunov method, Kronecker product technique, some famous inequality techniques about fractional order calculus and the basis of interval parameter method, two improved robust asymptotical synchronization analysis, both algebraic method and LMI method, respectively are established via state feedback controller. Secondly, when the parameter uncertainties are ignored, several synchronization criterion are also given to ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two type of special cases for global asymptotical synchronization MWCFCNNs with and without linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibility of obtained synchronization criteria are supported by the given two numerical computer simulations.This article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No.F.510/8/DRSI/2016(SAP-I) and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17

    Synchronization of complex dynamical networks with fractional order

    Get PDF
    Complex dynamical networks (CDN) can be applied to many areas in real world, from medicine, biology, Internet to sociology. Study on CDNs has drawn great attention in recent years. Nodes in a CDN can be modelled as systems represented by differential equations. Study has shown that fractional order differential equations (DF) can better represent some real world systems than integer-order DFs. This research work focuses on synchronization in fractional CDNs.  A literature review on CDNs with fractional order has summarized the latest works in this area.  Fractional chaotic systems are studied in our initial investigation.  Fractional calculus is introduced and the relevant fundamentals to model, describe and analyse dynamical networks are presented. It is shown that the structure and topological characteristics of a network can have a big impact on its synchronizability. Synchronizability and its various interpretations in dynamical networks are studied. To synchronize a CDN efficiently, controllers are generally needed. Controller design is one of the main tasks in this research. Our first design is a new sliding mode control to synchronize a dynamical network with two nodes. Its stability has been proven and verified by simulations.  Its convergence speed outperforms Vaidyanathan's scheme, a well-recognized scheme in this area. The design can be generalized to CDNs with more nodes.  As many applications can be modelled as CDNs with node clustering, a different sliding mode control is designed for cluster synchronization of a CDN with fractional order. Its stability is proven by using Lyapunov method. Its convergence and efficiency is shown in a simulation. Besides these nonlinear methods mentioned, linear control is also studied intensively for the synchronization.  A novel linear method for synchronization of fractional CDNs using a new fractional Proportional-Integral (PI) pinning control is proposed.  Its stability is proven and the synchronization criteria are obtained. The criteria have been simplified using two corollaries so the right value for the variables can be easily assigned. The proposed method is compared with the conventional linear method which uses Proportional (P) controller. In the comparison, the mean squared error function is used. The function measures the average of the squared errors and it is an instant indicator of the synchronization efficiency. A numerical simulation is repeated 100 times to obtain the averages over these runs. Each simulation has different random initial values for both controllers. The average of the errors in all the 100 simulations is obtained and the area under the function curve is defined as an overall performance index (OPI), which indicates the controller's overall performance. In control, small overshoot is always desired. In our work, the error variation is also used as a measure.  The maximum variation from the average of 100 simulations is calculated and compared for both methods. With all the statistical comparisons, it is clear that with the same power consumption, the proposed method outperforms the conventional one and achieves faster and smoother synchronization. Communication constraints exist in most real world CDNs. Communication constraints and their impact on control and synchronization of CDNs with fractional order are investigated in our study. A new adaptive method for synchronizing fractional CDN with disturbance and uncertainty is designed. Its stability is proven and its synchronization criteria are obtained for both fractional CDN with known and unknown parameters. Random disturbance is also included in both cases. Our results show that the new method is efficient in synchronizing CDNs with presence of both disturbance and uncertainty

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Invariant manifold theory for impulsive functional differential equations with applications

    Get PDF
    The primary contribution of this thesis is a development of invariant manifold theory for impulsive functional differential equations. We begin with an in-depth analysis of linear systems, immersed in a nonautonomous dynamical systems framework. We prove a variation-of-constants formula, introduce appropriate generalizations of stable, centre and unstable subspaces, and develop a Floquet theory for periodic systems. Using the Lyapunov-Perron method, we prove the existence of local centre manifolds at a nonhyperbolic equilibrium of nonlinear impulsive functional differential equations. Using a formal differentiation procedure in conjunction with machinery from functional analysis -- specifically, contraction mappings on scales of Banach spaces -- we prove that the centre manifold is smooth in the state space. By introducing a coordinate system, we are able to prove that the coefficients of any Taylor expansion of the local centre manifold are unique and sufficiently regular in the time and lag arguments that they can be computed by solving an impulsive boundary-value problem. After proving a reduction principle, this leads naturally to explorations into bifurcation theory, where we establish generalizations of the classical fold and Hopf bifurcations for impulsive delay differential equations. Aside from the centre manifold, we demonstrate the existence and smoothness of stable and unstable manifolds and prove a linearized stability theorem. One of the applications of the theory above is an analysis of a SIR model with pulsed vaccination and finite temporary immunity modeled by a discrete delay. We determine an analytical stability criteria for the disease-free equilibrium and prove the existence of a transcritical bifurcation of periodic solutions at some critical vaccination coverage level for generic system parameters. Then, using numerical continuation and a monodromy operator discretization scheme, we track the bifurcating endemic periodic solution until a Hopf point is identifed. A cylinder bifurcation is observed; the periodic orbit expands into a cylinder in the extended phase space before eventually contracting onto a periodic orbit as the vaccination coverage vanishes. The other application is an impulsive stabilization method based on centre manifold reduction and optimization principles. Assuming a cost structure on the impulsive controller and a desired convergence rate target, we prove that under certain conditions there is always an impulsive controller that can stabilize a nonhyperbolic equilibrium with a trivial unstable subspace, robustly with respect to parameter perturbation, while guaranteeing a minimal cost. We then exploit the low-dimensionality of the centre manifold to develop a two-stage program that can be implemented to compute the optimal controller. To demonstrate the effectiveness of the two-stage program, which we call the centre probe method, we use the method to stabilize a complex network of 100 diffusively coupled nodes at a Hopf point. The cost structure is one that assigns higher cost to controlling of nodes that have more neighbours, while the jump functionals are required to be diagonal -- that is, they do not introduce further coupling. We also introduce a secondary goal, which is that the number of nodes that are controlled is minimized

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Book of abstracts

    Get PDF
    • …
    corecore