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Abstract

The primary contribution of this thesis is a development of invariant manifold the-
ory for impulsive functional differential equations. We begin with an in-depth analysis of
linear systems, immersed in a nonautonomous dynamical systems framework. We prove
a variation-of-constants formula, introduce appropriate generalizations of stable, centre
and unstable subspaces, and develop a Floquet theory for periodic systems. Using the
Lyapunov-Perron method, we prove the existence of local centre manifolds at a nonhyper-
bolic equilibrium of nonlinear impulsive functional differential equations. Using a formal
differentiation procedure in conjunction with machinery from functional analysis – specifi-
cally, contraction mappings on scales of Banach spaces – we prove that the centre manifold
is smooth in the state space. By introducing a coordinate system, we are able to prove
that the coefficients of any Taylor expansion of the local centre manifold are unique and
sufficiently regular in the time and lag arguments that they can be computed by solving
an impulsive boundary-value problem. After proving a reduction principle, this leads nat-
urally to explorations into bifurcation theory, where we establish generalizations of the
classical fold and Hopf bifurcations for impulsive delay differential equations. Aside from
the centre manifold, we demonstrate the existence and smoothness of stable and unstable
manifolds and prove a linearized stability theorem.

One of the applications of the theory above is an analysis of a SIR model with pulsed
vaccination and finite temporary immunity modeled by a discrete delay. We determine
an analytical stability criteria for the disease-free equilibrium and prove the existence of
a transcritical bifurcation of periodic solutions at some critical vaccination coverage level
for generic system parameters. Then, using numerical continuation and a monodromy
operator discretization scheme, we track the bifurcating endemic periodic solution until a
Hopf point is identifed. A cylinder bifurcation is observed; the periodic orbit expands into
a cylinder in the extended phase space before eventually contracting onto a periodic orbit
as the vaccination coverage vanishes.

The other application is an impulsive stabilization method based on centre manifold
reduction and optimization principles. Assuming a cost structure on the impulsive con-
troller and a desired convergence rate target, we prove that under certain conditions there
is always an impulsive controller that can stabilize a nonhyperbolic equilibrium with a
trivial unstable subspace, robustly with respect to parameter perturbation, while guaran-
teeing a minimal cost. We then exploit the low-dimensionality of the centre manifold to
develop a two-stage program that can be implemented to compute the optimal controller.
To demonstrate the effectiveness of the two-stage program, which we call the centre probe
method, we use the method to stabilize a complex network of 100 diffusively coupled nodes
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at a Hopf point. The cost structure is one that assigns higher cost to controlling of nodes
that have more neighbours, while the jump functionals are required to be diagonal – that
is, they do not introduce further coupling. We also introduce a secondary goal, which is
that the number of nodes that are controlled is minimized.
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Chapter 1

Introduction

1.1 Brief background on impulsive retarded functional

differential equations

In this thesis we are interested in the dynamics near periodic solutions and equilibrium
points of the nonlinear impulsive retarded functional differential equation (impulsive RFDE)

ẋ = f(t, xt), t 6= tk (1.1)

∆x = g(k, xt−), t = tk. (1.2)

Here, f : R×X → Rn and g : Z×X → Rn are functions with some prescribed amount of
regularity, X ⊂ F0 is a vector subspace of F0 defined by

F0 =

{
φ ∈ F ([−r, 0],Ω) : lim

s→0−
φ(s) exists

}
⊂ F,

where F ([−r, 0],Ω) is the set of all functions mapping the interval [−r, 0] into Ω ⊆ Rn,
and {tk : k ∈ Z} ⊂ R is a bi-infinite sequence or real numbers called impulse times. If
x : I → Ω for some interval I ⊂ R and [t− r, t] ⊆ I, we define the history at time t to be
the function xt : [−r, 0]→ Ω defined by

xt(θ) = x(t+ θ). (1.3)

Similarly, the pointwise left-limit at time t is

xt−(θ) =

{
xt(θ), θ < 0
lims→0− x(t+ s), θ = 0.

(1.4)
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In this way, equation (1.2) is understood to mean that at times t = tk,

∆x(tk) = x(tk)− x(t−k ) = g(tk, xt−k
),

where x(t−k ) = lims→t−k
x(s).

Equations of the type (1.1)–(1.2) are useful in modelling systems that exhibit delays
and memory effects in conjunction with jumps in state on very small time scales. These
jumps are formally treated as occurring instantaneously. A simple class of impulsive RFDE
is those with two discrete delays, which can be written in the form

ẋ = f(t, x(t), x(t− r1), x(t− r2)), t 6= tk (1.5)

∆x = g(k, x(t−), x(t− r1), x(t− r2)), t = tk. (1.6)

In this way, one can see that the evolution law depends on the current state x(t) as well as
the states x(t− r1) and x(t− r2) at earlier times, r1 and r2 units of time in the past. The
first equation (1.5) is often called a differential-difference equation in the literature. For
example, the Hutchinson equation (1948) – see the survey [77] for this and related models
– features a single discrete delay and models the growth of a single egg-laying species in
which births occur τ units of time after oviposition. The result is the differential-difference
equation

dx

dt
= rx(t)

[
1− x(t− τ)

N

]
,

where r > 0 is an intrinsic (i.e. linear-order) growth rate and N > 0 is the carrying capacity.
If harvesting of this species occurs linearly at fixed times tk and there is a census delay of
c > 0 units of time between completing a population census and performing the harvesting,
one obtains the impulsive delay differential equation

ẋ = rx(t)(1− x(t− τ)/N), t 6= tk (1.7)

∆x = −hx(t− c), t = tk, (1.8)

where h ∈ [0, 1] is a harvesting effort representing the target proportion of the population
to be harvested. Notice that there are two distinct delays: the incubation time τ and
census delay c. If instead the census estimation takes the form of a time average over a
period c > 0, then the jump in equation (1.8) would be replaced by

∆x = −h
c

∫ 0

−c
xt−(s)ds. (1.9)
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Integral terms such as those appearing in (1.9) are usually referred to as distributed delays,
and in general they could appear in the continuous-time part of the equation (1.1).

A function x : [α − r, β) → Ω could be broadly called a solution of the impulsive
RFDE (1.1)–(1.2) if it satisfies the functional differential equation (1.1) in an appropriate
sense (e.g. classically or in an integrated form) for all t ∈ [α, β) except possibly at times
tk ∈ (α, β), where it satisfies the functional difference equation (1.2).

When introducing initial-value problems, the choice of the space X becomes important
and much of the early work in impulsive RFDE seems devoted to investigations into two
interrelated questions.

1. What choice of X will ensure that solutions can be discontinuous enough to incor-
porate impulses and discontinuous initial data?

2. What specifications must be made on the vector field f so that discontinuities do not
cause difficulties in establishing existence, uniqueness and continuability of solutions?

Some initial progress on this front was made by Krishna and Anokhin [53] in the context
of discrete delays. The situation in that paper is far from general, however, because the
vector field is of the form

ẋ = f(t, x(h(t))),

where h(t) ≤ t represents a time-varying delay. A general well-posedness result followed in
2000 with a paper by Ballinger and Liu [11]. Therein, the space X consists of functions that
are continuous except at finitely many points, where they are continuous from the right
and have limits on the left, while the function f is assumed to satisfy Carathéodory-type
conditions and to have the property that the composition t 7→ f(t, xt) is Lebesgue mea-
surable for any suitable function x : I → Rn that satisfies the same piecewise continuity
properties. With such assumptions, they prove existence and uniqueness results for solu-
tions defined in the extended Carathéodory sense. An earlier paper by the same authors
[10] requires stronger assumptions on the function f , but guarantees a classical notion of
solution. These stronger conditions include many of the types of functional dependence
that are typical of applications. In both cases, the key idea is that the composition

t 7→ f(t, xt)

must itself satisfy a certain level of regularity whenever x : I → Rn is piecewise continuous
and does not have too many discontinuities.

With existence and uniqueness issues essentially resolved, development into Lyapunov
stability and oscillation of impulsive RFDE (which we will not review here) continued to
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develop. Despite this, our literature review indicates that dynamical systems aspects of
such systems – in particular invariant manifold theory and related topics – has lagged be-
hind. For example, analysis of specific nonlinear impulsive systems with delays appears to
be mostly confined to more static notions such as well-posedness, permanence, existence of
global attractors and binary stability-instability analysis of equilibrium points. There are
also some results concerning permanence of compact regions of the phase space conditional
on parameters — see [36, 73, 96, 103] for some recent applications to biological systems.
Most dynamic bifurcation analysis at present seems restricted to numerical studies. For
instance, in [105], the largest Lyapunov exponent is used to numerically investigate bifur-
cations to chaotic attractors in a three-species food chain model with distributed delay and
impulsive control.

To understand why development of methods for the analysis of bifurcations in impulsive
RFDE has been seemingly stalled, it is beneficial to first review standard methods of
analysis of finite-dimensional impulsive systems.

1.2 Finite-dimensional systems

When delays and other functional dependence are absent, we have the finite-dimensional
system

ẋ = f(t, x(t)), t 6= tk (1.10)

∆x = g(k, x(t−)), t = tk, (1.11)

where now f : R×Rn → Rn and g : Z×Rn → Rn can taken to be smooth in their second
argument, while t 7→ Dj

2f(t, x) is continuous except at impulse times tk. Some of the most
highly-cited monographs [8, 78] on impulsive differential equations take the convention that
solutions are continuous from the left, but here we will take the right-continuity convention
since we wish to draw comparisons to systems with delays (and there, the convention is
overwhelmingly that of right-continuity). Notions of existence and uniqueness of solutions
in this case are very similar to those from ordinary differential equations, and we refer to
the aforementioned monographs for details.

In the majority of applications, the vector field, impulse times and jump functions are
periodic – that is, there exists c > 0 and T > 0 such that f(t + T, ·) = f(t, ·) for all
t ∈ R, tk+c = tk + T and g(k + c, ·) = g(k, ·) for all k ∈ Z. In this case, there is very
little motivation to consider topics such as invariant manifold theory for these systems
specifically, as one can simply reduce to a discrete time problem. Indeed, if a periodic
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solution of period T is known, one can first translate it to the origin by a time-dependent
change of coordinates so that the origin becomes a fixed point. Following this, one defines
a time T map on a suitable neighbourhood of 0 ∈ Rn as follows: let t 7→ S(t, x) for t ≥ 0
and x ∈ Rn denote the solution of (1.10)–(1.11) satisfying S(0, x) = x. The time T map
(also called stroboscopic map or Poincaré map) is a nonlinear map P : U → Rn defined on
a neighbourhood of 0 ∈ Rn by the formula P (x) = S(T, x). One then considers the iterated
map (i.e. discrete time dynamical system)

x 7→ P (x) (1.12)

having zero as a fixed point (recall, the periodic solution was translated to the origin).
Bifurcations of the fixed point can then be studied using methods from discrete time
systems, thereby circumventing the need to view the impulsive system (1.10)–(1.11) as a
continuous-time system. Some of the earliest applications of this idea include chemotherapy
modelling [57], pest control [34], pulsed chemostat [101] and infectious disease modelling
with pulsed vaccination [48]. This method was surveyed and formalized by Church and
Liu [19] in 2017.

Moving away from periodicity, one must consider (1.10)–(1.11) as a fully nonautonomous
object. This introduces further complications, most fundamental being that notions of hy-
perbolicity become harder to both deal with and verify in practice. Some progress has been
made on nonautonomous bifurcations in scalar impulsive systems by Akhmet and Kashky-
bayev [2, 3, 5] using notions of nonautonomous bifurcation and attractor transition – we
refer to the monograph [75] of Martin Rasmussen for background on these ideas. Church
and Liu [18] consider bifurcations of bounded solutions from complete trajectories having
double half-line exponential dichotomies, which are typical of trajectories corresponding
to homoclinic orbits. Global bifurcation theory has also been used to study the structure
of solutions sets of certain boundary-value problems [64, 69]. However, aside from some
very special cases, the utility of these results is fairly limited. We mention them mostly
to contrast with the periodic case and to emphasize that the fully nonautonomous setting
continues to be mostly unexplored. It will not be the main focus of this thesis.

1.3 Infinite-dimensional systems

We have demonstrated that in the finite-dimensional case, there is little to no reason to
develop invariant manifold theory. This is because in the periodic case, one can reduce to
a discrete time problem. In principle, this remains true if the impulsive RFDE (1.1)–(1.2)
is periodic – that is, there exists c > 0 and T > 0 such that f(t + T, ·) = f(t, ·) for all
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t ∈ R, tk+c = tk + T and g(k + c, ·) = g(k, ·) for all k ∈ Z. One can once again define a
time T map and presumably study bifurcations by considering instead the discrete-time
system (1.12). However, there are a few key elements that would be needed in order to
accomplish this.

To begin, in order to consider the time T map associated to the impulsive RFDE (1.1)–
(1.2), one must decide on a phase space X. It would be ideal if X were a Banach space and
the resulting map P : X → X were reasonably smooth, since in a parameter-dependent
setting one could proceed using a Lyapunov-Schmidt reduction to unfold bifurcations at a
suitably-defined nonhyperbolic equilibrium point or periodic solution.

Next, to study the bifurcation equation it would be necessary to compute higher-order
derivatives of P at zero. In the finite-dimensional setting, doing this requires solving a
sequence of inhomogeneous linear impulsive differential equations. Specifically, one has an
expansion of the form

P (x) = P1(T )x+
1

2
P2(T )[x, x] +

1

6
P3(T )[x, x, x] +O(||x||4)

where Pj(t) is the jth Fréchet derivative of the solution map S(t, x) at x = 0. This is a
j-linear operator on Rn that solves a particular inhomogeneous linear impulsive differential
equation, the latter of which typically contains inhomogeneities involving all Pi(t) for i < j;
see [19] for details. Generalizing appropriately to the infinite-dimensional setting, it would
be necessary to solve a sequence of abstract impulsive differential equation in the spaces
Lj(X) of j-linear maps on X. Ths would seem to be a difficult task, and as we will see it is
fruitful to avoid the temptation of reducing the analysis entirely to a discrete time setting.

1.4 Dynamical systems perspective

It is the stance of the present author that the single largest reason bifurcation theory for
impulsive RFDE had been undeveloped is because there was no rigorous formulation of
these equations as defining dynamical systems in any appropriate sense. This claim is
supported by the observation that a typical way of proving the existence of invariant man-
ifolds – in particular the centre manifold – is by the Lyapunov-Perron method. The idea
behind the Lyapunov-Perron method is one identifies an invariant manifold as a pertur-
bation from an appropriate invariant subspace (e.g. stable manifolds are perturbations of
stable subspaces). The manifold itself ends up being a fixed point of a particular nonlinear
operator that is derived in part using a linear variation of constants formula. Perhaps
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surprisingly, such a variation of constants formula for impulsive RFDE had yet to appear
in the literature when the research associated to this dissertation began.

This said, there have been phantoms of dynamical systems ideas being applied to
impulsive RFDE. For example, Bachar and Arijno [7] demonstrated that a linear delay
differential equation with impulses in a general Banach Z space generates an integrated
semigroup of bounded linear operators acting on the Banach space of regulated functions
mapping the history interval [−r, 0] into Z. The idea seems to have not caught on given
the lack of citations, but it is similar in spirit to how we view impulsive RFDE in this
thesis.

1.5 Outline of this thesis

Our first goal is to build a solid dynamical systems foundation on which we can explore in-
variant manifold theory and bifurcation theory for impulsive RFDE. Chapter 2 is devoted to
some fundamental properties of what will become the phase space for our nonautonomous
process (i.e. nonautonomous analogue of a semidynamical system): the space of right-
continuous regulated functions. This normed vector space is introduced and we elaborate
on its completeness, dense subspaces and topological dual, among other topics. We also
review weak integration as it will be essential in later sections. We introduce notions of
left limits of such regulated functions and provide some useful integral inequalities.

Chapter 3 is devoted to general linear systems. The fundamental result of this section
is an abstract variation of constants formula for inhomogeneous systems in the phase space
of right-continuous regulated functions. To arrive there, we first review existence and
uniqueness of solutions as it applies to our choice of phase space. We then introduce the
evolution family associated to a homogeneous system, invariant fiber bundles and spectral
separation.

In Chapter 4 we explore periodic linear systems, specifically homogeneous systems.
We introduce the monodromy operator and prove its compactness, thereby obtaining the
Riesz formula for the projection onto its invariant subspaces. Following this we prove
that homogeneous periodic systems are always spectrally separated, prove a Floquet the-
orem and explore notions of stability through Floquet exponents. We conclude with some
computational aspects.

Chapter 5 is the beginning of our study of nonlinear systems. Through the linear
variation of constants formula we define mild solutions and compare these to classical
solutions. We then prove that mild solutions are smooth with respect to initial conditions,
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derive a variational equation and use this result to ultimately prove a linearized stability
principle.

Chapters 6 through Chapter 8 are devoted to the development of centre manifold the-
ory for impulsive RFDE. The first, Chapter 6, provides the most general results. We prove
the existence of local centre manifolds (specifically, local invariant fibre bundles) near non-
hyperbolic equilibria under spectral separation assumptions for general nonautonomous
impulsive RFDE. We prove that the centre manifold contains all small solutions and is
attracting in the absence of unstable directions. The coordinate dynamics on the centre
manifold are derived both in an integrated form and, under some mild technical assump-
tions, as an abstract ordinary impulsive differential equation. This dynamics equation is
later put into a more concrete form in Chapter 11.

Regularity of local centre manifolds is considered in Chapter 7. We assume slightly more
conditions on the evolution family and first prove that local centre manifolds are smooth
in the phase space variable in Section 7.1. This is enough to perform a Taylor expansion
of the centre manifold near a nonhyperbolic equilibrium, but as the centre manifold is
fibre bundle and therefore time-varying, we also need to consider the regularity of the
coefficients of this expansion with respect to time. This is done in Section 7.2 for systems
with fixed discrete delays, but we elaborate on how one might extend the result to more
general functional dependence.

Approximation of local centre manifolds is the main focus of Chapter 8. We develop the
notion of a Euclidean space representation of the centre manifold and recognize that any
local centre manifold must admit the same Taylor expansion at the candidate nonhyperbolic
equilibrium, thereby allowing us to justify the abuse of notation earlier in this sentence
where we referred to “the” centre manifold. The dynamics on the centre manifold are made
concrete using the Euclidean space representation, and we derive an evolution equation
satisfied by any local centre manifold, including boundary conditions. We show how one
can compute the quadratic coefficient of the centre manifold using an extension of the
method of characteristics, commenting briefly on higher-order terms. We provide two
concrete examples in Section 8.3 to aid in visualizing the geometry of centre manifolds of
impulsive RFDE.

After three chapters of content on the centre manifold, we take a break in Chapter
9 to study the stable and unstable manifold. We prove existence, smoothness, and some
invariance properties. The existence of the unstable manifold will allow us to prove a
converse to the linearization theorem, namely an instability theorem.

Two of the classical codimension-one bifurcations of discrete-time systems are lifted
into the class of impulsive RFDE in Chapter 10. Specifically, we focus on the fold bifur-
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cation and Neimark-Sacker bifurcation. In the fold case, the qualitative properties of the
bifurcation remain intact except that fixed points are generically replaced with periodic
solutions. In the Neimark-Sacker case, however, the discontinuities inherent to impulsive
systems generically result in the birth of an invariant cylinder. For this reason, we call it
a cylinder bifurcation. One example for each of these bifurcation patterns is provided.

Chapter 11 is the first of two chapters devoted to particular applications. Here we
consider an extension of the delayed SIR model of Kyrychko and Blyuss [56] with pulse
vaccination. From a few reasonable biological assumptions we derive the jump functional
associated to the pulse vaccination. We then prove analytically that there is a unique
disease-free periodic solution that undergoes a transcritical bifurcation at a critical vacci-
nation level. Using numerical methods we continue the bifurcating endemic (i.e. infected)
periodic solution with respect to the vaccination level and use monodromy operator dis-
cretization to track the dominant Floquet exponent. A cylinder bifurcation is identified
and we track the evolution of the cylindrical attractor as the vaccination level is decreased.
Phase locking is intermittently observed before the cylinder finally contracts onto a periodic
solution of the system without vaccination.

Chapter 12 features an application of centre manifold theory to impulsive stabilization.
The latter concept is reviewed before we state formally the problem we wish to solve. The
initial setup is that we are given a delay differential equation that possesses a nonhyperbolic
equilibrium with trivial unstable subspace. Given a specification on a class B of discrete
delay (or without delay) jump functionals and a cost functional associated to these, we ask
whether one can guarantee stabilization of the equilibrium with a specified local conver-
gence rate using an optimal element of B. In other words, can the (observable) bifurcation
be optimally suppressed with a desired convergence rate? The result is affirmative pro-
vided the convergence is exponential with rate smaller than the spectral gap. Computing
the optimal jump functional is a nontrivial problem, since the associated constraints of the
optimization problem are highly nonsmooth. To reduce the complexity of the problem, we
exploit the low dimensionality of the centre manifold to move the constraint satisfaction
problem into a low-dimensional probe space, which can be thought of as set of equivalence
classes of controllers with equivalent low-order impact on the local dynamics near the equi-
librium. These equivalence classes are called probe elements. There is a natural way to
associate a cost to a given probe element, and optimizing this cost in the low-dimensional
probe space followed by another unconstrained convex program is guaranteed to generate
an optimal solution of the original problem. We apply the two-stage centre probe method to
the suppression of a Hopf bifurcation in a network model consisting of 200 two-dimensional
oscillators coupled through a small-world network topology. We conclude with a discussion
of the strengths and limitations of our method compared to more traditional Lyapunov
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function-derived impulsive stabilization results.

A conclusion wraps up the thesis in Chapter 13. We review the key points and suggest
a few directions to explore based on our contributions.
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Chapter 2

Functional analytic setting

Many of the results from this section appear in the paper Smooth centre manifolds for
impulsive delay differential equations [21] by K. Church and X. Liu. If a result or proof
is uncited, the reader may assume it comes from this publication. Any major deviations
from proofs will be mentioned. All other references will be appropriately cited.

2.1 The space RCR of right-continuous regulated and

its topological dual

We will be working exclusively with spaces of right-continuous regulated functions; denote

RCR(I,X) =

{
f : I → X : ∀t ∈ I, lim

s→t+
f(s) = f(t) and lim

s→t−
f(s) exists

}
,

where X ⊆ Rn and I ⊆ R. When X and I are closed,

RCRb(I,X) := {f ∈ RCR(I,X) : ||f || <∞}

is a Banach space with the norm ||f || = supx∈I |f(x)|. We will also at times require the
space G(I,X) of regulated functions from I into X; this is merely the set of functions
f : I → X that possess left- and right limits at each point, with no continuity sidedness
restriction. One may consult [44] for background on regulated functions, in particular
the claim that G(I,X) is complete. As RCR(I,X) is a closed subspace thereof, its com-
pleteness follows immediately. We will write RCR := RCR([−r, 0],Rn) when there is no
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ambiguity, and note that since RCRb([−r, 0],Rn) = RCR([−r, 0],Rn), we may identify
RCR with its associated Banach space.

The step functions are dense in G(I,X) and by extension, the subspace RCR(I,X).
The proof of the following proposition appears in [44].

Proposition 2.1.1. Let I be compact. For all f ∈ G(I,X), there exists a sequence of step
functions fn : I → X such that ||fn − f || → 0.

Adapting the aforementioned proof to the explicitly right-continuous case, one obtains
a specification to RCR(I,X).

Lemma 2.1.1. Let I be compact. For all f ∈ RCR(I,X), there exists a sequence of
right-continuous step functions fn : I → X such that ||fn − f || → 0.

Regulated functions are integrable, as the following lemma guarantees.

Lemma 2.1.2. Let f ∈ G(I,Rn) for some interval I. f is locally integrable – that is,∫
S
f(x)dx exists for all S ⊆ I compact.

Proof. Consider the restriction f |S of f to the compact set S. For brevity, write f = f |S.
By Lemma 2.1.1, there exists a sequence fn → f of step functions fn : S → Rn. Since
fn converges uniformly to f and step functions are integrable, the dominated convergence
theorem implies f is integrable with

∫
S
fdx = limn→∞

∫
S
fndx.

We will eventually need spaces of function f : I → X that are differentiable from the
right and whose right-hand derivatives are elements of RCR(I,X). Specifically, define the
right-hand derivative by

d+f(t) = lim
ε→0+

f(t+ ε)− f(t)

ε
and introduce the space

RCR1(I,X) = {f ∈ RCR(I,X) : d+f ∈ RCR(I,X)}.

This space is complete with respect to the norm ||f ||1 = ||f || + ||d+f || when restricted to
the subspace consisting of functions that are || · ‖|1-bounded. The latter fact will, however,
not be necessary in this thesis.

We will need a few convergence and boundedness results for Perron-Stieltjes integrals
involving right-continuous regulated functions and functions of bounded variation. Sym-
metric arguments to those appearing in [85] yield the following results; see Theorem 2.8
and Corollary 2.10 therein. In what follows, vᵀ denotes the transpose of v ∈ Rn. In the
two lemmas below, we overload the notation and define fᵀ : [a, b]→ Rn∗ by fᵀ(t) = [f(t)]ᵀ.
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Lemma 2.1.3. Let f : [a, b] → Rn be of bounded variation and g ∈ RCR([a, b],Rn). The

integral
∫ b
a
fᵀ(t)dg(t) exists in the Perron-Stieltjes sense, and∣∣∣∣∫ b

a

fᵀ(t)dg(t)

∣∣∣∣ ≤ (|f(a)|+ |f(b)|+ varbaf)||g||, (2.1)

where varbaf denotes the total variation of f on the interval [a, b].

Lemma 2.1.4. Let hn ∈ RCR([a, b],Rn) and h ∈ RCR([a, b], Rn) be such that ||hn−h|| →
0 as n → ∞. For any f : [a, b] → Rn of bounded variation, the Perron-Stieltjes integrals∫ b
a
fᵀ(t)dh(t) and

∫ b
a
fᵀ(t)dhn(t) exist and

lim
n→∞

∫ b

a

fᵀ(t)dhn(t) =

∫ b

a

fᵀ(t)dh(t). (2.2)

Next, we provide a generalization of Lemma 3.2 of [11], which can itself be seen as
a weakened form of the result that if x : R → Rn is continuous, then F : t 7→ xt ∈
C([−r, 0],Rn) is continuous as a function F : R → C([−r, 0],Rn), where the codomain is
the Banach space of continuous functions from [−r, 0] to Rn equipped with the uniform
norm.

Lemma 2.1.5. Let r > 0 be finite and let φ ∈ RCR([a, b],Rn) for some b ≥ a + r. With
φt : [−r, 0]→ Rn defined as in (1.3), t 7→ ||φt|| is an element of RCR([a+ r, b],R).

Proof. Let t ∈ [a + r, b] be fixed. We will only prove right-continuity, since the proof of
the existence of left limits is similar. It suffices to prove that for any decreasing sequence
sn ↓ 0, we have ||φt+sn|| → ||φt||. Let ε > 0 be given. By right-continuity of φ, for all ε > 0,
there exists δ > 0 such that, if 0 < µ < δ, then |φ(t+ µ)− φ(t)| < ε. Therefore,

||φt+sn|| = sup
µ∈[−r,0]

|φ(t+ µ)| ≤ sup
µ∈[−r,sn]

|φ(t+ µ)| ≤ max{||φt||, sup
µ∈[0,sn]

|φ(t+ µ)|}

≤ max{||φt||, |φ(t)|+ ε} ≤ ||φt||+ ε,

provided sn < δ. On the other hand, since φ is bounded, there exists some sequence
xn ∈ [−r, 0] such that |φt(xn)| → ||φt||. By passing to a subsequence, we may assume
xn → x̂ ∈ [−r, 0]. If x̂ > −r, then we have

||φt+sn|| ≥ sup
µ∈[−r+sn,0]

|φ(t+ µ)| = |φ(x̂)| = ||φt||
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provided sn < −x̂, while if x̂ = −r, we notice that the sequence x′n = t− r + sn converges
to t+ x̂, so that for all ε > 0, there exists N3 > 0 such that for n ≥ N ,

||φt+sn|| ≥ |φ(t+ sn) ≥ ||φt|| − ε.

Therefore, if we let sN1 < δ and sN2 < −x̂, then by setting N = max{N1, N2, N3}, it
follows by the above three inequalities that for n ≥ N ,

−ε ≤ ||φt+sn|| − ||φt|| ≤ ε.

We conclude ||φt+sn|| converges to ||φt||.

Using essentially the same argument, one can prove the following generalization. The
result does not appear in [21], but as the proof is so similar to that of Lemma 2.1.5, it will
be omitted.

Lemma 2.1.6. Suppose φ ∈ RCR([a, b],Rn), X ∈ RCR([a, b],Rn×m) and z ∈ RCR([a, b],Rm)
for some b ≥ a+r. Then, the function t 7→ ||φt+Xtz(t)|| is an element of RCR([a+r, b],R)

The final element in our overview of right-continuous regulated functions is a charac-
terization of the topological dual RCR∗. A result from Tvrdy [85] provides such for the
dual of the space of regulated left-continuous scalar-valued functions, and for our purposes
the obvious modification that is needed is the following.

Lemma 2.1.7. F ∈ RCR∗ if and only if there exists q ∈ Rn and p : [−r, 0] → Rn of
bounded variation such that

F (x) = qᵀx(0) +

∫ 0

−r
pᵀ(t)dx(t), (2.3)

where the integral is a Perron-Stieltjes integral.

2.2 Pettis integration

Before introducing Pettis integration, we begin with some motivation. Recall that the
ordinary differential equation

ẋ(t) = A(t)x(t) + f(t)
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admits the variation of constants formula

x(t) = X(t, s)x(s) +

∫ t

s

X(t, µ)f(µ)dµ,

where X(t, s) is the Cauchy matrix of the homogeneous equation u̇ = A(t)y. That is, it
satisfies the matrix differential equation

d

dt
X(t, s) = A(t)X(t, s)

and the initial condition X(s, s) = I, where the latter denotes the identity on Rn. We will
eventually derive a similar formula for inhomogeneous linear impulsive RFDE, except that
the Cauchy matrix will be replaced with a family of bounded linear oprerators U(t, s) :
RCR → RCR. As we will see in Section 3.2, the function s 7→ U(t, s) is generally
discontinuous everywhere. Thus, even if f : [s, t] → RCR is continuous, this can make it
can be very difficult to prove that the integral∫ t

s

U(t, µ)f(µ)dµ

exists in the strong sense. Thankfully, for our purposes, Pettis integration will suffice. We
recall the following definition, which appears in [68].

Definition 2.2.1. Let X be a Banach space and (S,Σ, µ) a measure space. We say that
f : S → X is Pettis integrable if there exists a set function If : Σ→ X such that

ϕ∗If (E) =

∫
E

ϕ∗fdµ

for all ϕ∗ ∈ X∗ and E ∈ Σ. If is the indefinite Pettis integral of f , and If (E) the Pettis
integral of f on E.

In the above definition X∗ is the topological dual of X. By abuse of notation, we will
often write If (E) =

∫
E
fdµ when there is no ambiguity. For our purposes, the following

proposition will be very useful. Its proof is elementary and can be found in numerous
textbooks on functional analysis and integration.

Proposition 2.2.1. The Pettis integral possesses the following properties.

• If f is Pettis integrable, then its indefinite Pettis integral is unique.

15



• If T : X → X is a bounded linear operator, then T
(∫

E
fdµ

)
=
∫
E

(Tf) dµ whenever
one of the integrals exists.

• If µ(A ∩B) = 0, then
∫
A∪B fdµ =

∫
A
fdµ+

∫
B
fdµ.

• ||
∫
E
fdµ|| ≤

∫
E
||f ||dµ

2.3 One-point limits and regulated left-limit histories

of RCR functions

The pointwise left-limit of a solution history was defined in (1.4). We extend this definition
and introduce another now.

Definition 2.3.1. Let x ∈ RCR(I,Rn) for some interval I. The solution history at
time t ∈ I is the function xt ∈ RCR defined by equation (1.3), provided [t − r, t] ⊂ I.
The pointwise left-limit history is xt− ∈ RCR, defined by equation (1.4). The regulated
left-limit history is the function x−t ∈ G([−r, 0],Rn) defined by

x−t (θ) = lim
ε→0−

xt+ε(θ), (2.4)

provided inf I < t− r.

The nonuniform left-limit history is so named because while the association of xt with
xt− defines a bounded linear operator on G([−r, 0],Rn), the same is not true of the associ-
ation of xt with x−t . Indeed, to compute x−t one requires the data from x on an interval of
the form [t− r − ε, t] for any arbitrarily small ε.

2.4 Integral inequalities

We conclude this chapter with two inequalities. The first is an impulsive Gronwall-Bellman
inequality for regulated functions. The result is similar to Lemma 2.3 of [8], and the proof
is omitted. The second one concerns an elementary estimation of sums of continuous
functions at impulses, when the sequence of impulses satisfies a separation condition. A
weaker version of this result appears in [21], but the proof requires no modifications. We
include it here for completeness.
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Lemma 2.4.1. Suppose x ∈ RCR([s, α],R) satisfies the inequality

x(t) ≤ C +

∫ t

s

(p(µ)x(µ) + h(µ))dµ+
∑
s<ti≤t

(bix(t−i ) + gi) (2.5)

for some nonnegative integrable function p, integrable and bounded h, nonnegative constants
bi, gi and c, and all t ∈ [s, α]. For t ≥ s, define

z(t, s) = exp

(∫ t

s

p(µ)dµ

) ∏
s<ti≤t

(1 + bi).

Then, µ 7→ z(t, µ) is integrable and the following inequality is satisfied.

x(t) ≤ Cz(t, s) +

∫ t

s

z(t, µ)h(µ)dµ+
∑
s<ti≤t

z(t, ti)gi. (2.6)

Lemma 2.4.2. Let f ∈ RCR(R,R) and suppose {tk} satisfies tk+1 − tk ≥ ξ.

1. If f is nondecreasing, then
∑

s<ti≤t f(ti) ≤ 1
ξ

∫ t+ξ
s

f(µ)dµ.

2. If f is nonincreasing, then
∑

s<ti≤t f(ti) ≤ 1
ξ

∫ t
s−ξ f(µ)dµ.

Proof. Let {t0, . . . , tN} = {tk : k ∈ Z} ∩ (s, t]. If f is nondecreasing, then

∑
s<ti≤t

f(ti) =
N∑
i=0

f(ti) =
1

ξ

N∑
i=0

f(ti)ξ ≤
1

ξ

N∑
i=0

f(t0 + iξ)ξ ≤ 1

ξ

∫ t+ξ

s

f(µ)dµ.

The decreasing case is similar.

17



Chapter 3

Linear systems theory

Nearly all results (lemmas, theorems, etc.) from this section appear in the paper Smooth
centre manifolds for impulsive delay differential equations [21] by K. Church and X. Liu.
If a result or proof is uncited, the reader may assume it comes from this publication. Any
major deviations from proofs will be mentioned. All other references will be appropriately
cited.

3.1 Linear impulsive RFDEs: existence and unique-

ness of solutions

In this chapter we will be interested primarily in the linear impulsive RFDE

ẋ = L(t)xt + h(t), t 6= tk (3.1)

∆x = B(k)xt− + rk, t = tk. (3.2)

The following assumptions will be needed throughout.

H.1 The representation

L(t)φ =

∫ 0

−r
[dθη(t, θ)]φ(θ)

holds, where the integral is taken in the Lebesgue-Stieltjes sense, the function η :
R × [−r, 0] → Rn×n is jointly measurable and is of bounded variation and right-
continuous on [−r, 0] for each t ∈ R, and such that |L(t)φ| ≤ `(t)||φ|| for some
` : R→ R locally integrable.
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H.2 The sequence tk is monotonically increasing with |tk| → ∞ as |k| → ∞, and the
representation

B(k)φ =

∫ 0

−r
[dθγk(θ)]φ(θ)

holds for k ∈ Z for functions γk : [−r, 0] → Rn×n of bounded variation and right-
continuous, such that |B(k)| ≤ b(k).

Remark 3.1.1. Hypothesis H.1–H.2 could in principle be weakened. However, insofar as
applied impulsive differential equations are concerned, hypothesis H.1 is sufficient. Indeed,
H.1 includes the case of discrete time-varying delays: the linear delay differential equation

ẋ =
m∑
k=1

Ak(t)x(t− rk(t))

with rk continuous, is associated to a linear operator satisfying condition H.1 with η(t, θ) =∑
Ak(t)H−rk(t)(θ), where Hz(θ) = 1 if θ ≥ z and zero otherwise. It also obviously includes

a large class of distributed delays. Moreover, each of L(t) and B(k) is well-defined on
G([−r, 0],Rn) and, consequently, on the subspace RCR; see Lemma 2.1.1.

At this stage, we define integrated solutions of the linear impulsive RFDE and consider
existence, uniqueness and continuability of such solutions.

Definition 3.1.1. Let (s, φ) ∈ R × RCR. A function x ∈ RCR([s − r, α),Rn) for some
α > s is an integrated solution of the linear impulsive RFDE (3.1)–(3.2) satisfying the
initial condition (s, φ) if it satisfies xs = φ and the integral equation

x(t) =

{
φ(0) +

∫ t
s
[L(µ)xµ + h(µ)]dµ+

∑
s<ti≤t[B(i)xt−i + ri], t > s

φ(t− s), s− r ≤ t ≤ s.
(3.3)

Lemma 3.1.1. Let h ∈ RCR(R,Rn), let {rk : k ∈ Z} ⊂ Rn and let hypotheses H.1–
H.2 hold. For all (s, φ) ∈ RCR, there exists a unique integrated solution x ∈ RCR([s −
r,∞),Rn) of (3.1)–(3.2) satisfying the initial condition (s, φ).

The above lemma follows by hypotheses H.1–2, the Banach fixed-point theorem, Lemma
2.4.1 and typical continuation arguments. It could also be proven by identifying the equa-
tion with a generalized ordinary differential equation, as in [31]. Note here that h may be
unbounded on the real line; however, since it is regulated it is bounded on every compact
set [44]. Integrated solutions include as a special case the more classical notion of solution
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appearing in, for example, [10]. As such, our definition is appropriate. From this point
onward, we will drop the adjective integrated and merely refer to such functions as being
solutions.

On the note of “classical” solutions, it will later be important that the impulsive RFDE
(3.1)–(3.2) has a regularizing effect on initial conditions. Precisely, we have the following
lemma.

Lemma 3.1.2. Under the conditions of Lemma 3.1.1, the integrated solution x : [s −
r,∞) → Rn is differentiable from the right on [s,∞). In particular, if x : R → Rn is a
solution defined for all time, then x ∈ RCR1(R,Rn).

Proof. The first conclusion follows by the integral representation of solutions with the
remark that observation that µ 7→ L(µ)xµ ∈ RCR([s,∞),Rn). For the second part, one
can show that the restriction of x to any interval of the form [s,∞) is differentiable from
the right by applying the previous result to the restriction on [s−r,∞). Since s is arbitrary,
the result is proven.

Remark 3.1.2. Equation (3.3) is derived by integrating the impulsive RFDE (3.1)–(3.2).
From this integrated equation, one can also conclude that on the interval [s,∞), the solution
can only have discontinuities at the impulse times tk for k ∈ Z and, in particular, our
definition imposes the condition that even if s = tk for some k ∈ Z, the jump condition
(3.2) need not be satisfied at that time. This is by design, for reasons that will become
apparent in Section 3.2.

3.2 Evolution family, processes, invariant fiber bun-

dles and spectral separation

In this section we will specialize to the homogeneous equation

ẋ = L(t)xt, t 6= tk (3.4)

∆x = B(k)xt− , t = tk. (3.5)

Definition 3.2.1. Let hypotheses H.1–H.2 hold. For a given (s, φ) ∈ R × RCR, let t 7→
x(t; s, φ) denote the unique solution of (3.4)–(3.5) satisfying xs(·; s, φ) = φ. The function
U(t, s) : RCR → RCR defined by U(t, s)φ = xt(·, s, φ) for t ≥ s is the evolution family
associated to the homogeneous equation (3.4)–(3.5).

20



From here onward, we will take the convention that if L : RCR → RCR is a linear
operator, then Lφ(θ) for φ ∈ RCR and θ ∈ [−r, 0] should be understood as [L(φ)](θ).
Also, the symbol IX will refer to the identity operator on X. When the context is clear,
we will simply write it as I. Introduce the linear function χs : Rn → RCR defined by

[χsξ](θ) =

{
ξ, θ = s
0, θ 6= s.

(3.6)

Lemma 3.2.1. The evolution family satisfies the following properties.

1) U(t, t) = I for all t ∈ R.

2) For s ≤ t, U(t, s) : RCR → RCR is a bounded linear operator. In particular,

||U(t, s)|| ≤ exp

(∫ t

s

`(µ)dµ

) ∏
s<ti≤t

(1 + b(i)). (3.7)

3) For s ≤ v ≤ t, U(t, s) = U(t, v)U(v, s).

4) For all θ ∈ [−r, 0], s ≤ t+ θ and φ ∈ RCR, U(t, s)φ(θ) = U(t+ θ, s)φ(0).

5) For all tk > s, one has U(tk, s) = (I + χ0B(k))U(t−k , s).1

6) Let C(t, s) denote the evolution family on RCR associated to the “continuous” equa-
tion ẋ = L(t)xt. The following factorization holds:

U(t, s) =

{
C(t, s), [s, t] ∩ {tk}k∈Z ∈ {{s}, ∅}
C(t, tk) ◦ (I + χ0B(k)) ◦ U(t−k , s), t ≥ tk > s

(3.8)

Proof. Property 1), 3) and 4) are immediate consequences of the uniqueness assertion of
Lemma 3.1.1 and the definition of the evolution family. For property 2), we obtain linearity
by noticing that φ 7→ x(t; s, φ) is linear in φ for each t ≥ s and, consequently, φ 7→ xt(·; s, φ)
is is also linear. To obtain boundedness, we notice that by virtue of the integral equation
(3.3), U(t, s)φ(θ) satisfies

|U(t, s)φ(θ)| ≤ ||φ||+
∫ t+θ

s

|L(µ)U(µ, s)φ|dµ+
∑

s<ti≤t+θ

|B(i)U(t−i , s)φ|

≤ ||φ||+
∫ t

s

`(µ)||U(µ, s)φ||dµ+
∑
s<ti≤t

b(i)||U(t−i , s)φ||.

1Note here that the left limit is defined by U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0, while U(t−k , s)φ(0) =
U(tk, s)φ(0−).
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Since the upper bounds are independent of θ, denoting X(t) = U(t, s)φ, we obtain

||X(t)|| ≤ ||φ||+
∫ t

s

`(µ)||X(µ)||dµ+
∑
s<ti≤t

b(i)||X(t−i )||.

By Lemma 2.1.5, t 7→ ||X(t)| is an element of RCR([s− r,∞),R). Invoking Lemma 2.4.1,
we obtain the desired boundedness (3.7) of the evolution family and property 1) is proven.
Finally, since

U(tk, s)φ(0) = φ(0) +

∫ tk

s

L(µ)U(µ, s)φdµ+
∑

s<ti≤tk

B(i)U(t−i , s)φ

= U(t−k , s)φ(0) +B(k)U(t−k , s)φ

and U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0, we readily obtain property 5). The verification
of property 6) follows by existence and uniqueness of solutions and property 5).

The evolution family is an example of a more general construction in nonautonomous
dynamical systems called a process. The following definition is borrowed from the mono-
graph of Kloeden and Rasmussen [52], with slightly different notation.

Definition 3.2.2. If X is a Banach space, a subset M⊆ R×X is a nonautonomous set
over X. For each t ∈ R, the set

M(t) = {x : (t, x) ∈M}

is called the t-fiber of M.

Definition 3.2.3. A process on X is a pair (S,M) whereM is a nonautonomous set over
R × X and S : M → X, whose action we denote by S(t, (s, x)) = S(t, s)x, satisfies the
following.

• {t} ×X ⊂M(t) and S(t, t) = IX for all t ∈ R.

• S(t, s)x = S(t, v)S(v, s)x whenever (s, x) ∈M(v) and (v, S(v, s)x) ∈M(t).

A process is forward if for all s ∈ R and x ∈ X, (t, S(t, s)x) ∈ M(t) for all t ≥ s. A
process is all time if for all t, s ∈ R and x ∈ X, (t, S(t, s)x) ∈M(t).
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Note that the above definition is slightly different, for example, than the one for process
appearing in [52], where processes are defined first as (partial) mappings, independent of
nonautonomous sets. The reason for our distinction here is that we want to make precise
the notion that a process S(t, s) need not be defined on the entire Banach space X for
every pair of time arguments, the way evolution families U(t, s) are. This will make things
a bit more precise when nonlinear systems are considered in Chapter 5.

Central to notions of stability for linear ordinary differential equations is the dynamics
invariant subspaces. These subspaces permit a decomposition of the phase space such
that on each distinct factor, the dynamics admit the same qualitative behaviour. The
extension of this idea to nonautonomous systems is that of exponential trichotomy – see
[26] for a standard definition and applications to heteroclinic bifurcations. The analogue of
hyperbolicity of an equilibrium point to bounded trajectories of a nonautonomous system is
that of exponential dichotomy. For our purposes, we present a slightly modified definition.

Definition 3.2.4. Let U(t, s) : X → X be a family of bounded linear operators defining
a forward process on a Banach space X. We say that U is spectrally separated if there
exists a triple (Ps, Pc, Pu) of bounded projection-valued functions Pi : R → L(X) with
Ps + Pc + Pu = I such that the following hold.

1. There exists a constant N such that supt∈R (||Ps(t)||+ ||Pc(t)||+ ||Pu(t)||) = N <∞.

2. The projectors are mutually orthogonal; Pi(t)Pj(t) = 0 for i 6= j.

3. U(t, s)Pi(s) = Pi(t)U(t, s) for all t ≥ s and i ∈ {s, c, u}.

4. Define Ui(t, s) as the restriction of U(t, s) to Xi(s) = R(Pi(s)). The operators
Uc(t, s) : Xc(s) → Xc(t) and Uu(t, s) : Xu(s) → Xu(t) are invertible and we de-
note Uc(s, t) = Uc(t, s)

−1 and Uu(s, t) = Uu(t, s)
−1 for s ≤ t.

5. The operators Uc and Uu define all-time processes on the family of Banach spaces
Xc(·) and Xu(·). Specifically, the following holds for all t, s, v ∈ R.

Uc(t, s) = Uc(t, v)Uc(v, s), Uu(t, s) = Uu(t, v)Uu(v, s).

6. There exist real numbers a < 0 < b such that for all ε > 0, there exists K ≥ 1 such
that

||Uu(t, s)|| ≤ Keb(t−s), t ≤ s (3.9)

||Uc(t, s)|| ≤ Keε|t−s|, t, s ∈ R (3.10)

||Us(t, s)|| ≤ Kea(t−s), t ≥ s. (3.11)
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The definition of spectral separation above is motivated by the the spectral decomposi-
tion hypotheses associated to the centre manifold theorem for autonomous delay differential
equations appearing in [27]. Definition 3.2.4 is essentially a time-varying analogue thereof.

Definition 3.2.5. Let U(t, s) : X → X be spectrally separated. The nonautonomous sets

Xi = {(t, x) : t ∈ R, x ∈ Xi(t)}

for i ∈ {s, c, u} are termed respectively the stable, centre, and unstable fibre bundles
associated to U(t, s). The evolution family is hyperbolic if Xc is trivial – that is, Xc = {0}.

Thus, if the evolution family U(t, s) : RCR → RCR is spectrally separated, the phase
space admits a direct sum decomposition

RCR = RCRs(t)⊕RCRc(t)⊕RCRu(t) (3.12)

for each t ∈ R. If (s, φ) ∈ RCRs, equation (3.9) implies that U(t, s)φ decays to zero expo-
nentially as t → ∞. We say that in stable fibre bundle, solutions decay exponentially in
forward time. Similarly, in the unstable fibre bundle, solutions are defined for all time and
decay exponentially in backward time. In the centre fibre bundle, solutions are defined for
all time and grow slower than exponentially in forward and backward time. The difference
between this decomposition and one more typical of autonomous or ordinary delay dif-
ferential equations is that the factors of the decomposition are generally time-dependent;
that is, they are determined by the t-fibres of the invariant fibre bundles RCRs, RCRc

and RCRu.

Example 3.2.1. To aid in the understanding of Definition 3.2.4 and the notion of in-
variant fibre bundles, let us apply these concepts to a much simpler system: the following
three-dimensional 2π-periodic ordinary differential equation

ẋ = −y, (3.13)

ẏ = x+ sin(t)z (3.14)

ż = −z. (3.15)

The phase space here is R3. One can directly check that

X(t) =

 cos(t) − sin(t) 2
5

cos(t)(1− e−t)− 1
5

sin(t)(1 + e−t)
sin(t) cos(t) 1

5
sin(t)(2− 3e−t) + 1

5
cos(t)(1− e−t)

0 0 e−t

 (3.16)
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is a matrix solution satisfying X(0) = I, so that in this context the evolution family is
U(t, s) = X(t)X−1(s). It defines an all-time process on R3.

Let us identify some exceptional solutions. The first two columns of X(t) define solu-
tions that are bounded for all time:

X1(t) =

 cos(t)
sin(t)

0

 , X2(t) =

 − sin(t)
cos(t)

0

 .
We further recognize that an appropriate linear combination of all three columns produces
a solution that converges exponentially to the origin as t → ∞. Specifically, this solution
is

Y (t) = X3(t)− 2

5
X1(t)− 1

5
X2(t) = e−t

 −2
5

cos(t)− 1
5

sin(t)
−3

5
sin(t)− 1

5
cos(t)

1

 .
The intuition is that X1 and X2 should span centre fibre bundle R3

c, while Y should span
the stable fibre bundle R3

s. The former of the two spans is independent of time since the
subspace itself is the same for each argument of t, but the second of the two is time-varying.

To realize this decomposition in terms of the definition of spectral separation, we must
identify the projections Pc(t) and Ps(t). To do this we first apply Floquet’s theorem to
the fundamental matrix solution X(t). There exists a nonsingular 2π-periodic continuous
matrix-valued function t 7→ Φ(t) and matrix Λ such that X(t) = Φ(t)eΛt. Since X(0) = I,
it follows that Φ(0) = I and, consequently, Λ satisfies the equation

e2πΛ =

 1 0 2
5
(1− e−2π)

0 1 1
5
(1− e−2π)

0 0 e−2π

 =

 1 0 −2
5

0 1 −1
5

0 0 1

 1 0 0
0 1 0
0 0 e−2π

 1 0 2
5

0 1 1
5

0 0 1

 .
The right-hand side is precisely the Jordan canonical form of e2πΛ. Taking logarithms, it
follows that Λ has the Jordan canonical form

Λ = QJQ−1 =

 1 0 −2
5

0 1 −1
5

0 0 1

 0 0 0
0 0 0
0 0 −1

 1 0 2
5

0 1 1
5

0 0 1


Applying the change of variables [ x y z ]ᵀ = Φ(t)Qw results in the autonomous system
ẇ = Jw, for which the projection onto the stable subspace is precisely

Pw
s =

 0 0 0
0 0 0
0 0 1

 .
25



Pulling this projection back into the x, y, z variables, we define Ps(0) by

Ps(0) = QPw
s Q

−1 =

 0 0 −2
5

0 0 −1
5

0 0 1

 . (3.17)

Next, we define Ps(t) for any t so that it satisfies the equation U(t, 0)Ps(0) = Ps(t)U(t, 0).
That is,

Ps(t) = X(t)Ps(0)X−1(t) = Φ(t)QetJQ−1(QPw
s Q

−1)Qe−tJQ−1Φ−1(t)

= Φ(t)QetJPw
s e
−tJQ−1Φ−1(t)

= Φ(t)

 0 0 −2
5

0 0 −1
5

0 0 1

Φ−1(t).

As t 7→ Φ(t) is periodic and nonsingular, t 7→ ||Ps(t)|| is bounded. One can also verify that
the equality U(t, s)Ps(s) = Ps(t)U(t, s) holds for all t ≥ s (in fact, for all t, s ∈ R). Also,
we clearly have Ps(t)

2 = Ps(t), thereby proving that Ps(t) is indeed a projection. Finally,
we have

||U(t, s)Ps(s)|| = ||X(t)X−1(s)X(s)Ps(0)X−1(s)||
= ||X(t)Ps(0)X−1(s)||
= ||Φ(t)QetJPw

s e
−sJQ−1Φ−1(s)||

≤ Ke−(t−s),

where K = supt,s∈[0,2π] ||Φ(t)|| · ||Φ−1(s)|| · κ(Q) and κ(Q) = ||Q|| · ||Q−1|| is the condition
number of Q. Therefore, the projection onto the stable fibre bundle satisfies the exponential
estimate (3.11).

Next, we define Pc(t) = I − Ps(t). By construction, Pc(t) and Ps(t) are orthogonal
and sum to the identity. If we remark that Ps(t) = X(t)[I − Ps(0)]X−1(t), checking the
exponential estimate (3.10) is fairly simple:

||U(t, s)Pc(s)|| = ||X(t)X−1(S)X(s)[I − Ps(0)]X−1(s)||
= ||X(t)[I − Ps(0)]X−1(s)||
= ||Φ(t)QetJ [I − Pw

s ]e−sJQ−1Φ−1(s)||
≤ K,

since ||etJ [I − Pw
s ]e−sJ || = 1. We conclude that U(t, s) : R3 → R3 is spectrally separated.
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Our final task is to verify our intuition that the centre and stable fibre bundles are
the spans of {X1, X2} and {Y } respectively. Explicitly substituting (3.16) into Ps(t) =
X(t)Pw

s X
−1(t) and simplifying eventually yields the expression Ps(t) = [ 0 0 Y (t) ],

written in column form. Thus,

R3
s(t) = R(Ps(t)) = {X(t)Ps(0)X−1(t)w : w ∈ R3}

= {[ 0 0 Y (t) ]w : w ∈ R3}
= span{Y (t)}.

Conversely, explicitly computing Pc(t) gives Pc(t) = I − Pw
s . We conclude that R3

c(t) =
span{e1, e2} as originally claimed.

3.2.1 Exponential dichotomy and trichotomy

For ordinary differential equations, there are several equivalent definitions of exponential
dichotomy and exponential trichotomy. In this setting, exponential dichotomy is very
important because it is a generalization of hyperbolicity that is sufficiently strong to provide
a nonautonomous analogue of the Hartman-Grobman theorem; see [71]. The linear system
ẋ = A(t)x has exponential dichotomy if it has a fundamental matrix solutionX(t) satisfying

||X(t)PX−1(s)|| ≤ Ke−α(t−s), s ≤ t (3.18)

||X(t)(I − P )X−1(s)|| ≤ Ke−α(s−t), s ≥ t, (3.19)

for some constants K,α > 0 and projection P that is independent of time, t. If one defines
P (t) = X(t)PX−1(t), then P 2(t) = P (t) and we have the equality

U(t, s)P (s) = X(t)X−1(s)(X(s)PX−1(s))

= X(t)PX−1(s) = X(t)PX−1(t)(X(t)X−1(s)) = P (t)U(t, s),

and similarly for the conjugate projector I−P (t). Also, since U(t, s)P (s) = X(t)PX−1(s),
the inequalities (3.9) and (3.11) are satisfied for Ps(t) = P (t) and Pu(t) = I −Ps(t). Thus,
in the restricted case of exponential dichotomy, the above definition is at least as strong
as spectral separation. One can similarly verify that for ordinary differential equations, if
U(t, s) : Rn → Rn is spectrally separated and hyperbolic, then it has exponential dichotomy
in the above sense. Therefore, the definitions are equivalent for ordinary differential equa-
tions.

When we move away from ordinary differential equations into infinite-dimensional sys-
tems of impulsive RFDE, we must recognize that evolution families are generally not
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invertible, so it is not possible to unconditionally form the inverses in (3.18)–(3.19). These
evolution families are generally only invertible upon restriction to the ranges of the projec-
tion operators. This is precisely why the fourth condition of spectral separation is included
and why the trichotomy inequalities (3.9)–(3.11) are stated the way they are.

3.2.2 A remark on the regularity of the evolution family U(t, s)
with respect to the arguments t and s

It should come as no surprise that t 7→ U(t, s)φ and s 7→ U(t, s)φ are generally discon-
tinuous as maps from R to RCR. Indeed, the following highly trivial scalar impulsive
differential equation gives us a counterexample:

ẋ = 0, t 6= k ∈ Z
∆x = x(t−), t = k ∈ Z.

The evolution family is precisely

U(t, s)φ(θ) =

{
2bt+θ−scφ(0), t+ θ − s ≥ 0
φ(t+ θ − s), t+ θ − s ≤ 0

In particular, if we make the choice RCR = RCR([−1, 0],R), fix s and φ(0) 6= 0, then
t 7→ U(t, s)φ is discontinuous on Is = [dse,∞). To see why this is the case, we notice that
on this interval the solution t 7→ U(t, s)φ(0) is piecewise constant. As consequence, in each
[k, k + 1) ⊂ Is we will always have

||U(t, s)φ− U(t+ ε, s)φ|| ≥ 2||U(k, s)φ(0−)|| ≥ 2|φ(0)| > 0

for ε > 0 sufficiently small. Similarly, if t is fixed and φ(0) 6= 0, then we can consider the
regularity of s 7→ U(t, s)φ. A similar argument proves that this function is discontinuous
on It = (−∞, btc).

To contrast, in general if s and θ are fixed, t 7→ U(t, s)φ(θ) is an element ofRCR([s,∞),Rn).
This follows from Lemma 3.1.1. The same is not true for s 7→ U(t, s)φ(θ) for t and θ fixed.
Indeed, consider the scalar system

ẋ = 0, t 6= k ∈ Z
∆x = 0, t ∈ k ∈ Z.
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This generates the “translation” evolution family

U(t, s)φ(θ) =

{
φ(0) t+ θ − s ≥ 0
φ(t+ θ − s), t+ θ − s ≤ 0.

Suppose φ ∈ RCR has a discontinuity at some θ∗ ∈ (−r, 0). By definition, θ 7→ φ(θ) is
continuous from the right. Fixing t = 0, we have

U(0, s)φ(θ∗) = φ(θ∗ − s).

It follows that s 7→ U(0, s)φ(θ∗) has a discontinuity at θ∗, but is continuous from the left.
Consequently, we cannot have s 7→ U(0, s)φ(θ∗) ∈ RCR((α, 0],R) for any α < 0.

3.3 Variation of constants formula

Recall that a large part of our motivation for first studying linear systems of impulsive
RFDE is to ultimately develop centre manifold theory for the nonlinear equation (1.1)–
(1.2). We will end up using the Lyapunov-Perron method to do this. The Lyapunov-
Perron method makes use the linear variation of constants formula in order to obtain
an equivalence between the centre manifold and a fixed point of a particular nonlinear
operator. In the fully nonautonomous context, this method was used by Chicone [16]
to prove a nonautonomous centre manifold theorem by first appealing to the evolution
semigroup. The evolution semigroup allows one to effectively translate the problem into
an autonomous setting by enlarging the phase space. Semigroup theory then provides the
requisite variation of constants formula.

To contrast to the approach of Chicone, we work directly with the evolution family
associated to the linear system (3.4)–(3.5) and prove a variation of constants formula that is
reminiscent of a classical formula derived by Jack Hale for functional differential equations
[38]. In the aforementioned reference, Hale proves that solutions of the inhomogeneous
delay differential equation ẋ = Axt +h(t) satisfy the formal variation of constants formula

xt = T (t− s)xs +

∫ t

s

T (t− µ)χ0h(µ)dµ,

where T (t) : X → X is the strongly continuous semigroup associated to the autonomous
system ẋ(t) = Axt, the phase space is X = C([−r, 0],Rn), and χ0 : [−r, 0] → Rn×n is
defined by χ0(0) = I and χ0(θ) = 0 for θ < 0. Strictly speaking, the formula is ill-defined
because χ0h(µ) is not in the domain of T (t− µ).
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The inconsistencies in Hale’s variation of constants formula can be resolved in several
ways, including adjoint semigroup theory and integrated semigroup theory. See the refer-
ence [41] for an overview on these ideas. For our purposes, the use of the phase space RCR
and the evolution family U(t, s) : RCR → RCR will be sufficient. Ultimately, we prove
that solutions of the inhomogeneous equation (3.1)–(3.2) satisfy the variation of constants
formula

xt = U(t, s)xs +

∫ t

s

U(t, µ)χ0h(µ)dµ+
∑
s<ti≤t

U(t, ti)χ0r(i)

in RCR, where the integral is interpreted in the Pettis (weak) sense. This formula includes
Hale’s result as a special case.

We first prove this formula pointwise in Section 3.3.1. This means the formula is correct
in the sense that if one evaluates both sides of the equation at a particular θ ∈ [−r, 0] and
interprets the integral as a Lebesgue integral, then the equation is true. Following this, we
lift the result into the phase space RCR in Section 3.3.2, where the integral is understood
in the Pettis sense.

Despite being of fundamental importance in the representation of solutions, the fully
general variation-of-constants we prove in this section was not developed until 2018 with
our paper. There have appeared other variation-of-constants formulas in the literature,
such as the one by Anokhin, Berezansky and Braverman [6] in 1995. However, we want
both a higher level of generality (we want to include the possibility of delayed impulses,
distributed delay, etc.) and a more abstract result (that is, a formula in the phase space
RCR), so it is necessary to build the formula from the ground up.

3.3.1 Pointwise variation of constants formula

Existence, uniqueness and continuability of solutions of the linear inhomogeneous equa-
tion (3.1)–(3.2) has been granted by Lemma 3.1.1. From this result we directly obtain a
decomposition of solutions.

Lemma 3.3.1. Let h ∈ RCR(R,Rn) and let H.1–H.2 hold. Denote t 7→ x(t; s, φ;h, r) the
solution of the linear inhomogeneous equation (3.1)–(3.2) for inhomogeneities h = h(t) and
r = rk, satisfying the initial condition xs(·; s, φ;h, r) = φ. The following decomposition is
valid:

x(t; s, φ;h, r) = x(t; s, φ; 0, 0) + x(t; s, 0;h, 0) + x(t; s, 0; 0, r) (3.20)
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The following lemmas prove representations of the inhomogeneous impulsive and con-
tinuous terms xt(·; s, 0; 0, r) and xt(·; s, 0;h, 0) respectively.

Lemma 3.3.2. Under hypotheses H.1–H.2, one has

xt(·; s, 0; 0, r) =
∑
s<ti≤t

U(t, ti)χ0ri (3.21)

Proof. Denote x(t) = x(t; s, 0; 0, r). Clearly, for t ∈ [s,min{ti : ti > s}), one has xt = 0.
Assume without loss of generality that t0 = min{ti : ti > s}. Then xt0 = χ0r0 due to (3.3).
From Lemma 3.1.1 and 3.2.1, we have xt = U(t, t0)χ0r0 for all t ∈ [t0, t1), so we conclude
that (3.21) holds for all t ∈ [s, t1). Supposing by induction that xt =

∑
s<ti≤t U(t, ti)χ0ri

for all t ∈ [s, tk) for some k ≥ 1, we have

xtk = xt−k
+ χ0B(k)xt−k

+ χ0rk

= U(tk, tk−1)xtk−1
+ χ0rk

= U(tk, tk−1)
∑

s<ti≤tk−1
U(tk−1, ti)χ0ri + χ0rk

=
∑

s<ti≤tk U(t, ti)χ0ri.

Equality (3.21) then holds for t ∈ [tk, tk+1) by applying Lemma 3.2.1. The result follows
by induction.

Lemma 3.3.3. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has

xt(θ; s, 0;h, 0) =

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ, (3.22)

where the integral is defined for each θ as the integral of the function µ 7→ U(t, µ)[χ0h(µ)](θ)
in Rn.

Proof. The proof of this lemma is adapted from the proof of Theorem 16.3 of [38]. Let us
denote x(t; s)h = x(t; s, 0;h, 0). First, we note that operator x(t, s) : RCR([s, t],Rn)→ Rn

is linear (a consequence of Lemma 3.1.1) for each fixed s ≤ t, and that it admits an
extension to a linear operator x̃(t, s) : Lloc1 ([s, t],Rn) → Rn. We do not prove this claim,
since the proof is essentially identical to how one would prove Lemma 3.1.1. For w ∈ [s, t]
and denoting x̃t = [x̃(·, s)h]t for brevity, we see that

|x̃w(θ)| ≤
∫ w+θ

s

|L(µ)x̃µ|dµ+

∫ w+θ

s

|h(µ)|dµ

≤ |h|1 +

∫ t

s

`(µ)||xµ||dµ,
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which implies the uniform inequality ||xt|| ≤ |h|1 +
∫ t
s
`(µ)||x̃||µdµ. Applying Lemma

2.4.1 yields ||x̃t|| ≤ e|`|1|h|1, where | · |1 denotes the L1[s, t] norm. Thus, |x̃(t, s)h| =
|x̃t(0)| ≤ e|`|1|h|1, so x̃ is bounded. By classical results of functional analysis, there exists
an integrable, essentially bounded n× n matrix function µ 7→ V (t, s, µ) such that

x̃(t, s)h =

∫ t

s

V (t, s, µ)h(µ)dµ. (3.23)

First we show that V (t, s, µ) is independent of s. Let α ∈ [s, t] and let k ∈ L1([s, t],Rn)
be such that k = 0 on [s, α]. Then x̃(t, s)k = x(t, α)k and x(t, µ)k = 0 for µ ∈ [s, α]. Thus,∫ t

α

[V (t, s, µ)− V (t, α, µ)]k(µ)dµ = 0

for all k ∈ L1([α, t],Rn). Thus, V (t, s, µ) = V (t, α, µ) almost everywhere on [α, t]. Since α
is arbitrary, we have that V (t, s, µ) is independent of s.

Define V (t, s) = V (t, s, ·) for any t ≥ s and V (t, s) = 0 for s < t. Let us denote
x̃(t) = x̃(t, s)h and Vt−i (θ, s) = V (ti + θ, s) when θ < 0 and Vt−i (0, s) = V (t−i , s). From the

integral equation (3.3) and the representation (3.23), we have∫ t

s

V (t, µ)h(µ)dµ

=

∫ t

s

L(µ)x̃µdµ+
∑

s<ti≤t

B(i)x̃t−i
+

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]x̃(µ+ θ)dµ+

∑
s<ti≤t

∫ 0

−r
[dθγi(θ)]x̃t−i

(θ) +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]

∫ µ+θ

s

V (µ+ θ, ν)h(ν)dνdµ+
∑

s<ti≤t

∫ 0

−r
[dθγk(θ)]

∫ ti+θ

s

Vt−i
(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]

∫ µ

s

V (µ+ θ, ν)h(ν)dνdµ+
∑

s<ti≤t

∫ 0

−r
[dθγk(θ)]

∫ ti

s

Vt−i
(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ t

ν

∫ 0

−r
[dθη(ν, θ)]V (µ+ θ, ν)h(ν)dµdν +

∑
s<ti≤t

∫ ti

s

∫ 0

−r
[dθγi(θ)]Vt−i

(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ t

µ

∫ 0

−r
[dθη(ν, θ)]V (ν + θ, µ)h(µ)dν +

∑
s<ti≤t

χ(−∞,ti](µ)

∫ 0

−r
[dθγk(θ)]Vt−i

(θ, µ)h(µ) + h(µ)

 dµ
=

∫ t

s

∫ t

µ

∫ 0

−r
[dθη(ν, θ)]V (ν + θ, µ)dν +

∑
s<ti≤t

χ(−∞,ti](µ)

∫ 0

−r
[dθγk(θ)]Vt−i

(θ, µ) + I

h(µ)dµ
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=

∫ t

s

I +

∫ t

µ

L(µ)Vν(·, µ)dν +
∑

s<ti≤t

B(i)Vt−i
(·, µ)

h(µ)dµ.

Since the above holds for all h ∈ L1([s, t],Rn), we have that the fundamental matrix V (t, s)
satisfies

V (t, s) =

 I +

∫ t

s

L(µ)Vµ(·, s)dµ+
∑
s<ti≤t

B(i)Vt−i (·, s), t ≥ s

0 t < s.

(3.24)

almost everywhere. By uniqueness of solutions (Lemma 3.1.1), it follows that V (t, s)ξ =
U(t, s)[χ0ξ](0) for all ξ ∈ Rn. Since x̃(t, s) is an extension of x(t, s) to the larger space
L1([s, t],Rn), representation (3.23) holds for h ∈ RCR([s, t],Rn). Thus, for all t ≥ s,

xt(θ; s, 0;h, 0) = x(t+ θ, s)h

=

∫ t+θ

s

V (t+ θ, µ)h(µ)dµ

=

∫ t

s

V (t+ θ, µ)h(µ)dµ

=

∫ t

s

U(t+ θ, µ)[χ0h(µ)](0)dµ

=

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ,

which is what was claimed by equation (3.22).

With Lemma 3.3.1 through Lemma 3.3.3 at hand, we arrive at the variation of constants
formula.

Lemma 3.3.4. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has the variation
of constants formula

xt(θ; s, φ;h, r) = U(t, s)φ(θ) +

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ+
∑
s<ti≤t

U(t, ti)[χ0ri](θ). (3.25)

3.3.2 Variation of constants formula in the space RCR

The goal of this section will be to reinterpret the variation of constants formula (3.25)
in such a way that the integral appearing therein may be thought of as a weak integral
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in the space RCR. Specifically, we will show that the integral may be regarded as a
Gelfand-Pettis integral.

Lemma 3.3.5. Let h ∈ RCR(R,Rn) and let H.1–H.2 hold. The function U(t, ·)[χ0h(·)] :
[s, t]→ RCR is Pettis integrable for all t ≥ s and[∫ t

s

U(t, µ)[χ0h(µ)]dµ

]
(θ) =

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ. (3.26)

Proof. By Lemma 2.1.7 and the uniqueness assertion of Proposition 2.2.1, if we can show
for all p : [−r, 0]→ Rn of bounded variation the equality∫ 0

−r
pᵀ(θ)d

[∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ

]
=

∫ t

s

[∫ 0

−r
pᵀ(θ)d

[
U(t, µ)[χ0h(µ)](θ)

]]
dµ

holds, then Lemma 3.3.5 will be proven. Note that the above is equivalent to

c

∫ 0

−r
pᵀ(θ)d

[∫ t

s

V (t+ θ, µ)h(µ)dµ

]
=

∫ t

s

[∫ 0

−r
pᵀ(θ)d

[
V (t+ θ, µ)h(µ)

]]
dµ. (3.27)

We prove the lemma first when h is a step function. In this case, a consequence
of equation (3.24) is that θ 7→ V (t + θ, µ)h(µ) and µ 7→ V (t + θ, µ)h(µ) are piecewise
continuous, while Lemma 3.1.1 and Lemma 3.3.3 imply θ 7→

∫ t
s
V (t + θ, µ)h(µ)dµ is also

piecewise continuous, all with at most finitely many discontinuities on any given bounded
set. Consequently, both integrals in (3.27) can be regarded as a Lebesgue-Stieltjes integrals,
with Fubini’s theorem granting the desired equality.

When h ∈ RCR(R,Rn) is an arbitrary right-continuous regulated function, we approx-
imate its restriction to the interval [s, t] by a convergent sequence of step functions hn
by Lemma 2.1.1. Equation (3.27) is then satisfied with h replaced with hn. Define the
functions

Jn(θ) =

∫ t

s

V (t+ θ, µ)hn(µ)dµ, Kn(µ) =

∫ 0

−r
pᵀ(θ)d

[
V (t+ θ, µ)hn(µ)

]
,

J(θ) =

∫ t

s

V (t+ θ, µ)h(µ)dµ, K(µ) =

∫ 0

−r
pᵀ(θ)d

[
V (t+ θ, µ)h(µ)

]
,

so that
∫ 0

−r p
ᵀ(θ)dJn(θ) =

∫ t
s
Kn(µ)dµ. By Lemma 3.2.1 and elementary integral estimates,

Jn → J uniformly. The conditions of Lemma 2.1.4 are satisfied, and we have the limit∫ 0

−r
pᵀ(θ)dJn(θ)→

∫ 0

−r
pᵀ(θ)dJ(θ).
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Conversely, for each µ ∈ [s, t], Lemma 2.1.3 applied to the difference Kn(µ)−K(µ) yields,
together with Lemma 3.2.1,

|Kn(µ)−K(µ)| ≤ (|p(0)|+ |p(−r)|+ var0
−rp)

(∫ t

s

exp

(∫ t

y

`(ν)dν

)
dy

)
||hn − h||.

Thus, Kn → K uniformly, and the bounded convergence theorem implies
∫ t
s
Kn(µ)dµ →∫ t

s
K(µ)dµ. Therefore, equation (3.27) holds, and the lemma is proven.

With Lemma 3.3.4 and Lemma 3.3.5 at hand, we obtain the variation of constants
formula for the linear inhomogeneous equation (3.1)–(3.2) in the Banach space RCR.

Theorem 3.3.1. Let H.1–H.2 hold, and let h ∈ RCR(R,Rn). The unique solution t 7→
xt(·; s, φ;h, r) ∈ RCR of the linear inhomogeneous impulsive system (3.1)–(3.2) with initial
condition xs(·; s, φ;h, r) = φ, satisfies the variation-of-constants formula

xt(·; s, φ;h, r) = U(t, s)φ+

∫ t

s

U(t, µ)[χ0h(µ)]dµ+
∑
s<ti≤t

U(t, ti)[χ0ri], (3.28)

where the integral is interpreted in the Pettis sense and may be evaluated pointwise using
(3.26).

As a simple corollary, if x is a solution defined on [s − r,∞), we can express t 7→ xt
defined on [s,∞) as the solution of an abstract integral equation.

Corollary 3.3.1.1. Let H.1–H.2 hold, and let h ∈ RCR(R,Rn). Any solution x : [s −
r,∞)→ Rn of the linear inhomogeneous impulsive system (3.1)–(3.2) satisfies for all t ≥ s
the abstract integral equation

xt = U(t, s)xs +

∫ t

s

U(t, µ)[χ0h(µ)]dµ+
∑
s<ti≤t

U(t, ti)[χ0ri]. (3.29)

Equation (3.29) will be the key to defining mild solutions in Section 5.1 and, ultimately,
will permit us to construct centre manifolds.
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Chapter 4

Linear periodic systems

Nearly all results from this section appear in the paper Smooth centre manifolds for im-
pulsive delay differential equations [21] by Church and Liu. Many of the computational
aspects of Section 4.6 appear in Computation of centre manifolds and some codimension-
one bifurcations for impulsive delay differential equations [20] and Analysis of a SIR model
with pulse vaccination and temporary immunity: stability, bifurcation and a cylindrical at-
tractor [22], also by K. Church and X. Liu, although some additions have been made and
some results have been updated or made more general to improve the flow of this thesis.
The content of Section 4.6.2 is new.

4.1 Monodromy operator

We will once again be interested in the homogeneous linear system

ẋ = L(t)xt, t 6= tk (4.1)

∆x = B(k)xt− , t = tk (4.2)

satisfying the conditions H.1 and H.2, but throughout this section we will assume the
system is also periodic. That is, there exists T > 0 and q ∈ N\{0} such that L(t+T ) = L(t)
for all t ∈ R, B(k + q) = B(k) and tk+q = tk + T for all k ∈ Z.

We must discuss the interrelation between the period T and the range r of the delay.
If r < T , it will at times be convenient to reinterpret the periodic system (4.1)–(4.2) as
having the phase space RCR([−T, 0],Rn). This can always be done, since each of L(t) and

36



B(k) extend in an obvious, trivial way to RCR([−T, 0],Rn). In the opposite case where
r ≥ T , we let j ∈ N satisfy r ≤ jT and extend the phase space to RCR([−jT, 0],Rn). In
both cases, the following proposition is true.

Proposition 4.1.1. There exists j ∈ N minimal such that r ≤ jT , and the evolution
family U(t, s) on RCR associated to the periodic system (4.1)–(4.2) extends uniquely to an
evolution family Ũ(t, s) on RCR([−jT, 0],Rn) satisfying the identity

Ũ(t, s)φ(θ) = U(t, s)ψ(θ)

for all φ ∈ RCR([−jT, 0],Rn) and θ ∈ [−r, 0], where ψ = φ|[−r,0]. In particular, we have
the representation

U(t, s) = π→Ũ(t, s)π←

where the linear maps π← : RCR → RCR([−jT, 0],Rn) and π→ : RCR([−jT, 0],Rn) →
RCR are

π←φ(θ) =

{
φ(θ), θ ∈ [−r, 0],
0, θ ∈ [−jT,−r) π→φ = φ|[−r,0].

Following the above proposition, we denote RCRj = RCR([−jT, 0],Rn). For each t ∈
R, define the extended monodromy operators Z̃t : RCRj → RCRj and Zt : RCR → RCR
by

Z̃t = Ũ(t+ jT, t), Zt = U(t+ jT, t). (4.3)

Then, define the monodromy operators Vt : RCR → RCR by

Vt = U(t+ T, t). (4.4)

4.2 Compactness

Recall that a linear operator L : X → X on a Banach space X is compact if the image
under L of any bounded subset of X is relatively compact.

Lemma 4.2.1. Z̃t is compact for each t ∈ R.

Proof. For a given S ⊂ R, let PCS denote the set of functions f : [−jT, 0] → Rn that
are continuous except at points s ∈ S, where they are right-continuous and possess limits
on the left. If φ ∈ RCRj, then Z̃tφ is continuous except at times θn ∈ [−jT, 0] such that
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t+ jT + θn ∈ {tk : k ∈ Z}. At such times, Z̃tφ is continuous from the right and has limits
on the left. Let Θ = {θ1, . . . , θN} denote the set of all such discontinuity points; note that
N = jq is indeed finite. Therefore, if B ⊂ RCRj is bounded, then Y := Z̃t(B) ⊂ PCΘ, the
latter of which is complete with respect to the supremum norm.

By [8], a subset of Y ⊂ PCΘ is precompact if and only if it is uniformly bounded
and quasiequicontinuous – that is, for all ε > 0, there exists δ > 0 such that if t1, t2 ∈
[θk−1, θk) ∩ [−jT, 0] satisfy |t1 − t2| < δ, then ||x(t1) − x(t2)|| < ε for all x ∈ Y . Uniform
boundedness follows by equation (3.7). To obtain quasiequicontinuity, let t1 > t2 and t = 0
without loss of generality. We note that for all Z̃tx ∈ Y,

||Z̃tx(t1)− Z̃tx(t2)|| = ||U(jT + t1, jT + t2)U(jT + t2, 0)x(0)− U(jT + t2, 0)x(0)||
= ||χ0 ◦ [U(jT + t1, jT + t2)− I]U(jT + t2, 0)x||

≤
∫ jT+t2

jT+t1

`(µ)dµ

(
e
∫ jT
0 `(µ)dµ

jq∏
k=1

(1 + b(k))

)
C

≡ K

∫ jT+t2

jT+t1

`(µ)dµ,

where ||x|| ≤ C for all x ∈ B, and the inequality on the third line follows by Lemma
3.2.1 and the integral form of solutions provided by equation (3.3). Choosing δ so that∫ jT+t2
jT+t1

`(µ)dµ < ε/K for |t1 − t2| < δ whenever t1, t2 ∈ [−jT, 0] we obtain the required

quasiequicontinuity of Y . Therefore, Y = Z̃t(B) is precompact, so Z̃t is compact.

Lemma 4.2.2. Zt is compact for each t ∈ R.

Proof. By Proposition 4.1.1, we have Zt = π→Z̃tπ←. The boundedness of each of π→ and
π← together with the compactness of Z̃t grants the compactness of Zt.

Lemma 4.2.3. V j
t : RCR → RCR is compact, where j is the same natural number used

to define the extended monodromy operators.

Proof. This is a direct consequence of Lemma 4.2.2, since V j
t = Zt.

The eventual (i.e. jth power) compactness of Vt provides us with several useful results
from the spectral theory of compact operators; one may consult the reference [51] for
details. First, recall that if X is a real vector space, its complexification XC = X ⊕X is a
complex vector space with scalar multiplication defined by

(a+ ib)(x1, x2) = (ax1 − bx2, bx1 + ax2).
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One usually abuses notation and identifies an element (x1, x2) ∈ XC with the formal symbol
x1 + ix2. If L : X → X is a linear map, its complexification LC : XC → XC is defined by

LC(x+ iy) = L(x) + iL(y).

Theorem 4.2.1. Let t ∈ R and let σt denote the spectrum of V C
t := (Vt)C, the complexifi-

cation of Vt.

1. If λ ∈ σt is nonzero, then λ and λ are eigenvalues of V C
t .

2. The generalized eigenspace Mλ,t ⊂ RCRC associated to the eigenvalue λ ∈ σt is
finite-dimensional and invariant under V C

t .

3. The Riesz projection

Pλ,t =
1

2πi

∫
γ

(ξI − V C
t )−1dξ (4.5)

is a projection onto Mλ,t, where γ is a simple continuous closed contour in C such
that λ is the only eigenvalue of V C

t contained in its interior.

4. If Λ ⊂ σt, then

PΛ,t =
∑
λ∈Λ

Resz=λ(zI − V C
t )−1

is a projection onto

MΛ,t =
⊕
λ∈Λ

Mλ,t.

5. The projections PΛ,t commute with V C
t and if Λ1 and Λ2 are disjoint, then PΛ1,tPΛ2,t =

0.

6. σt is bounded and 0 ∈ σt is the only accumulation point.

We also have the following theorem concerning eigenvalues of distinct monodromy op-
erators and their generalized eigenspaces, whose proof follows entirely verbatim the proof
of Theorem 3.3 from [27].

Theorem 4.2.2. Let t, s ∈ R be given with t ≥ s and let λ ∈ C \ {0}.

• λ ∈ σt if and only if λ ∈ σs
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• The restriction of UC(t, s) to Mλ,s is a topological isomorphism onto Mλ,t.

Due to the uniqueness of the eigenvalues across all of the monodromy operators, the
following definition is appropriate.

Definition 4.2.1. The Floquet multipliers of the evolution family U(t, s) are the eigen-
values 0 6= λ ∈ σ0 of the (complexified) mondodromy operator V0. The multiplier spectrum
of the evolution family U(t, s) is denoted σ(U) := σ0.

The projections of Theorem 4.2.1 take values in the complexified spaces MΛ,t ⊂ RCRC.
To obtain real projections, it suffices to ensure that all conjugate multipliers are included
in the set Λ. See Section IV, Theorem 2.18 and Corollary 2.19 of [27].

Corollary 4.2.2.1. Let 0 /∈ Λ ⊂ σ(U). If Λ ⊂ C is symmetric – that is, λ ∈ Λ if and
only if λ ∈ Λ – the projection PΛ,t : RCRC → RCRC is the complexification of a projection
operator on RCR.

By definition of complexification, if x ∈ RCRC is real (that is, x = ξ + i0 for some ξ ∈
RCR), then PΛ,tx is also real. By abuse of notation, we will identify the complexification
of said operator with itself whenever no confusion should arise. That is, we say that

PΛ,t : RCR → RCR

is also a projection, and is identified with its complexification. Similarly, we will sometimes
blur the lines between a given operator L : RCR → RCR and its complexification LC :
RCRC → RCRC whenever no confusion should result.

4.3 Spectral separation

Define the time-varying projectors

Pu(t) = PΛc,t, Pc(t) = PΛc,t, Ps(t) = I − Pu(t)− Pc(t) (4.6)

where Λu = {λ ∈ σ(U) : |λ| > 1} and Λc = {λ ∈ σ(U) : |λ| = 1}. Since these sets are
symmetric (about the imaginary axis), the first two operators above define, by Corollary
4.2.2.1, projections on RCR. The third one is a complementary projector.

Lemma 4.3.1. The projectors Pi(t) for i ∈ {s, c, u} are T -periodic.
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Proof. Since Pu(t) is the projector through the spectral subset Λu associated to the com-
plexified operator UC(t+T, t), it follows that Pu(t+kT ) is the projector through the same
subset, associated to UC = UC(t+T +kT, t+kT ), for all k ∈ Z. By uniqueness of solutions
and the periodicity condition, the latter is equal to UC(t+T, t), from which it follows that
Pu(t) = Pu(t+ kT ), and mutis mutandis for the other projectors.

Lemma 4.3.2. R(Ps(t)) =
⋂
λ∈Λc∪Λu

N (Pλ,t).

Proof. Denote Pcu = Pc + Pu and Λcu = Λc ∪ Λu, so that R(Ps(t)) = N (Pcu(t)). If
x ∈ ∩λ∈ΛcuN (Pλ,t), then Psu(t)x =

∑
λ∈Λcu

Pλ,tx = 0, which shows that ∩λ∈ΛcuN(Pλ,t) ⊆
R(Ps(t)). To obtain the second inclusion, let x ∈ RCRC be such that x ∈ N (Pcu(t)). For
all λ ∈ Λcu, we have

Pλ,tx = P 2
λ,t +

∑
µ∈Λcu\{λ}

Pλ,tPµ,tx = Pλ,tPcu(t)x = 0,

where the second equality is due to Theorem 4.2.1 and the conclusion is because x ∈
N (Pcu(t)).

Lemma 4.3.3. The restriction of V C
t to the subspace R(Ps(t)) has its spectrum contained

in the ball B1(0) ⊂ C.

Proof. With the same notation as in the previous proof, since the generalized eigenspaces
MΛcu,t are invariant under V C

t , the same is true for the (closed) complement, R(Ps(t)).
Denote Ṽ C

t the restriction of V C
t to said complement. Suppose by way of contradiction ξ ∈

is a (generalized) eigenvector of Ṽ C
t with eigenvalue λ with |λ| ≥ 1. Then (V C

t − λI)kξ =
(Ṽ C

t − λI)ξ = 0, so ξ is in fact a (generalized) eigenvector of V C
t with eigenvalue λ and

|λ| ≥ 1. Consequently, ξ ∈ R(Pcu(t)), which is a contradiction sinceR(Ps(t))∩R(Pcu(t)) =
{0}.

Theorem 4.3.1. The evolution family U(t, s) : RCR → RCR associated to the periodic
system (4.1)–(4.2) is spectrally separated, with projectors (Ps, Pc, Pu) defined as in equation
(4.6). Also, RCRc and RCRu are finite-dimensional.

Proof. We prove the theorem by verifying properties 1–5 of Definition 3.2.4 explicitly.

1. Since Ps + Pu + Pc = I, we have the estimate ||Ps|| ≤ 1 + ||Pu|| + ||Pc||. Thus, to
prove property 1, it suffices to prove that ||Pu(t)|| and ||Pc(t)|| are uniformly bounded. We
will prove only uniform boundedness of Pc(t), since the argument is identical for Pu(t).
Also, by periodicity (Lemma 4.3.1), it suffices to prove uniform boundedness on [0, T ].
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Assume for the moment that property 3 and property 6 are satisfied (they will be
proven later, independently of property 1). Suppose by way of contradiction that there
exists xn ∈ RCR and a sequence tn ∈ [0, T ] with ||xn|| = 1 such that ||Pc(tn)xn|| = n. We
can then write

n = ||Pc(tn)xn|| = ||Uc(tn, T )Uc(T, tn)Pc(tn)xn||
≤ ||Uc(tn, T )|| · ||Pc(T )U(T, tn)xn||
≤ C||Uc(tn, T )||
≤ CKeεT .

for some constant C ≥ ||Pc(T )|| · ||U(T, tn)|| (see Lemma 3.2.1) and a constant K as in
property 6 of spectral separation. This is a contradiction.

2. This follows by property 5 of Theorem 4.2.1.

3. By following [27] Section XIII, Theorem 3.3, we can show that P (t)U(t+T, s+kT ) =
U(t + T, s + kT )P (s) for some k ∈ N chosen so that s + (k − 1)T ≤ t < s + kT , for each
of the projectors P ∈ {Pu, Pc, Ps}. This implies P (t)U(t, s + qT ) = U(t, s + qT )P (s) for
q = k − 1. Thus,

P (t)U(t, s) = P (t)U(t, s+ qT )U(s+ qT, s)

= U(t, s+ qT )P (s)U(s+ T, s)q

= U(t, s+ qT )P (s)qU(s+ T, s)q

= U(t, s+ qT )U(s+ T, s)qP (s)q

= U(t, s)P (s),

where we have used the fact that P (s) is a projector and commutes with U(s+ T, s).

4. This follows from Theorem 4.2.2.

5. When t ≥ v ≥ s, the identity Uc(t, s) = Uc(t, v)Uc(v, s) holds by properties of the
evolution family U . When t ≥ s ≥ v, we find I = Uc(t, v)−1Uc(t, s)Uc(s, v), which implies

Uc(v, s) = Uc(v, t)Uc(t, s). (4.7)

Also,

Uc(t, s) = Uc(t, v)Uc(t, v)−1Uc(t, s) = Uc(t, v)[Uc(v, t)Uc(t, s)] = Uc(t, v)Uc(v, s). (4.8)

Equation (4.7) implies Uc(t, s) = Uc(t, v)Uc(v, s) for v ≥ s ≥ t, while (4.8) grants it for
t ≥ s ≥ v. If v ≥ t ≥ s, then

Uc(t, s) = Uc(t, v)Uc(t, v)−1Uc(t, s) = Uc(t, v)Uc(v, t)Uc(t, s) = Uc(t, v)Uc(v, s).
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If s ≥ t ≥ v, then

Uc(t, s) = Uc(s, t)
−1 = [Uc(s, v)U(v, t)c]

−1 = Uc(t, v)Uc(v, s).

Similarly, the desired equality holds if s ≥ v ≥ t. We have proven that Uc(t, s) =
Uc(t, v)Uc(v, s) for all t, v, s ∈ R. The proof is identical for Uu.

6. This section is split into two parts, where we prove the estimates for Uc and Us
separately. The proof for Uu is similar to the centre (Uc) case, and is omitted.

Centre part: Uc. Let ε > 0 be given. Recall that Uc(t, s) is the restriction of U(t, s) to
R(Pc(s)), so by Lemma 3.2.1 and periodicity, there exists K > 0 such that, for any s ∈ R,
we have ||Uc(t, s)|| ≤ K provided t ∈ [s, s + T ]. As all eigenvalues of Uc(s + T, s) satisfy
|λ| = 1, Gelfand’s (spectral radius) formula implies there exists an integer k > 0 such that
||Uc(s+ T, s)k|| < 1 + εT . If we let mt be the greatest integer such that s+mtkT ≤ t and
m∗t ∈ {0, . . . , k − 1} the greatest integer such that s+mtkT +m∗tT ≤ t, we can write

U(t, s) = U(t−mtkT −m∗tT, s)U(s+ T, s)m
∗
t+kmt .

Then, we can make the estimate

||Uc(t, s)|| ≤ K||Uc(s+ T, s)k||mt ≤ K(1 + εT )
t−s
T ≤ Keε(t−s).

The proof is similar when t ≤ s, and we obtain ||Uc(t, s)|| ≤ Keε|t−s|.

Stable part: Us. Let t ≥ s. As in the proof for the centre part, we have ||Us(t, s)|| ≤ K
provided t ∈ [s, s+ T ]. Otherwise, since Us(s+ T, s) has its spectrum in the complex unit
ball by Lemma 4.3.3, there exists k > 0 such that ||Us(s + T, s)k|| ≤ (1 + aT ) for some
a < 0. The rest of the proof follows by the same reasoning as the proof for the centre part,
and we obtain ||U(t, s)|| ≤ Kea(t−s) as required.

Finally, RCRc andRCRu are finite-dimensional because Theorem 4.2.1 guarantees that
the invariant subspaces MΛc,t and MΛu,t are finite-dimensional provided Λc and Λu are each
finite sets — which they are because the eigenvalues of V C

t can only accumulate at zero.
The analogous result for RCRc(t) and RCRu(t) follows by Corollary 4.2.2.1.

Remark 4.3.1. The centre and unstable fiber bundles RCRc and RCRu are subsets of
RCR1. This follows because Vt : RCR → RCR has range in RCR1 and the t-fibers of
these bundles consist of eigenvectors of Vt. The same is not generally true for the stable
fiber bundle, being the range of I − Pu(t)− Pc(t).
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4.4 Floquet theorem

Of use in subsequent sections is the fact that, when restricted to the nonautonomous
set RCRc, the evolution family U(t, s) is essentially determined by the flow of a finite-
dimensional ordinary differential equation. More generally, the same is true whenever one
restricts U(t, s) to one of its invariant fibre bundles. The following theorem makes this
concrete; see Theorem 4.5 from Section XIII of [27] for the analogous result for delay
differential equations.

Theorem 4.4.1. Let Λ ∈ σ(U) be finite and satisfy Λ = Λ, and denote UΛ(t, s) : MΛ,s →
MΛ,t the restriction of U(t, s) to MΛ,s. There exists W ∈ L(MΛ,0) and t 7→ α(t) ∈
L(MΛ,0,MΛ,t) with the following properties.

• α is T -periodic, α(t) is invertible, and there exists β ≥ 1 such that for all φ ∈MΛ,0,

β−1||φ|| ≤ sup
t∈R
||α(t)φ|| ≤ β||φ||.

• UΛ(t, 0)φ = α(t)etWφ for all φ ∈MΛ,0.

Proof. Define W = logUΛ(T, 0), where we choose the logarithm to be branch that avoids
the (finite set of nonzero) eigenvalues of UΛ(T, 0). Defining α(t) = UΛ(t, 0)e−tW , one may
verify (compare to Proposition 4.4 and Theorem 4.5 from Section XIII of [27]; the proofs in
the present case is essentially identical) that α is periodic and UΛ(t, 0) satisfies the claimed
decomposition. Uniform boundedness of α above and below follows by its periodicity and
boundedness of UΛ(t, 0) on [−T, T ]; see the related proof of Theorem 4.3.1. α(t) is clearly
invertible.

The above theorem applied to Λ = Λc, the Floquet multipliers on the unit circle, gives
the following corollary.

Corollary 4.4.1.1. Denote RCRC
c (t) the complexification of RCRc(t). There exists W ∈

L(RCRC
c (0)) and α : R→ L(RCRC

c (0),RCRC
c ) with the following properties.

• α is T -periodic, α(t) : RCRC
c (0) → RCRC

c (t) is invertible, and there exists β ≥ 1
such that for all φ ∈ RCRC

c (0),

β−1||φ|| ≤ sup
t∈R
||α(t)φ|| ≤ β||φ||.
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• Uc(t, 0)φ = α(t)etWφ for all φ ∈ RCRc(0).

Remark 4.4.1. As we suggested we might do on occasion at the end of Section 4.2, we have
been a bit imprecise with our complexifications. While true, the result of the above corollary
can be made stronger. The final equation could be replaced with UC

c (t, 0)φ = α(t)etWφ, and
this equality holds for all φ ∈ RCRC

c (0).

4.5 Floquet exponents and stability

The Floquet multipliers of the evolution family U(t, s) determine the stability of the peri-
odic homogeneous system (4.1)–(4.2). We give a few definitions before stating and proving
the main results.

Definition 4.5.1. We say the homogeneous impulsive RFDE (4.1)–(4.2) is

• exponentially stable if there exists K > 0 and ε > 0 such that its evolution family
U(t, s) : RCR → RCR satisfies ||U(t, s)|| ≤ Ke−ε(t−s) for all t ≥ s;

• stable if there exists K ≥ 0 such that its evolution family satisfies ||U(t, s)|| ≤ K for
all t ≥ s;

• unstable if it is not stable.

Definition 4.5.2. Let X be a complex n-dimensional vector space. A linear operator
L : X → X is diagonalizable if there exists a basis B = {x1, . . . , xn} such that the n × n
matrix LB of L relative to the basis B is diagonalizable.

It is simple to verify that the above notion of diagonalizability is well-defined, in that
if LB is diagonalizable and B2 is another basis, then LB2 is also diagonalizable.

Theorem 4.5.1. The periodic impulsive RFDE (4.1)–(4.2) is exponentially stable if and
only if σ(U) ⊂ B1(0). It is stable if and only if σ(U) ⊂ B1(0) and the linear operator
W : RCRC

c (0) → RCRC
c (0) from the Floquet decomposition on the centre fibre bundle is

diagonalizable.

Proof. We first deal with exponential stability. By Theorem 4.3.1, U(t, s) : RCR → RCR
is spectrally separated. If σ(U) ⊂ B1(0), then the sets Λu = {λ ∈ σ(U) : |λ| > 1} and
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Λc = {λ ∈ σ(U) : |λ| = 1} are empty, so that Pc(t) = Pu(t) = 0. It follows that Ps(t) = I.
Then, by spectral separation, there exists K ≥ 0 and a < 0 such that

||U(t, s)|| = ||U(t, s)Ps(s)|| ≤ Kea(t−s), t ≥ s.

Conversely, if ||U(t, s)|| ≤ Ce−ε(t−s) for some C > 0 and ε > 0, then Λu and Λc must be
empty. Indeed, suppose Λc is nonempty, so that there exists a nonzero ξ ∈ RCR such that
||U(t + kT, t)ξ|| = ||ξ|| for all k ∈ N. But then, we have the estimate ||ξ|| ≤ C||ξ||e−εkT
for all positive integers k, which implies ξ = 0, a contradiction. Similarly, Λu is empty. By
Lemma 4.3.3, it follows that σ(U) ⊂ B1(0).

Next we prove the claims concerning stability. Suppose σ(U) ⊂ B1(0) and that W is di-
agonalizable. The former assumption implies Pu(t) = 0. Recall that Uc(t, s) : RCRc(s)→
RCRc(t) defines an all-time process on RCRc by definition of spectral separation, so we
may write

Uc(t, s) = α(t)e(t−s)Wα−1(s)

using Corollary 4.4.1.1. Moreover, by definition of W all of its eigenvalues have zero real
part. From diagonalizability it follows that t 7→ ||etW || is bounded. Then,

||U(t, s)φ|| ≤ ||U(t, s)Ps(s)||+ ||U(t, s)Pc(s)||
≤ Kea(t−s) + ||Uc(t, s)||
≤ K + ||α(t)|| · ||α−1(s)|| · ||e(t−s)W ||.

The condition β−1||φ|| ≤ supt ||α(t)φ|| ≤ β||φ|| from the Floquet theorem implies that
||α−1(s)|| is bounded, from which we conclude that ||U(t, s)|| is bounded by a constant
independent of t ≥ s.

Suppose now that ||U(t, s)|| ≤ K for all t ≥ s. By similar arguments to the previous
case, we must have σ(U) ⊂ B1(0). If W were not diagonalizable, then the Jordan canonical
form of WB relative to some basis B would contain a block whose exponential grows at
least linearly in t. In particular, there exists δ > 0 and D > 0 such that ||etWB || ≥ Dt
for |t| ≥ δ. If C : RCRC

c (0) → Cc denotes the coordinate map satisfying C(ri) = ei for
B = {r1, . . . , rn}, then we can write W = C−1WBC. From the convergent power series
definition of the exponential, it follows that

||Uc(t, s)|| = ||α(t)e(t−s)Wα−1(s)|| ≥ 1

β
||C−1e(t−s)WBCα−1(s)|| ≥ D(t− s)

||C|| · ||C−1||

for |t − s| ≥ δ. If φ ∈ RCRc(s), the above implies ||U(t, s)φ|| = ||Uc(t, s)φ|| → ∞ as
t→∞, which contradicts the uniform boundedness of U(t, s).
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For autonomous ordinary differential equations ẋ = Ax, the eigenvalues of A determine
the stability. In this case, the analogue of Theorem 4.5.1 states that stability is equivalent
to all eigenvalues of A having negative real part, while stability is equivalent to them having
nonpositive real part and A being diagonalizable over C. In some sense, the eigenvalues
correspond to growth rates of solutions in the distinct invariant subspaces. With delay
differential equations the statement is similar, except it is in terms of the eigenvalues of
the generator of the solution semigroup; one may refer to Section IV of [27]. For periodic
systems, there is a natural analogue of “eigenvalue” that captures the same idea of growth
rates.

Definition 4.5.3. The Floquet spectrum of the evolution family U(t, s) : RCR → RCR
is the set λ(U) = { 1

T
log(µ) : µ ∈ σ(U)}, where the principal branch of the logarithm is

taken. Its elements are called Floquet exponents.

The Floquet exponents truly are the growth rates of solutions in the invariant Fibre
bundles associated to their respective Floquet multipliers, as made precise by Theorem
4.4.1. As for stability, we can reformulate Theorem 4.5.1 in terms of Floquet exponents as
follows.

Corollary 4.5.1.1. The periodic impulsive RFDE (4.1)–(4.2) is exponentially stable if
and only if all Floquet exponents of its evolution family have negative real parts. It is
stable if and only if all Floquet exponents have zero real part and the linear operator
W : RCRC

c (0) → RCRC
c (0) from the Floquet decomposition on the centre fibre bundle

is diagonalizable.

4.6 Computational aspects

This section is devoted to some of the computational aspects associated to Floquet expo-
nents and the monodromy operator.

4.6.1 Floquet eigensolutions

Suppose that µ is a Floquet multiplier of U(T, 0). Let B = {ξ1, . . . , ξm} be a basis for the
generalized eigenspace Mµ,0. Then,

U(T, 0)ξj = µξj
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for j = 1, . . . ,m. From the Floquet Theorem 4.4.1, there exists a linear operator W :
Mµ,0 → Mµ,0 and α(t) : Mµ,0 → Mµ,t periodic in t such that Uµ(t, 0) = α(t)etW . As
in the proof of Theorem 4.5.1, let C : Mµ,0 → Cm denote the coordinate map satisfying
C(ξj) = ej. Let WB = PJP−1 be the Jordan canonical form of the matrix WB of the
operator W relative to the basis B. If we compute the action of Uλ(t, 0) on the basis
elements ξj, we get

Uλ(t, 0)ξj = α(t)C−1PetJP−1ej. (4.9)

Also, since Uµ(T, 0) = eTW , it follows that the eigenvectors satisfy the equation eTW ξj =
µξj. In terms of coordinate maps and the Jordan form of WB, this gives

C−1PeTJP−1Cξj = µξj ⇒ PeTJP−1(Cξj) = µ(Cξj).

It follows that 1
T

log µ is the only eigenvalue of J . That is, J is a Jordan matrix whose
only eigenvalue is the Floquet exponent λ = 1

T
log µ. We can then express etJP−1ej as a

sum of the form

etJP−1ej =
m∑
i=1

ti−1eλtvi

for some vectors vi ∈ Rm. If we now define the function zj(t) = U(t, 0)ξj(0), we can use
the above summation formula in (4.9) to obtain the representation

zj(t) =
m∑
i=1

pi(t)t
i−1eλt,

where pi(t) = [α(t)C−1Pvi](0). By definition, pi : R → Cn is periodic and is right-
differentiable except at times tk where it is continuous from the right and has a finite
jump discontinuity. Moreover, zj is a solution of the (complexified) homogeneous system
(4.1)–(4.2). This proves the following theorem.

Theorem 4.6.1. λ is a Floquet exponent of the evolution family U(t, s) associated to the
linear homogeneous system (4.1)–(4.2) if and only if the latter admits a solution of the form
x(t) = eλtp(t) for a nonzero T -periodic p ∈ RCR(R,Cm). Moreover, the m-dimensional
generalized eigenspace MeλT ,t is spanned by elements xt such that x ∈ RCR(R,Cn) is a
solution of (4.1)–(4.2) admitting a decomposition of the form

x(t) = eλt
m∑
i=1

pi(t)t
i−1, (4.10)

for pi ∈ RCR(R,Cm) and T -periodic.
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Definition 4.6.1. A solution of the linear homogeneous system (4.1)–(4.2) having a de-
composition of the form (4.10) is a Floquet eigensolution with exponent λ. Its rank is
d = max{i = 1, . . . ,m : pi 6= 0}.

Theorem 4.6.1 states that solutions that pass through a generalized eigenspace MeλT ,t

for each Floquet exponent λ are linear combinations of complex vector polynomials with
periodic coefficients, multiplied by the exponential growth factor eλt. This motivates the
following definition.

Definition 4.6.2. The generalized eigenspace of U(t, s) with Floquet exponent λ is the
invariant fibre bundle Eλ with t-fibre Eλ(t) = MeλT ,t.

Corollary 4.6.1.1. Considered as a subset of RCR(R,Cn), for each Floquet exponent
λ there exists a maximal linearly independent set S = {φ(1), . . . , φ(m)} of Floquet eigen-
solutions with exponent λ for some natural number m. The generalized eigenspace with
Floquet exponent λ is given by the linear span of the histories of the elements of S; that is,
Eλ(t) = span{φ(1)

t , . . . , φ
(m)
t }.

Proof. The existence of S follows from the finite dimensionality (Theorem 4.2.1) of MeλT ,s

for any s, and that these eigenspaces are isomorphic (Theorem 4.2.2). That S can be
chosen to be linearly independent in RCR(R,Cn) follows because one can impose that the

histories {φ(1)
0 , . . . , φ

(m)
0 } form a basis for MeλT ,0 ⊂ RCR([−T, 0],Cn), which then implies

the independence of S in RCR(R,Cn). The characterization of the t-fibre Eλ(t) then
follows from Theorem 4.6.1.

The following corollary to Theorem 4.6.1 provides a dynamical characterization of
Floquet exponents. Its proof follows by substituting the Floquet eigensolution ansatz
x(t) = eλtp(t) into the periodic homogeneous system (4.1)–(4.2) and simplifying.

Corollary 4.6.1.2. Define expλ : [−T, 0]→ C by expλ(θ) = eλθ. λ is a Floquet exponent of
the evolution family U(t, s) associated to the linear homogeneous system (4.1)–(4.2) if and
only there exists a nonzero T -periodic p ∈ RCR(R,Cn) satisfying the impulsive functional
differential equation

ṗ+ λp = L(t)[expλ pt], t 6= tk (4.11)

∆p = B(k)[expλ pt− ], t = tk. (4.12)

From Corollary 4.6.1.2, we see that there is generally no easy way to extend the idea of
the characteristic equation from autonomous ordinary differential equations or delay dif-
ferential equations to the present setting. A good reference on these topics for autonomous
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functional differential equations is Chapter 7 of the book by Jack Hale and Sjoerd Verduyn
Lunel [39]. For an autonomous retarded functional differential equation

ẋ = Lxt,

the function v expλ for some nonzero v ∈ Cn is always contained within the generalized
eigenspace Eλ associated to the eigenvalue λ of the infinitesimal generator of the strongly
continuous (solution) semigroup. In particular, t 7→ eλtv must be a solution. Substituting
this into the above delay differential equation and simplifying produces the equation λv =
L(expλ v), which can be written equivalently as

(L(expλ)− λI)v = 0, (4.13)

where we define L(expλ) = [ L(e1 expλ) · · · L(en expλ) ] ∈ Cn×n. The term in parenthe-
ses in (4.13) is a complex n×n matrix – the characteristic matrix (see Section I.3 of [27])–
and v ∈ Cn. It follows that λ is an eigenvalue if and only if

det(L(expλ)− λI) = 0. (4.14)

Equation (4.14) is the characteristic equation for ẋ = Lxt. It is a scalar equation that is
generally transcendental in λ. It is difficult to formulate a similar equation for impulsive
RFDE because the equivalent dynamical characterization for Floquet exponents is pre-
cisely given by Corollary 4.6.1.2, which contains functional terms that cannot be simplified
further. For impulsive RFDE, the periodic function p(t) plays the role of the constant
vector v, and it is for this reason the functional terms cannot generally be simplified.

4.6.2 Characteristic equation for some special classes of linear
systems

For some special classes of impulsive RFDE one can define a characteristic equation in a
straightforward way, or at least reduce the problem of computing Floquet exponents to a
finite-dimensional problem. The special class we will look at is introduced in the following
definition.

Definition 4.6.3. The linear periodic system (4.1)–(4.2) is finitely reducible if L(t) and
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B(k) can be written in the form

L̃(t)φ =
∑̀
j=0

L̃j(t)φ(−jT ), (4.15)

B̃(k)φ =

∫ 0

−hk
Ck(s)φ(s)ds+

∑̀
j=0

B̃j(k)φ(−jT ), (4.16)

for some ` ≥ 0 and matrices Ãi(t) and B̃i(k), and continuous Ck : [−hk, 0] → Rn×n, with
hk ≤ tk − tk−1.

To motivate the definition of finite reducibility, it is helpful to look at the dynamical
characterization (4.11)–(4.12) of the Floquet exponents. If L(t) can be written as L̃(t)
from (4.15), then the right-hand side of the functional differential equation (4.11) becomes

L(t)[expλ pt] =
∑̀
j=0

exp(−λjT )L̃j(t)p(t− jT )

=

(∑̀
j=0

exp(−λjT )L̃j(t)

)
p(t),

where in the second line we used the periodicity of p. As a consequence, between the
impulse times the function p actually satisfies the ordinary differential equation

ṗ =

(
−λI +

∑̀
j=0

e−λjT L̃j(t)

)
p (4.17)

parameterized by the parameter λ. Let us denote Xλ(t, s) its associated Cauchy matrix.
At the impulse times, equation (4.12) becomes

p(t)− p(t−) =

∫ 0

−hk
Ck(s)e

λsp(t+ s)ds+B0(k)p(t−) +
∑̀
j=1

Bj(k)e−λjTp(t), (4.18)

with t = tk, after exploiting the periodicity of p. Since hk ≤ tk − tk−1, equation (4.17)
implies p(tk + s) = Xλ(tk + s, tk)p(t

−
k ) for all s ∈ [−hk, 0]. Substituting into (4.18), it

follows that

∆p(tk) =

(∑̀
j=1

Bj(k)e−λjT

)
p(tk) +

(∫ 0

−hk
Ck(s)e

λsXλ(tk + s, tk)ds+B0(k)

)
p(t−k ).

(4.19)

51



Assuming x(t) = p(t)eλt is a Floquet eigensolution, equation (4.19) relates the value of
p(t−k ) with that at p(tk), while the ordinary differential equation (4.17) determines the
evolution of the state p(tk) to p(t−k+1). Completing the argument in reverse in a similar
manner, the following equivalence theorem is proven.

Theorem 4.6.2. Let the linear periodic system (4.1)–(4.2) be finitely reducible. λ is a
Floquet exponent if and only if there exist p1, . . . , pc ∈ Cn not all zero such that(
I +

∫ 0

−hk
Ck(s)Xλ(tk + s, tk)e

λsds+B0(k)

)
Xλ(tk, tk−1)pk−1 =

(
I −

∑̀
j=1

Bj(k)e−λjT

)
pk,

(4.20)

for k = 1, . . . , c, where we define p0 := pc. If this is the case, then x(t) = p(t)eλt is a
Floquet eigensolution with the periodic function p : R→ Cn defined by

p(t) = Xλ(t, tk)p[k]c , t ∈ [tk, tk+1).

To summarize, one can check whether a given λ is a Floquet exponent of a finitely re-
ducible periodic system by solving the cyclic system of finite-dimensional equations (4.20).
An explicit result is provided by the following corollary.

Corollary 4.6.2.1. Suppose the linear periodic system (4.1)–(4.2) is finitely reducible with
Ck = 0 and det(I + B0(k)) 6= 0 for k = 1, . . . , c. λ is a Floquet exponent if and only if it
satisfies the characteristic equation

det

I − c∏
k=1

Xλ(tk−1, tk)(I +B0(k))−1

I − ∑̀
j=1

Bj(k)e−λjT

 = 0, (4.21)

where the product denotes composition from left to right:
∏c

k=1 Mk = M1 · · ·Mc.

Proof. From (4.20) of Theorem 4.6.2, one can uniquely write

pk−1 = Xλ(tk−1, tk)(I +B0(k))−1Mkpk,

where Mkpk is the term on the right-hand side of of (4.20) for Mk the matrix term in
parentheses. It follows that

p0 =

(
c∏

k=1

Xλ(tk−1, tk)(I +B0(k))−1Mk

)
pc.

From the cyclic condition, we must have pc = p0. It follows that there must be a nonzero
solution of the equation (I −

∏c
k=1 Xλ(tk−1, tk)(I + B0(k))−1Mk)p0 = 0, from which we

obtain equation (8.38).
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Equation (4.21) provides a generalization of the characteristic equation (4.14) from
autonomous functional differential equations to impulsive RFDEs with discrete delays be-
ing multiples of the period. It has minimal practical applications because delays are not
usually multiples of the period. Characteristic matrices (and, consequently, characteristic
equations) have been derived for periodic differential-difference equations [79, 83] under
minimal assumptions, and there is certainly a possibility of extending these results to im-
pulsive RFDE. This being said, in implementing the cited characteristic matrix construc-
tion, one must ultimately perform some kind of discretization and collocation procedure
to approximate an abstract linear operator. This leads us naturally to explore related
discretization schemes.

4.6.3 Monodromy operator discretization

In practice, it is efficient to discretize the monodromy operator with a high degree of
precision and compute approximate Floquet multipliers µ, then obtaining the Floquet
exponents by computing λ = 1

T
log µ. For bifurcation studies this is often sufficient. To

simplify the presentation of this section, we will consider the periodic, linear homogeneous
impulsive RFDE with a single discrete delay:

ẋ = A(t)x(t) +B(t)x(t− τ), t 6= kτ

∆x = Cx(t−) +Dx(t− τ), t = kτ,
(4.22)

where the impulses occur at periodic times kτ for k ∈ Z, and A(t) and B(t) are periodic
with period τ . The methodology of this section could be easily adapted to account for
multiple delays, distributed delays and for period T incommensurate with the delay.

Recall that the Floquet exponents are independent of the choice of monodromy operator
– see Theorem 4.2.2 – so we may restrict our attention to the monodromy operator V0 :
RCR → RCR. If we denote X(t, s) for t ≥ s the Cauchy matrix associated to the linear
ordinary differential equation ẏ = A(t)y and set X(t, s) = 0 for t < s, then the variation
of constants formula for ordinary differential equations implies that the solution of (4.22)
passing through the initial function φ ∈ RCR at time 0 can be written for t ∈ [0, τ ] as
follows:

x(t) = X(t, 0)φ(0) +

∫ t

0

X(t, s)B(s)φ(s− τ)ds

+ χ{τ}(t)

[
(CX(τ, 0) +D)φ(0) + C

∫ τ

0

X(τ, s)B(s)φ(s− τ)ds

]
.
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Evaluating at t = τ + θ and taking θ ∈ [−τ, 0] as the argument, exploiting the periodicity
X(s1 + τ, s2 + τ) = X(s1, s2) and B(s+ τ) = B(s) and simplifying the expression using a
few changes of variables, we can express the monodromy operator as

V0φ(θ) = [X(τ + θ, 0) + χ0(θ) (CX(τ, 0) +D)]φ(0)

+

∫ 0

−τ
[X(θ, s) + χ0(θ)CX(0, s)]B(s)φ(s)ds.

(4.23)

Our next key observation is that if v is an eigenvector of V0, then v is C1 (in fact, C∞)
on [−r, 0) with a finite jump discontinuity at zero. If we define

X = {φ : [−r, 0]→ Cn : φ|[−r,0) ∈ C1, |φ(0)− φ(0−)| <∞},

then X is an invariant subspace of V0 and it contains all of its eigenvectors. Therefore, we
may consider the restriction V0 : X → X instead of the action of the monodromy operator
on the entire space RCR.

The representation (4.23) and the description of X suggests a decomposition of φ
into its part at φ = 0 and on [−τ, 0). To do this we introduce the product space
Y = C1([−τ, 0],Cn)× Cn. The function G : Y → X defined by

G(y1, y2) = χ[−τ,0)y1 + χ{0}y2

is an isometry, so we will make the identification X ∼ Y . Then, for (φ1, φ2) ∈ Y , we can
write

V0

[
φ1

φ2

]
=

[
X(τ + ·, 0)φ2 +

∫ 0

−τ X(·, s)B(s)φ1(s)ds

((I + C)X(τ, 0) +D)φ2 +
∫ 0

−τ (I + C)X(0, s)B(s)φ1(s)ds

]
. (4.24)

We are ready to discretize the (complexified) monodromy operator. Let N ≥ 1 denote
the number of mesh points, and let −τ < s1 < · · · < sN < 0 denote the Gaussian
quadrature points in the interval [−τ, 0]. Let w1, . . . , wN denote the associated weights.
Then, we have the limit

lim
N→∞

N∑
k=1

f(sk)wk =

∫ 0

−τ
f(s)ds

for any f continuous on [−τ, 0]. We “sample” φ1 ∈ C1([−τ, 0],Cn) using the vector

φ̂1 = [ φ1(s1) . . . φ1(sN) ]ᵀ ∈ CnN
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and, taking into account the convergence of the Gaussian quadrature and using the identity
X(τ + x, τ + y) = X(x, y), we can make the approximation V0φ ≈ V0,N [ φ̂1 φ2 ]ᵀ, where

V0,N =


X(s1, s1)B(s1)w1 · · · X(s1, sN )B(sN )wN X(s1,−τ)

...
. . .

...
...

X(sN , s1)B(s1)w1 · · · X(sN , sN )B(sN )wN X(sN ,−τ)
(I + C)X(0, s1)B(s1)w1 · · · (I + C)X(0, sN )B(sN )wN (I + C)X(0,−τ) +D

 . (4.25)

Given the compactness (Lemma 4.2.2) of V0, we should hope that any eigenvalue of V0 is
given by the limit of some eigenvalue of V0,N as N → ∞ provided V0,N → V0 pointwise
(after defining V0,N on X by an appropriate embedding, so as to make this convergence
sensical). Consequently, the spectrum of V0,N may be seen as an approximation of that of
V0, so we may approximate the Floquet spectrum via

λ(U) ≈
{

1

τ
log µ : µ ∈ σ(V0,N)

}
.

We will not delve into a proof of the convergence and approximation claims at this time,
as this is not the primary focus of this thesis. We refer the reader to [35], where a similar
scheme is developed for the discretization of linear periodic delay differential equations and
convergence results are proven.

When we use this method to approximate Floquet exponents in later sections, we use
a numerically computed Cauchy matrix X(t, s) generated by MATLAB’s ode45 function.
The entries X(si, sj) appearing in the matrix V0,N are zero for i < j and are the identity
for i = j, so most superdiagonal entries do not need to be calculated. As for the nonzero
entries, we remark that

X(si, sj) = X(si,−τ)[X(sj,−τ)]−1,

so it is enough to compute X(sk,−τ) for k = 1, . . . , N mesh points and recycle these
matrices to compute all others. This speeds up the process of computing the matrix V0,N

considerably.
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Chapter 5

Nonlinear systems

The content of Section 4.1 and Section 4.2 appears in Smooth centre manifolds for impulsive
delay differential equations [21] by Church and Liu. The linearized stability result of
Section 4.3 was stated without proof in the body text of Computation of centre manifolds
and some codimension-one bifurcations for impulsive delay differential equations [20]. We
have formalized and proven it here.

5.1 Mild solutions

Our attention shifts now to the semilinear system

ẋ = L(t)xt + f(t, xt), t 6= tk (5.1)

∆x = B(k)xt− + g(k, xt−), t = tk, (5.2)

for nonlinearities f : R×RCR → Rn and g : Z×RCR → Rn. Additional assumptions on
the nonlinearities, evolution family and sequence of impulses may include the following.

H.4 For j = 0, . . . ,m, and any φ, ψ(1), . . . , ψ(j) ∈ RCR([α − r, β],Rn), the function t 7→
Djf(t, φt)[ψ

(1)
1 , . . . , ψ

(j)
t ] is an element of RCR([α, β],Rn).

H.5 The evolution family U(t, s) : RCR → RCR associated to the homogeneous equation
(4.1)–(4.2) is spectrally separated.
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H.6 φ 7→ (t, φ) and φ 7→ gk(φ) are Cm for some m ≥ 1 for each t ∈ R and k ∈ Z, and
there exists δ > 0 such that for each j = 0, . . . ,m, there exists cj : R → R+ locally
bounded and a positive sequence {dj(k) : k ∈ Z} such that

||Djf(t, φ)−Djf(t, ψ)|| ≤ cj(t)||φ− ψ||,
||Djg(k, φ)−Djg(k, ψ)|| ≤ dj(k)||φ− ψ||.

for φ, ψ ∈ Bδ(0) ⊂ RCR. Also, there exists q > 0 such that ||Djf(t, φ)|| ≤ qcj(t)
and ||Djgk(φ)|| ≤ qdj(k) for φ ∈ Bδ(0).

H.7 f(t, 0) = g(k, 0) = 0 and Df(t, 0) = Dg(k, 0) = 0 for all t ∈ R and k ∈ Z.

H.8 There exists a constant ξ > 0 such that tk+1 − tk ≥ ξ for all k ∈ Z.

Remark 5.1.1. If conditions H.1–H.6 are satisfied and one has f(t, 0) = g(k, 0) = 0,
then one can obtain a semilinear equation of the form (5.1)–(5.2) by defining F (t, φ) =
f(t, φ)−Df(t, 0)φ and G(k, φ) = g(k, φ)−Dg(k, 0)φ. Specifically, one can write

ẋ = Df(t, 0)xt + F (t, xt), t 6= tk

∆x = Dg(k, 0)xt− +G(k, xt−), t = tk,

so that conditions H.1–H7 are all satisfied with L(t) = Df(t, 0) and B(k) = Dg(k, 0). In
this sense, the linear terms should be thought of as the linear-order terms in the expansion
of the vector field and jump map, near φ = 0 in RCR. For these reasons, we will refer to
the linear system

ẋ = L(t)xt, t 6= tk

∆x = B(k)xt− , t = tk,

as the linearization of (5.1)–(5.2).

Definition 5.1.1. A mild solution of the semilinear equation (5.1)–(5.2) is a function
x : [s, T ]→ RCR such that for all s ≤ t < T

x(t) = U(t, s)x(s) +

∫ t

s

U(t, µ)[χ0f(µ, x(µ))]dµ+
∑
s<ti≤t

U(t, ti)[χ0g(i, x(t−i ))], (5.3)

and x(t)(θ) = x(t+θ)(0) whenever θ ∈ [−r.0] satisfies t+θ ∈ [s, T ], where U is the evolution
family associated to the homogeneous equation (4.1)–(4.2) and the integral is interpreted
in the Pettis sense.
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Remark 5.1.2. The right-hand side of equation (5.3) is well-posed under conditions H.1–
H.3 in the sense that it naturally defines for s ≤ t < T , a nonlinear operator from RCR([s−
r, t],Rn) into RCR. Note also that for a function x : [s, T ]→ RCR, we denote x(t−i )(θ) =
x(ti)(θ) for θ < 0 and x(t−i )(0) = x(ti)(0

−).

If x : [s − r, T ) → Rn is a classical solution — that is, x is differentiable from the
right, continuous except at impulse times tk, continuous from the right on [s− r, T ] and its
derivative satisfies the differential equation (5.1)–(5.2) — then t 7→ xt is a mild solution.
This can be seen by defining the inhomogeneities h(t) ≡ f(t, xt) and r(k) ≡ g(k, xt−k

),

solving the equivalent linear equation (3.1)–(3.2) with these inhomogeneities and initial
condition (s, xs) ∈ R ×RCR in the integrated sense, and applying Corollary 3.3.1.1. For
this reason, we will work with equation (5.3) exclusively from now on.

Additionally, one should note that the assumption H.5 implies that the nonlinearities
are uniformly locally Lipschitz continuous. Together with the other assumptions, this
implies the local existence and uniqueness of mild solutions through a given (s, φ) ∈ R ×
RCR. Namely, we have the following lemma, which may be seen as a local, nonlinear
version of Lemma (3.1.1), with an extension of Lemma 3.1.2. Its proof is an application of
the Banach fixed point theorem and is omitted. The idea is nearly identical to a portion
of the proof of Proposition 5.3.1 in the following section, and the interested reader may
consult it for reference.

Lemma 5.1.1. Under assumptions H.1–H.5, for all (s, φ) ∈ R×D, there exists a unique
mild solution x(s,φ) : [s, s + α) → RCR of (5.3) for some α = α(s, φ) > 0, satisfying
x(s) = φ. Moreover, the function

t 7→ y(t) :=

{
x(s,φ)(t)(0), t ∈ [s, s+ α)
φ(s− t), t ∈ [s, s− r)

is an element of RCR([s− r, s+ α),Rn), the restriction to [s, α) is differentiable from the
right, it is continuous except at impulse times {tk : k ∈ Z}, and x(s,φ)(t) = yt. That is, it
is a classical solution. If one defines the nonautonomous set

M =
⋃

φ∈RCR

⋃
s∈R

⋃
t∈[s,s+α)

{t} × {s} × {φ},

then S : M → RCR with S(t, s)x = x(s,φ)(t) is a process on RCR. Finally, if x : R →
RCR is a mild solution defined for all time, then the function y(t) = x(t)(0) is an element
of RCR1(R,Rn), its only discontinuities occur in {tk : k ∈ Z} and x(t) = yt.
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Combining the discussion following Definition 5.1.1 with Lemma 5.1.1, it follows that
S(t, s) satisfies the following abstract integral equation wherever it is defined.

S(t, s)φ = U(t, s)φ+

∫ t

s

U(t, µ)χ0f(µ, S(µ, s)φ)dµ+
∑
s<ti≤t

U(t, ti)χ0g(i, S(t−i , s)φ). (5.4)

5.2 Smoothness with respect to initial conditions

Of use later will be a result concerning the smoothness of the process S :M→RCR with
respect to initial conditions. This result is interesting in its own right and will be useful
later in proving the periodicity of centre manifolds (Theorem 7.1.2).

Definition 5.2.1. We say the process S(t, s) :M→RCR guaranteed by Lemma 5.1.1 is
generated by the impulsive RFDE (5.1)–(5.2).

Theorem 5.2.1. Under hypotheses H.1–H.6, the process S : M → RCR is Cm. More
precisely, φ 7→ S(t, s)φ is Cm in a neighbourhood of φ, provided (t, s, φ) ∈ M. Also,
DS(t, s)φ ∈ L(RCR) for given φ ∈ RCR satisfies for t ≥ s the abstract integral equation

DS(t, s)φ = U(t, s) +

∫ t

s

U(t, µ)χ0Df(µ, S(µ, s)φ)DS(µ, s)dµ

+
∑
s<ti≤t

U(t, ti)χ0Dg(ti, S(t−i , s)φ)DS(t−i , s).
(5.5)

Proof. We will prove only that S is C1, the proof of higher-order smoothness being an
essentially identical albeit notationally cumbersome extension thereof. Let s ∈ R be fixed.
Let ψ ∈ RCR be given. For given ν > 0, denote by Bν(ψ) the closed ball centered at ψ
with radius ν in RCR.

Introduce for given ε, δ, ν > 0 the normed vector space (Xε,δ,ν , ||·||), where Xε,δ,ν consists
of the functions φ : [s− r, s+ ε]× Bδ(ψ)→ Bν(ψ) such that x 7→ φ(t, x) is continuous for
each t, φ(t, x)(θ) = φ(t + θ, x)(0) whenever θ ∈ [−r, 0] and [t + θ, t] ⊂ [s − r, s + ε], and
|φ|| <∞ for the norm given by

||φ||ε,δ,ν = sup
t∈[s−r,s+ε]
||x−ψ||≤δ

||φ(t, x)||.

It can be easily verified that (Xε,δ,ν , || · ||) is a Banach space. With L(RCR) the bounded
linear operators on RCR, introduce also the space (Xε,δ, || · ||) consisting of functions

59



Φ : [s − r, s + ε] × RCR → L(RCR) such that x 7→ Φ(t, x) is continuous for each t,
Φ(t, x)h(θ) = Φ(t+θ, x)h(0) for all h ∈ RCR, and ||Φ|| <∞, where the norm is ||Φ(t, x)|| =
sup||h||=1 ||Φ(t, x)h||ε,δ,ν . Clearly, (Xε,δ, || · ||) is complete.

Define a pair of nonlinear operators

Λ1 : Xε,δ,ν → Xε,δ,ν ,

Λ1(φ)(t, x) = χ[s−r,s)(t)x(t− s) + χ[s,s+ε](t)

[
U(t, s)x(s) +

∫ t

s

U(t, s)χ0f(µ, φ(µ, x))dµ

+
∑

s<ti≤t

U(t, ti)χ0g(ti, φ(t−i , x))


Λ2 : Xε,δ ×Xε,δ → Xε,δ

Λ2(φ,Φ)(t, x)h = χ[s−r,s)(t)IRCRh+ χ[s,s+ε](t)

[
U(t, s)h+

∫ t

s

U(t, µ)χ0Df(µ, φ(µ, x))Φ(µ, x)hdµ+

+
∑

s<ti≤t

U(t, µ)χ0Dg(i, φ(t−i , x)))Φ(t−i , x)h

 ,
where in the definition of Λ2 we have h ∈ RCR. By choosing ε and δ small enough, Λ1

can be shown to be a uniform contraction. Indeed, if we denote κ = sup||x−ψ||≤2δ ||x||, the
mean-value theorem grants the estimate

||Λ1(φ)− Λ1(γ)|| ≤ κ sup
t∈[s,s+ε]

(∫ t

s

||U(t, µ)||c1(µ)dµ+
∑
s<ti≤t

||U(t, ti)||d1(i)

)
||φ− γ||

≡ κLε||φ− γ||

We can always obtain a uniform contraction by taking ε small enough. Also, note that
t 7→ Λ1(φ)(t, x) ∈ RCR, x 7→ Λ1(φ, x) is continuous and Λ1(φ)(t, x)(θ) = Λ1(φ)(t+θ, x)(0).
To ensure the appropriate boundedness, if we denote κ = sup||x−ψ||≤δ k0(x), the estimate

||Λ1(φ)− ψ|| ≤ ||φ− ψ||+ κ sup
t∈[s,s+ε]

(∫ t

s

||U(t, µ)||c0(µ)dµ+
∑
s<ti≤t

||U(t, ti)||d0(i)

)
≡ δ + κMε

implies it is sufficient to choose ε, δ, ν > 0 small enough so that δ + κMε < ν. This can
always be done because Mε → 0 as ε→ 0 due to H.5 and Lemma 3.2.1.
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The continuity of φ 7→ Λ2(φ,Φ) for fixed Φ ∈ Xε,δ follows by the estimate

||Λ2(φ,Φ)− Λ2(γ,Φ)|| ≤
(∫ s+ε

s

||U(s+ ε, µ)||c1(µ)||(φ(µ, x)− γ(µ, x)||dµ

+
∑

s<ti≤s+ε

||U(s+ ε, ti)||d1(i)||φ(t−i , x)− γ(t−i , x)||

)
||Φ||.

Also, for each φ ∈ Bδ(ψ) it is readily verified that ||Λ2(φ,Φ) − Λ2(φ,Γ)|| ≤ κLε||Φ −
Γ||, which by previous choices of ε, δ, ν > 0 indicates that Φ 7→ Λ2(φ,Φ) is a uniform
contraction.

We are ready to prove the statement of the theorem. Denote by (xn, x
′
n) the iterates

of the map Λ : Xε,δ,ν ×Xε,δ,ν → Xε,δ,ν ×Xε,δ,ν defined by Λ(x, x′) = (Λ1(x),Λ2(x, x′)) and
initialized at (x0, x

′
0) with x0(t, x) = x and x′0(t, x) = IRCR. The fiber contraction theorem

– see [43] for the original, more abstract result or Theorem 1.176 of [15] for a more concrete
formalism – implies convergence (xn, x

′
n)→ (x, x′). Note also that Dx0 = x′0. If we suppose

Dxn = x′n for some n ≥ 0, then for t ≥ s, Lemma 3.3.5 implies that for each θ ∈ [−r, 0],

Dxn+1(t, φ)(θ) = D

[
U(t, s)xn(s, φ)(θ) +

∫ t

s

U(t, µ)χ0f(µ, xn(µ, φ))(θ)dµ

+
∑

s<ti≤t

U(t, ti)χ0g(i, xn(t−i , φ))(θ)


= D

[
U(t, s)xn(s, φ)(θ) +

∫ t

s

V (t+ θ, µ)f(µ, xn+1(µ, φ))dµ

+
∑

s<ti≤t

V (t+ θ, ti)g(i, xn+1(t−i , φ))


= U(t, s)x′n(s, φ)(θ) +

∫ t

s

V (t+ θ, µ)Df(µ, xn(µ, φ))x′n(µ, φ)dµ

+
∑

s<ti≤t

V (t+ θ, ti)Dg(i, xn(t−i , φ))x′n(t−i , φ),

which is precisely Λ2(xn, x
′
n)(t, φ)(θ) = x′n+1(t, φ)(θ). For for t < s, it is easily checked that

Dxn+1(t, φ) = x′n+1(t, φ). This proves that Dxn+1(θ) = x′n+1(θ) pointwise in θ. To prove
the result uniformly, we note that the difference quotient can be written for t ≥ s as

1

||h||
(
xn+1(t, φ+ h)− xn+1(t, φ)− x′n+1(t, φ)h

)
=

∫ t

s

U(t, µ)χ0
1

||h||
(
f(µ, xn(µ, φ+ h))− f(µ, xn(µ, φ))−Df(µ, xn(µ, φ))Dxn(µ, φ)h

)
dµ
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+
∑

s<ti≤t

U(t, ti)χ0
1

||h||
(
g(i, xn(t−i , φ+ h))− g(i, xn(t−i , φ))−Dg(i, xn(t−i , φ))Dxn(t−i , φ)h

)
.

Since xn is differentiable by the induction hypothesis, the integrand and summand converge
uniformly to zero as h→ 0. Thus, xn+1 is differentiable and Dxn+1 = x′n+1, so by induction
Dxn = x′n for each n. Also, by construction, x′n is continuous for each n and, being the
uniform limit of continuous functions, x′ = limn→∞ x

′ is continuous. By the fundamental
theorem of calculus,

x(φ+ h)− x(φ)− x′(φ)h

||h||
= lim

n→∞

xn(φ+ h)− xn(φ)−Dxn(φ)h

||h||

= lim
n→∞

∫ 1

0

1

||h||
[x′n(φ+ (λ− 1)h)− x′n(φ)]hdλ

=

∫ 1

0

1

||h||
[x′(φ+ (λ− 1)h)− x′(φ)]hdλ→ 0

as h→ 0. By definition, x is differentiable and Dx = x′.

If we define y(t)φ = x(t, φ) for the fixed point x : [s− r, s+ ε]× Bδ(ψ)→ Bν(ψ), then
y satisfies y(t)φ = S(t, s)φ for (t, φ) ∈ [s, s + ε] × Bδ(ψ). This can be seen by comparing
the fixed point equation y(t) = Λ1(y)(t, φ) with the abstract integral equation (5.4). We
conclude that S is C1 (fibrewise). The correctness of equation (5.5) follows by comparing
to the fixed point equation associated to Λ2.

5.3 Linearized stability

A fundamental result in stability theory for ordinary differential equations is that the
equilibrium point x∗ of the nonlinear system

ẋ = f(x)

is locally exponentially stable if the eigenvalues of Df(x∗) have strictly negative real part.
Similar results hold for discrete-time systems. For autonomous delay differential equations,
the same conclusion holds with respect to the eigenvalues of the generator of the continuous
semigroup associated to the linearization; see Section VII, Corollary 5.12 of [27]. For
impulsive RFDE, we have an analogous result under certain conditions. First, a definition.

Definition 5.3.1. Let S : M→ RCR be the process associated to the semilinear system
(5.1)–(5.2). The fixed point 0 ∈ RCR is
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• exponentially stable if there exists δ, α,K > 0 such that for t ≥ s, one has ||S(t, s)φ|| ≤
Ke−α(t−s) whenever ||φ|| < δ;

• stable if for all ε > 0 there exists δ = δ(ε, s) > 0 such that for all t ≥ s, one has
||S(t, s)φ|| ≤ ε whenever ||φ|| < δ;

• unstable if it is not stable.

Proposition 5.3.1. Let assumptions H.1–H.7 hold. Assume for all δ > 0 sufficiently
small, there exists c(δ) ≥ 0 satisfying limδ→0+ c(δ) = 0 and such that

||f(t, φ)− f(t, ψ)|| ≤ c||φ− ψ||
||g(k, φ)− g(k, ψ)|| ≤ c||φ− ψ||,

for all t ∈ R, k ∈ Z and φ, ψ ∈ Bδ(0). If the evolution family U(t, s) : RCR → RCR
associated to the linearization of (5.1)–(5.2) is hyperbolic and RCRu(t) = {0}, the fixed
point 0 is exponentially stable.

Proof. Since RCRu(t) = {0} and the the linearization is hyperbolic, the evolution family
satisfies ||U(t, s)|| ≤ Kea(t−s) for some a < 0, for all t ≥ s. We first prove that the fixed
point is stable. Let ε > 0 be arbitrary, and choose some ε′ ≤ ε small enough so that(

1 +
1

ξ

)
c(ε′) <

1

2
, (5.6)

where c is the constant from the statement of the theorem. Next, choose δ > 0 satisfying

δ <
ε′

2K
. (5.7)

Let ||φ|| < δ, and introduce the space of history-valued functions Xφ, defined by

Xφ =
{
z : [s,∞)→ RCR : ∃y ∈ RCR([s− r,∞),Rn), z(t) = yt, ||z|| < ε′, z(s) = φ

}
,

on which we introduce the norm ||z|| = supt≥s ||z(t)|| where the latter is the typical supre-
mum norm. Xφ is clearly equivalent up to isometry as a normed space to the subspace

{w ∈ RCR([s− r,∞) : ||w|| < ε,ws = φ} ⊂ RCR([s− r,∞),Rn).

Since the latter is complete, the same is true of Xφ. Consider the formal expression

F (z)[t] = U(t, s)φ+

∫ t

s

U(t, µ)[χ0f(µ, z(µ))]dµ+
∑
s<ti≤t

U(t, ti)[χ0g(i, z(t−i ))]
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for z ∈ Xφ. By assumption H.3 and Lemma 3.3.5, the above defines a nonlinear map
F : Xφ → X, with

X = {z : [s,∞)→ RCR : ∃y ∈ RCR([s− r,∞),Rn), z(t) = yt, ||z|| <∞} ⊃ Xφ.

We claim that im(F ) ⊂ Xφ. We can estimate the nom ||F (z)[t]|| using ||U(t, s)|| ≤ Kea(t−s),
the fundamental theorem of calculus for Banach-space valued C1 functions and Lemma
2.4.2. The result is

||F (z)[t]|| ≤ Kea(t−s)δ +
K(1− ea(t−s))

−a
c(ε′)ε′ +

K(1− ea(t+ξ−s))

−aξ
c(ε′)ε′,

and from inequalities (5.6) and (5.7) together with a < 0, it follows that ||F (z)[t]|| < ε′ for
all t ≥ s, independent of s. Since mild solutions are precisely fixed points of F , it follows
that whenever ||φ|| < δ, the process satisfies ||S(t, s)φ|| < ε′ ≤ ε for all t ≥ s. That is, the
fixed point is (uniformly) stable.

To get exponential stability, repeat the above argument but with the stronger condition
that ε′ ≤ ε is small enough to guarantee in addition to (5.6), the inequality

ρ := a+Kc(ε′)

(
1 +

1

ξ

)
< 0. (5.8)

We begin with the the integral equation (5.4) for the mild solution. We have the estimate

||S(t, s)φ|| ≤ Kea(t−s)||φ||+
∫ t

s

Kea(t−µ)||S(µ, s)φ||c(ε′)dµ+
∑
s<ti≤t

Kea(t−ti)||S(t−i , s)φ||c(ε′)

for all t ≥ s, provided ||φ|| < δ, where δ > 0 is again chosen according to (5.7). Multiplying
both sides by e−at, this is equivalent to

e−at||S(t, s)φ|| ≤ Ke−as||φ||+
∫ t

s

Kc(ε′)e−aµ||S(µ, s)φ||dµ+
∑
s<ti≤t

Kc(ε′)e−ati||S(t−i , s)φ||.

Applying the Gronwall Lemma 2.4.1 to t 7→ e−at||S(t, s)φ||, we eventually obtain

e−at||S(t, s)φ|| ≤ Ke−as||φ|| exp

(
(t− s)Kc(ε′) +

(t+ ξ − s)
ξ

log(1 +Kc(ε′))

)
.

Multiplying by eat and exploiting log(1 + x) ≤ x for x > 0, we obtain

||S(t, s)φ|| ≤ K(1 +Kc(ε′))||φ||eρ(t−s),

and since ρ < 0 from the assumption (5.8) that ε′ is chosen small enough, we obtain
exponential stability.
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We would expect the opposite result to also be true. That is, if the unstable fibre
bundle RCRu is non-trivial then the trivial fixed point of the semilinear system (5.1)–(5.2)
is unstable. At this stage, proving such a result seems quite difficult. The reason for
this is that the integral formulation of mild solutions of (5.3) is slightly less amenable to
establishing lower bounds on solutions than it is on upper bounds. Indeed, in proving the
linearized stability theorem we mercilessly exploited the inequality ||U(t, s)|| ≤ Kea(t−s)

which, since integrals behave well with respect to upper majorization, ultimately allowed
us to get exponentially decaying estimates on (nonlinear) mild solutions. This does not
work with lower bounds, even though one can exploit the fact that the all-time process
Uu(t, s) : RCRu → RCRu restricted to the unstable fibre bundle admits the lower bound
||Uu(t, s)|| ≥ 1

K
eb(t−s).

If the system were periodic, we could make a slight modification to the proof of Proposi-
tion 5.10 of Section VII from [27] to prove an instability theorem, but this is not a general
result. Instead, we will postpone such discussions until Chapter 9 where we will study
hyperbolicity in a bit more detail.
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Chapter 6

Centre manifold theory I: existence
and reduction principles

The content of this chapter appears almost in its entirety in Smooth centre manifolds for
impulsive delay differential equations [21] by Church and Liu, although there are some
improvements. Specifically, the cutoff nonlinearities have been redefined so that we are
later able to get smoothness in state under weaker assumptions on the linear part. There
is also a minor correction to part 3 of Theorem 5.5.1 in this thesis that was not caught
earlier; the errata has been submitted to the publisher. Corollary 6.6.1.1 and the contents
of Section 6.8 are unpublished, as is the example in Section 6.6.1.

6.1 Spaces of exponentially weighted functions

At this stage it is appropriate to introduce several exponentially weighted Banach spaces
that will be needed to construct the centre manifolds. First, denote PC(R,Rn) the set of
functions f : R→ Rn that are continuous everywhere except for at times t ∈ {tk : k ∈ Z}
where they are continuous from the right and have limits on the left.

PCη =

{
φ : R→ RCR : φ(t) = ft for some f ∈ PC(R,Rn),
and ||φ||η = supt∈R e

−η|t|||φ(t)|| <∞

}
Bη(R,RCR) = {f : R→ RCR : ||f ||η = sup

t∈R
e−η|t|||f(t)|| <∞}

PCη(R,Rn) = {f ∈ PC(R,Rn) : ||f ||η = sup
t∈R

e−η|t|||f(t)|| <∞}
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Bη
tk

(Z,Rn) = {f : Z→ Rn : ||f ||η = sup
k∈Z

e−η|tk||fk| <∞}.

Also, ifM⊂ R×RCR is a nonautonomous set over RCR, we define the space PCη(R,M)
of piecewise-continuous functions taking values in M by

PCη(R,M) = {f ∈ PCη : f(t) ∈M(t)}.

If Xη is one of the above spaces, then the normed space Xη,s = (Xη, || · ||η,s) with norm

||F ||η,s =

{
supt∈R e

−η|t−s|||F (t)||, dom(F ) = R
supk∈Z e

−η|tk−s|||F (k)||, dom(F ) = Z,

is complete.

6.2 η-bounded solutions from inhomogeneities

In this section we will characterize the η-bounded solutions of the inhomogeneous linear
equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, µ)[χ0F (µ)]dµ+
∑
s<ti≤t

U(t, ti)[χ0Gi], −∞ < s ≤ t <∞,

(6.1)

for inhomogeneous terms F and G. As defined in Definition 3.2.4, we recall now that
RCRc(t) = R(Pc(t)), where Pc is the projection onto the centre bundle of the linear part
of (5.1)–(5.2).

Lemma 6.2.1. Let η ∈ (0,min{−a, b}) and let H.1, H.2 and H.5 hold. Then,

RCRc(ν) = {ϕ ∈ RCR : ∃x ∈ PCη, x(t) = U(t, s)x(s), x(ν) = ϕ} . (6.2)

Proof. If ϕ ∈ RCRc(ν), then Pc(ν)ϕ = ϕ and the function x(t) = U(t, ν)Pc(ν)ϕ =
Uc(t, ν)ϕ is defined for all t ∈ R, satisfies x(t) = U(t, s)x(s), x(ν) = ϕ, x(t)(θ) = x(t+θ)(0),
and by choosing ε < η, there exists K > 0 such that

e−η|t|||x(t)|| ≤ Keε|ν|e−(η−ε)|t|||ϕ|| ≤ Keε|ν|||ϕ||.

Finally, as x(t) = [U(t, s)x(s)(0)]t for all t ∈ R, we conclude x ∈ PCη.
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Conversely, suppose ϕ ∈ RCR admits some x ∈ PCη such that x(t) = U(t, s)x(s)
and x(ν) = ϕ. Let ||x||η = K. We will show that Ps(ν)ϕ = Pu(ν)ϕ = 0, so that
ϕ = Iϕ = (Pc(ν) + Ps(ν) + Pu(ν))ϕ = Pc(ν)ϕ, from which we will conclude ϕ ∈ RCRc(ν).

By spectral separation, we have for all ρ < ν,

e−η|ρ|||Ps(ν)ϕ|| = e−η|ρ|||Us(ν, ρ)Ps(ρ)x(ρ)||
≤ e−η|ρ|Kea(ν−ρ)||Ps(ρ)|| · ||x(ρ)||
≤ KKea(ν−ρ)||Ps(ρ)||,

which implies ||Ps(ν)ϕ|| ≤ KKeaν ||Ps(ρ)|| exp(η|ρ| − aρ). Since η < −a and ρ 7→ ||Ps(ρ)||
is bounded, taking the limit as ρ → −∞ we obtain ||Ps(ν)ϕ||| ≤ 0. Similarly, for ρ > ν,
we have

e−η|ρ|||Pu(ν)ϕ|| = e−η|ρ|||Uu(ν, ρ)Pu(ρ)x(ρ)||
≤ e−η|ρ|Keb(ν−ρ)||Pu(ρ)|| · ||x(ρ)||
≤ KKeb(ν−ρ)||Pu(ρ)||,

which implies ||Pu(ν)ϕ|| ≤ KKebν ||Pu(ρ)|| exp(η|ρ| − bρ). Since η <b and ρ 7→ ||Pu(ρ)|| is
bounded, taking the limit ρ→∞ we obtain ||Pu(ν)ϕ|| ≤ 0. Therefore, Ps(ν)ϕ = Pu(ν)ϕ =
0, and we conclude that Pc(ν)ϕ = ϕ and ϕ ∈ RCRc(ν).

Lemma 6.2.2. Let conditions H.1, H.2 and H.5 be satisfied. Let h ∈ RCR(R,Rn). The
integrals ∫ t

s

U(t, µ)Pc(µ)[χ0h(µ)]dµ,

∫ t

v

U(t, µ)Pu(µ)[χ0h(µ)]dµ

are well-defined as Pettis integrals for all s, t, v ∈ R, where we define
∫ a
b
fdµ = −

∫ b
a
fdµ

when a < b.

Proof. The nontrivial cases are where t ≤ s and t ≤ v. For the former, defining H(µ) =
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χ0h(µ) we have the string of equalities

Uc(t, s)Pc(s)

∫ s

t

U(s, µ)H(µ)dµ = Uc(t, s)

∫ s

t

Uc(s, µ)Pc(µ)H(µ)dµ

=

∫ s

t

Uc(t, µ)Pc(µ)H(µ)dµ

=

∫ s

t

U(t, µ)Pc(µ)H(µ)dµ

= −
∫ t

s

U(t, µ)Pc(µ)H(µ)dµ.

The first integral on the left exists due to Lemma 3.3.5 and Proposition 2.2.1. The subse-
quent equalities follow by Proposition 3.3.5 and the definition of spectral separation. The
case t ≤ v for the other integral is proven similarly.

Define the (formal) linear operators Kηs : PCη,s ⊕ Bη
tk

(Z,Rn) → Bη(R,RCR) by the
equation

Kηs (F,G)(t) =

∫ t

s

U(t, µ)Pc(µ)[χ0F (µ)]dµ−
∫ ∞
t

U(t, µ)Pu(µ)[χ0F (µ)]dµ+

∫ t

−∞
U(t, µ)Ps(µ)[χ0F (µ)]dµ

+

t∑
s

U(t, ti)Pc(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti +

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti,

(6.3)

indexed by s ∈ R, where the external direct sum PCη,s ⊕ Bη,s
tk

(Z,Rn) is identified as a
Banach space with norm ||(f, g)||η,s = ||f ||η,s + ||g||η,s, and the summations are defined as
follows:

b∑
a

F (ti)dti =


∑
a<ti≤b

F (ti), a ≤ b

−
a∑
b

F (ti)dti, b < a.

Lemma 6.2.3. Let H.1, H.2, H.5 and H.7 hold, and let η ∈ (0,min{−a, b}).

1. The function Kηs : PCη,s⊕Bη,s
tk

(Z,Rn)→ Bη,s(R,RCR) with η ∈ (0,min{−a, b}) and
defined by formula (6.3) is linear and bounded. In particular, the norm satisfies

||Kηs || ≤ C

[
1

η − ε

(
1 +

e(η−ε)ξ

ξ

)
+

1

−a− η

(
1 +

2e(η−a)ξ

ξ

)
+

1

b− η

(
1 +

2e(b+η)ξ

ξ

)]
(6.4)
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for some constants C and ε independent of s.

2. Kηs has range in PCη,s and v = Kηs(F,G) is the unique solution of (6.1) in PCη,s
satisfying Pc(s)v(s) = 0.

3. The expression K∗(F,G)(t) = (I − Pc(t))K0
s (F,G)(t) uniquely defines, independent

of s, a bounded linear map

K∗ : PC0 ⊕B0
tk

(Z,Rn)→ PC0.

Proof. Let ε < min{min{−a, b} − η, η}. To show that Kηs is well-defined, we start by
mentioning that all improper integrals and infinite sums appearing on the right-hand side
of (6.3) can be interpreted as limits of well-defined finite integrals and sums, due to Lemma
3.3.5, Lemma 6.2.2 and Proposition 2.2.1. For brevity, write

Kηs(F,G) =
(
Ku,f

1 −Kc,F
1 +Ku,F

1

)
+
(
Ku,G

2 −Kc,G
2 +Ks,G

2

)
,

where each term corresponds to the one in (6.3) in order of appearance.

We start by proving the convergence of the improper integrals. Denote

I(v) =

∫ v

t

U(v, µ)Pu(µ)[χ0F (µ)]dµ,

and let vk ↗∞. We have, for m > n and n sufficiently large so that vm > 0,

||I(vm)− I(vn)|| ≤
∫ vm

vn

KNeb(t−µ)|F (µ)|dµ

≤
∫ vm

vn

KNeb(t−µ)eηµ||F ||ηdµ

= KN ||F ||ηebt
∫ vm

vn

eµ(η−b)dµ

=
KN ||F ||η
b− η

ebt
(
e−vn(b−η) − e−vm(b−η)

)
≤ KN ||F ||η

b− η
ebte−vn(b−η).

Therefore, I(vk) ∈ RCR is Cauchy, and thus converges; namely, it converges to the im-
proper integral Ku,F (t). One can similarly prove that Ks,F (t) converges. For the infinite
sums, we employ similar estimates; if we denote S =

∑
t<ti<∞ ||Uu(t, ti)[χ0Gi]|| and assume
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without loss of generality that t0 = 0, a fairly crude estimate (that we will later improve)
yields

S ≤
∑

t<ti<∞

KNeb(t−ti)eη|ti|||G||η

=
∑

−|t|<ti≤0

KN ||G||ηebte|ti|(b+η) +
∑

0<tk<∞

KN ||G||ηebte−(b−η)ti

≤ KNebt
(
|t|
ξ
e|t|(b+η) +

1

1− e−(b−η)ξ

)
||G||η.

Thus, Ku,G(t) converges uniformly. One can show by similar means that Ks,F (t) and
Ks,G(t) both converge. Therefore, Kηs(F,G)(t) ∈ RCR exists. We can now unambiguously
state that Kηs is clearly linear.

Our next task is to prove that ||Kη
s (F,G)]||η,s ≤ Q||(F,G)||η,s for constant Q satisfying

the estimate of equation (6.4). We will prove the bounds only for ||Ku,F ||η,s, ||Ku,G||η,s,
||Kc,F ||η,s and ||Kc,G||η,s; the others follow by similar calculations. For t < s, we we have

e−η|t−s|||Ku,F (t)|| ≤ e−η|t−s|
∫ ∞
t

KNeb(t−µ)|F (µ)|dµ

≤ eη(t−s)KN

[∫ s

t

eb(t−µ)eη|µ−s|||F ||η,sdµ+

∫ ∞
s

eb(t−µ)eη|µ−s|||F ||η,sdµ
]

= eη(t−s)KN ||F ||η,s
[∫ s

t

eb(t−µ)eη(s−µ)dµ+

∫ ∞
s

eb(t−µ)eη(µ−s)dµ

]
= eη(t−s)KN ||F ||η,s

[
ebt+ηs

e−(b+η)t − e−(b+η)s

b+ η
+ ebt−ηs

e−(b−η)s

b− η

]
≤ KN ||F ||η,s

1

b− η

The above inequality is also satisfied for t ≥ 0, and we conclude ||Ku,F ||η,s ≤ KN(b −
η)−1||(F,G)||η,s. Next, for t < s,

e−η|t−s|||Ku,G(t)|| ≤ e−η|t−s|
∑

t<ti<∞

KNeb(t−ti)|Gi|

≤ eη(t−s)KN

[ ∑
t<ti<s

eb(t−ti)eη|ti−s|||G||η,s +
∑

s≤τi<∞

eb(t−ti)eη|ti−s|||G||η,s

]

≤ eη(t−s)KN ||G||η,s
1

ξ

[∫ s

t−ξ
eb(t−µ)eη(s−µ)dµ+

∫ ∞
s−ξ

eb(t−µ)eη(µ−s)dµ

]
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≤ eη(t−s)KN ||G||η,s
ξ

[
ebt+ηs

e−(b+η)(t−ξ) − e−(b+η)x

b+ η
+ ebt−ηs

e−(b−η)(s−ξ)

b− η

]
≤ 2KN ||G||η,s

ξ(b− η)
· e(b+η)ξ,

where we have made use of Lemma 2.4.2 to estimate the sums. The same conclusion is
valid for t ≥ s, and it follows that ||Ku,G||η,s ≤ 2KNe(b+η)ξ(ξ(b − η))−1||(F,G)||η,s. Next,
for t ≤ s,

e−η|t−s|||Kc,G(t)|| ≤ eη(t−s)KN ||G||η,s
∑
t<ti≤s

eε(ti−t)eη(s−ti)

≤ eη(t−s)KN ||G||η,s
ξ

∫ t

s−ξ
eε(µ−t)eη(s−µ)dµ

= eη(t−s)KN ||G||η,s
ξ(η − ε)

(
eε(s−ξ−t)eηξ − e−η(t−s))

≤ KN ||G||η,s
ξ(η − ε)

e(η−ε)ξ

This estimate continues to hold for all t, s ∈ R. To compare to the integral term, for s ≤ t
we have

e−η|t−s|||Kc,F (t)|| ≤ e−η(t−s)KN ||F ||η,s
∫ t

s

eε(t−µ)eη(µ−s)dµ

= e−η(t−s)KN ||F ||η,s
1

η − ε
(
eη(t−s) − eε(t−s)

)
≤ KN ||F ||η,s

η − ε

and this estimate persists for all t, s ∈ R. Similar estimates for the other integrals and
sums appearing in (6.3) ultimately result in the bound appearing in (6.4). This proves
part 1.

To prove part 2, denote v = Kηs(F,G). It is clear from the definition of v, the orthog-
onality of the projection operators and Proposition 2.2.1 that Pc(s)v(s) = 0. Also, for all
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−∞ < z ≤ t <∞, denoting F = χ0F and Gi = χ0G, we have

U(t, z)v(z) +

∫ t

z

U(t, µ)F (µ)dµ+
t∑
z

U(t, ti)Gidti

= U(t, z)v(z) +

∫ t

z

U(t, µ)Pc(µ)F (µ)dµ−
∫ z

t

U(t, µ)Pu(µ)F (µ)dµ

+

∫ t

z

U(t, µ)Pu(µ)F (µ)dµ+
t∑
z

U(t, ti)Pc(ti)Gidτi

−
z∑
t

U(t, ti)Pu(ti)Gidti +
t∑
z

U(t, ti)Pu(ti)Gidτi

=

∫ t

s

U(t, µ)Pc(µ)F (µ)dµ−
∫ ∞
t

U(t, µ)Pu(µ)F (µ)dµ+

∫ t

−∞
U(t, µ)Ps(µ)F (µ)dµ

+
t∑
s

U(t, ti)Pc(ti)Gidτi −
∞∑
t

U(t, ti)Pu(ti)Gidτi +
t∑
−∞

U(t, ti)Ps(ti)Gidτi

= v(t),

so that t 7→ v(t) solves the integral equation (6.1). This also demonstrates that v ∈ PCη.
To show that it is the only solution in PCη satisfying Pc(s)v(s) = 0, suppose there is
another r ∈ PCη that satisfies Pc(s)r(s) = 0. Then the function w := v − r is an element
of PCη that satisfies w(t) = U(t, z)w(z) for −∞ < z ≤ t <∞. By Lemma 6.2.1, we have
w(s) ∈ RCRc(s). But since Pc(s)w(s) = 0 and Pc(s) is the identity on RCRc(s), we obtain
w(s) = 0. Therefore, w(t) = U(t, s)0 = Uc(t, s)0 = 0 for all t ∈ R, and we conclude v = r,
proving the uniqueness assertion.

For assertion 3, we compute first

K∗(F,G)(t) =

∫ t

−∞
U(t, µ)Ps(µ)[χ0F (µ)]dµ−

∫ ∞
t

U(t, µ)Pu(µ)[χ0F (µ)]dµ

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti.

Routine estimation using inequalities (3.9)–(3.11) together with Lemma 2.4.2 produces the
bound

||K∗(F,G)(t)|| ≤ KN

(
−1

a
+

1

b
− e−aξ

aξ
+
ebξ

bξ

)
||(F,G)||,

and as the bound is independent of t, s, the result is proven.
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6.3 Substitution operator and modification of nonlin-

earities

Let ξ : R+ → R be a C∞ bump function satisfying

i) ξ(y) = 1 for 0 ≤ y ≤ 1,

ii) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2,

iii) ξ(y) = 0 for y ≥ 2.

We modify the nonlinearities of (5.1)–(5.2) in the centre and hyperbolic directions sepa-
rately. For δ > 0 and s ∈ R, we let

Fδ,s(t, x) = f(t, x)ξ

(
||Pc(s)x||
Nδ

)
ξ

(
||(Ps(s) + Pu(s))x||

Nδ

)
(6.5)

Gδ,s(k, x) = g(k, x0−)ξ

(
||Pc(s)x0− ||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x0− ||

Nδ

)
, (6.6)

Notice that Gδ,s(k, x) takes the pointwise left-limit in the evaluation (6.6). The proof of
the following lemma and corollary will be omitted. They can be proven by emulating the
proof of Lemma 6.1 from [45] and taking into account the uniform boundedness of the
projectors Pi; see property 1 of Definition 3.2.4.

Lemma 6.3.1. Let f(t, ·) and g(k, ·) be uniformly (in t ∈ R and k ∈ Z) Lipschitz
continuous on the ball BRCR(δ, 0) in RCR with mutual Lipschitz constant L(δ), and let
f(t, 0) = gk(0) = 0. The functions

Fδ,s : R×RCR → Rn, Gδ,s : Z×RCR → Rn

are globally, uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous with mutual Lipschitz
constant Lδ that satisfies Lδ → 0 as δ → 0, independent of s.

Corollary 6.3.0.1. The substitution operator

Rδ,s : PCη,s → Bη,s(R,Rn)⊕Bη,s
tk

(Z,Rn)

defined by Rδ,s(x)(t, k) = (Fδ,s(t, x(t)), Gδ,s(k, x(tk))) is globally Lipschitz continuous with
Lipschitz constant L̃δ that satisfies L̃δ → 0 as δ → 0. Moreover, the Lipschitz constant is
independent of η, s.

Corollary 6.3.0.2. ||(Fδ,s(t, x), Gδ,s(k, x))|| ≤ 4δLδ for all x ∈ RCR and (t, k) ∈ R× Z.
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6.4 Fixed-point equation and existence a Lipschitz

centre manifold

Let η ∈ (ε,min{−a, b}) and define a mapping Gs : PCη,s ×RCRc(s)→ PCη,s by

Gs(u, ϕ) = U(·, s)ϕ+Kηs(Rδ,s(u)). (6.7)

Note that by Lemma 6.2.3 and Corollary 6.3.0.1, the operator is well-defined, Kηs is bounded
and Rδ is globally Lipschitz continuous for each δ > 0, provided H.1–H.7 hold. Choose δ
small enough so that

L̃δ||Kη
s ||η <

1

2
. (6.8)

Notice that δ can be chosen so that (6.8) can be satisfied independent of s, due to Lemma
6.2.3. If ||ϕ|| < r/(2K) then Gs(·, ϕ) leaves B(r, 0) ⊂ PCη,s invariant. Moreover, Gs(·, ϕ)
is Lipschitz continuous with Lipschitz constant 1

2
. One may notice that r is arbitrary. We

can now prove the following:

Theorem 6.4.1. Let conditions H.1–H.7 hold. If δ is chosen as in (6.8), then there exists
a globally Lipschitz continuous mapping u∗s : RCRc(s)→ PCη,s such that us = u∗s(ϕ) is the
unique solution in PCη,s of the equation us = Gs(us, ϕ).

Proof. The discussion preceding the statement of Theorem 6.4.1 indicates that Gs(·, ϕ) is
a contraction mapping on B(r, 0) ⊂ PCη,s for every r > ||ϕ||2K. Since the latter is a
closed subspace of the Banach space PCη,s, the contraction mapping principle implies the
existence of the function u∗s. To show that it is a Lipschitz continuous, we note

||u∗s(ϕ)− u∗s(ψ)||η,s = ||Gs(u∗s(ϕ), ϕ)− Gs(u∗s(ψ), ψ))||η,s

≤ K||ϕ− ψ||+ 1

2
||u∗s(ϕ)− u∗s(ψ)||η,s.

Therefore, u∗s is Lipschitz continuous with Lipschitz constant 2K.

Definition 6.4.1 (Lipschitz centre manifold). The centre manifold, Wc ⊂ R × RCR, is
the nonautonomous set whose t-fibers for t ∈ R are given by

Wc(t) = Im{C(t, ·)}, (6.9)

where C : RCRc → RCR is the (fibrewise) Lipschitz map defined by C(t, φ) = u∗t (φ)(t).
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Remark 6.4.1. The centre manifold depends non-canonically on the choice of cut-off
function from Section 6.3. That is, the centre manifold is not unique, so we are committing
an abuse of syntax by referring to such a construct generally as “the” centre manifold.
One must always understand that the definition of the centre manifold is with respect to a
particular cutoff function.

The construction above implies the centre manifold is fibrewise Lipschitz. We can
prove a stronger result, namely that the Lipschitz constant can be chosen independent of
the given fiber.

Corollary 6.4.1.1. There exists a constant L > 0 such that ||C(t, φ)−C(t, ψ)|| ≤ L||φ−ψ||
for all t ∈ R and φ, ψ ∈ RCRc(t). Moreover, L can be chosen so that L→ 0 as δ → 0.

Proof. Denote uφ = ut(φ) and uψ = ut(ψ). A preliminary estimation appealing to the
fixed-point equation (6.7) yields

||C(t, φ)− C(t, ψ)|| ≤ ||φ− ψ||+ ||(Kηt (Rδu
φ)−Kηt (Rδu

ψ))(t)||.

By Corollary 6.3.0.2, each of Rδu
φ and Rδu

ψ are uniformly bounded, so Lemma 6.2.3
implies the existence of a constant c > 0 such that

||(Kηt (Rδ,tu
φ)−Kηt (Rδ,tu

ψ))(t)|| ≤ c||(Rδ,tu
φ −Rδ,tu

ψ)(t)||
≤ c sup

s∈R
||(Rδ,tu

φ −Rδ,tu
ψ)(s)||e−η|t−s|

≤ cL̃δ||uφ − uψ||η,t
≤ cL̃δ2K||φ− ψ||,

and in the last line we used the Lipschitz constant from Theorem 6.4.1. Combining this re-
sult with the previous estimate for ||C(t, φ)−C(t, ψ)|| yields the uniform Lipschitz constant.
By Corollary 6.3.0.1, the Lipschitz constant has the claimed property.

6.4.1 A remark on centre manifold representations: graphs and
images

Our initial definition of the centre manifold was as the fibre bundle whose t-fibers are the
images of C(t, ·). However, sometimes one likes to think of the centre manifold as being
the graph of a function. To accomplish this, one can use the hyperbolic part. Let us define
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the function H : RCRc → RCR by H(t, φ) = (I − Pc(t))C(t, φ). In this way, the centre
manifold can be identified with the graph of the hyperbolic part of the centre manifold.
Indeed, by part 2 of Lemma 6.2.3, we have the decomposition C(t, φ) = φ+(I−Pc(t))C(t, φ),
so that

Wc(t) = {φ+H(t, φ) : φ ∈ RCRc(t)} ∼ {(φ,H(t, φ)) : φ ∈ RCRc(t)} = Graph(H(t, ·)).

Since RCRc(t) and its complement R(I − Pc(t)) = RCRs(t) ⊕ RCRu(t) have only 0 in
their intersection, this identification makes sense. When one reduces down to ordinary
differential equations, one usually thinks of precisely the function H as being the centre
manifold. This ambiguity between the function C : RCRc → RCR, the fibre bundle Wc,
the hyperbolic part H : RCRc → RCR and its graph can sometimes make statements
about centre manifolds imprecise. In this thesis, the term centre manifold without any
additional qualifiers will always mean the fibre bundle Wc.

6.5 Invariance and smallness properties

Recall that by Lemma 5.1.1, there is a process (S,M) on RCR such that t 7→ S(t, s)φ is
the unique mild solution of (5.3) through the initial condition (s, φ) defined on an interval
[s, s+α). With this in mind, the centre manifold is locally positively invariant with respect
to S.

Theorem 6.5.1 (Centre manifold: invariance and inclusion of bounded orbits). Let con-
ditions H.1–H.7 hold. The centre manifold Wc enjoys the following properties.

1. Wc is locally positively invariant: if (s, φ) ∈ Wc and ||S(t, s)φ|| < δ for t ∈ [s, T ],
then (t, S(t, s)φ) ∈ Wc for t ∈ [s, T ].

2. If (s, φ) ∈ Wc, then S(t, s)φ = u∗t (Pc(t)S(t, s)φ)(t) = C(t, Pc(t)S(t, s)φ)

3. If x : R → RCR is a mild solution of (5.3) satisfying ||x|| < δ, then (t, x(t)) ∈ Wc

for all t ∈ R.

4. R× {0} ⊂ Wc and C(t, 0) = 0 for all t ∈ R.

Proof. Let (s, φ) ∈ Wc and denote x(t) = S(t, s)φ, with ||x|| < δ. Since (s, φ) ∈ Wc, there
exists ϕ ∈ RCRc(s) such that φ = u∗s(ϕ)(s). Define x̂ = u∗s(ϕ). Then, it follows that

77



ϕ = Pc(s)φ, x̂(s) = φ = Pc(s)φ+Kη
s (R(x̂))(s), and

x̂(t) = U(t, s)ϕ+Kηs (Rδ(x̂))(t)

= U(t, s)ϕ+

U(t, s)Kη
s (Rδ,s(x̂))(s) +

∫ t

s

U(t, µ)χ0Fδ,s(µ, x̂(µ))dµ+
∑

s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))


= U(t, s)x̂(s) +

∫ t

s

U(t, µ)χ0Fδ,s(µ, x̂(µ))dµ+
∑

s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [s, T ]. But since ||x(t)|| < δ on [s, T ], uniqueness of mild solutions (Lemma 3.1.1
with Theorem 3.3.1) implies that x = x̂|[s,T ].

Let v ∈ [s, T ] and define z : R → RCR by z = x̂ − U(·, v)Pc(v)x̂(v). One can easily
verify that

z(t) = U(t, v)z(v) +

∫ t

v

U(t, µ)U(t, µ)χ0Fδ,s(µ, x̂(µ))dµ+
∑
v<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [v,∞) and that Pc(v)z(v) = 0. On the other hand, since ||x̂|| < δ we have
Rδ,s(x̂) = Rδ,v(x̂). From these two observations and Lemma 6.2.3, z = Kηv(Rδ,v(x̂))|[v,∞),
so that we may write

x̂ = U(·, v)Pc(v)x̂(v) +Kηv(Rδ,v(x̂)) = u∗v(Pc(v)x̂(v)).

Therefore, x̂(v) = u∗v(Pc(v)x̂(v))(v), and since x(v) = x̂(v), this proves that (v, x(v)) ∈ Wc

and, through essentially the same proof, that

x(v) = u∗v(Pc(v)x(v))(v) = C(v, x(v))(v).

The proofs of the other two assertions of the theorem follow by similar arguments, and are
omitted.

The modification of the nonlinearity Rδ results in the function u∗s that defines the centre
manifold having a uniformly small hyperbolic part. Namely, we have the following lemma.

Lemma 6.5.1. Define P̂c : PCη → PCη(R,RCRc) by P̂cφ(t) = Pc(t)φ(t). If δ > 0 is

sufficiently small, then ||(I − P̂c)u∗s||0 < δ.

Proof. Recall that u∗s satisfies the fixed-point equation u∗s = U(·, s)ϕ+Kηs(Rδ,s(u
∗
s)). Thus,

with P̂h = I − P̂c,
P̂hu

∗
s = P̂h ◦ Kηs(Rδ,s(u

∗
s))
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because U(t, s) is an isomorphism of RCRc(s) onto RCRc(t) and ϕ ∈ RCRc(s). By
Corollary 6.3.0.2, we have for all t ∈ R that ||Rδ,s(u

∗
s(t))|| ≤ 4δLδ, which implies Rδ,s(u

∗
s) ∈

B0(R,Rn)⊕B0
tk

(Z,Rn). We obtain the claimed result by applying the second conclusion of
Lemma 6.2.3 and taking δ sufficiently small, recalling from Corollary 6.3.0.1 that Lδ → 0
as δ → 0.

6.6 Asymptotic phase

The centre manifold has a property that is sometimes called asymptotic phase. Qualita-
tively, it says that the unstable and stable components of pairs of sufficiently small solutions
must eventually come into phase, either backward or forward in time. This suggests that
such solutions must be “close” to the centre manifold. The following theorem is inspired
by Lemma 2.3 of [9] and Theorem 8.1, Chapter IX of [27].

Theorem 6.6.1 (Asymptotic phase in RCRs and RCRu). For ν > 0 and S∗ ∈ R, there
exist positive constants C and δ such that

1. If u and v are mild solutions of (5.3) on the interval I = [s − T, s] for T > 0 and
s ≤ S∗ satisfying

• (I − Ps(j))u(j) = (I − Ps(j))v(j) for either j = s or j = s− T ;

• ||u(t)|| ≤ δ and ||v(t)|| ≤ δ for all t ∈ I,

then, ||Ps(s)[u(s)− v(s)]|| ≤ C||Ps(s− T )[u(s− T )− v(s− T )]||e(a+ν)T .

2. If u and v are mild solutions on the interval I = [s, s + T ] for T > 0 and s ≥ S∗

satisfying

• (I − Pu(j))u(j) = (I − Pu(j))v(j) for either j = s or j = s+ T ;

• ||u(t)|| ≤ δ and ||v(t)|| ≤ δ for all t ∈ I,

then, ||Pu(s)[u(s)− v(s)]|| ≤ C||Pu(s+ T )[u(s+ T )− v(s+ T )]||e−(b−ν)T .

Proof. We begin by proving the first assertion, and will prove only the case where (I −
Ps(s))(u(s)−v(s)) = 0, as the other case is similar. Let L = L(δ) be the Lipschitz constant
of the nonlinearity R̃δ, and denote

z−(t) = ||Ps(t)(u− v)(t)||, z+(t) = ||(I − Ps(t))(u− v)(t)||.
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Let t ∈ I. Routine integral estimation with the spectral separation assumptions result in
the estimate

z−(s)eat ≤ Kz−(t) +

∫ s

t

KNLea(t−µ)(z+(µ) + z−(µ))dµ+

s∑
t

KNLea(t−ti)(z+(t−i ) + zi(t
−
i ))dti. (6.10)

Also, spectral separation guarantees that the expression

(I − Ps(t))u(t) = U(t, s)[Pc(s) + Pu(s)]u(s) +

∫ t

s

U(t, µ)[Pc(µ) + Pu(µ)]χ0f(µ, u(µ))dµ

+
t∑
s

U(t, ti)[Pc(ti) + Pu(ti)]χ0g(i, u(t−i ))dti

is well-defined even when t ≤ s, and similarly for v. Using the fact that (I − Ps(s))(u −
v)(s) = 0, we get the estimate

z+(t) ≤
∫ s

t

KNLeb(t−µ)(z−(µ) + z+(µ))dµ+

∫ s

t

KNLeb(t−ti)(z−(t−i ) + z+(t−i ))dti.

Some routine changes of variables and Lemma 2.4.1 then imply

z+(t) ≤ KNL

[∫ s

t

e(b−KL)(t−µ)z−(µ)dµ+
s∑
t

e(b−KL)(t−ti)zi(t
−
i )dti

]
.

Substituting the above into (6.10) results in the somewhat bulky expression

z−(s)eat ≤ Kz−(t) +

∫ s

t

KNLea(t−µ)z−(µ)dµ+

s∑
t

KNLea(t−ti)z−(t−i )dti

+

∫ s

t

(KNL)2

[∫ s

µ

ea(t−µ)+(b−KNL)(µ−η)z−(η)dη +

s∑
µ

ea(t−µ)+(b−KNL)(µ−ti)z−(ti)dti

]
dµ

+

s∑
t

(KNL)2

[∫ s

µ

ea(t−ti)+(b−KNL)(ti−µ)z−(µ)dµ+

s∑
ti

ea(t−ti)+(b−KNL)(ti−tk)z−(t−k )dtk

]
dti.

Applying Fubini’s Theorem and estimating sums via Lemma 2.4.2 yields

z−(s)eat ≤ Kz−(t) +

∫ s

t

(KNL+ κ)ea(t−µ)z−(µ)dµ+
s∑
t

(KNL+ κ)ea(t−ti)z−(t−i )dti,

κ =
(KNL)2

b− a−KNL

(
1 +

e(b−a−KNL)ξ

ξ

)
,

80



where ξ is the constant appearing in assumption H.7. Note that κ = κ(δ) is positive
provided δ is chosen small enough. More changes of variables and use of Lemma 2.4.1
eventually lead us to the inequality

z−(s)e−a(s−t)Ke−as ≤ z−(t) exp
(
−e−as(KNL+ κ)(t− s)

)
,

which upon substituting t = s− T and rearranging grants

z−(s) ≤ Ke−as · exp
(
(a+ e−as(KNL+ κ))T

)
z−(s− T ).

Choosing C = Ke−aS
∗

and δ small enough so that e−as(KNL(δ) +κ(δ)) ≤ ν results in the
desired inequality.

An analogous argument proves the second assertion of the theorem. The proof is
omitted.

Consider part 1 of the theorem, which concerns the stable component. If RCRu is
trivial, we would hope that close to the centre manifold, distinct solutions should in some
sense “converge to” the centre manifold. Suppose u : [0,∞)→ Rn is a mild solution that
remains uniformly small; ||u|| < δ. As a first guess, let us define another mild solution
v : [0,∞)→ RCR on the centre manifold using the invariance condition:

v(t) = S(t, 0)C(0, Pc(0)u(0)).

Without loss of generality, we may also assume ||v|| < δ. One can then check using the
fixed-point characterization of the centre manifold that Pc(0)v(0) = Pc(0)u(0). Choose any
η < |a|. For each t > 0, define T = t and s = t in the statement of Theorem 6.6.1. It follows
that if δ is sufficiently small, then ||Ps(t)[u(t)− v(t)]|| ≤ C||Ps(0)[u(0)− v(0)]||e(a+ν)t. Our
instinct is to take t→∞, so that we could conclude that the hyperbolic components of u
and v are asymptotically equal. If one solution is on the centre manifold for all time, then
we might suspect that ||u(t)− v(t)|| → 0 as t→∞. However, we cannot take t arbitrarily
large because in principle, δ depends on the constant S∗, and we must assume s ≤ S∗.
Since s = t, we cannot take t arbitrarily large.

Recall that since v is a solution on the centre manifold, it can be uniquely extended to
v : R→ RCR. If we instead fix s = t and let T = s′ > 0, then we get the inequality

||Ps(t)[u(t)− v(t)]|| ≤ CNδe(a+ν)(t−s′),

where N is the bound on the projection and we use the assumption that u and v are
uniformly bounded by δ. If we take the limit s′ → −∞, then we get the somewhat
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perplexing conclusion that Ps(t)[u(t) − v(t)] = 0. This is similar to a concept referred
to as pullback attraction [58]. In terms of the definition in the aforementioned reference,
v : R → RCR is pullback attracting if for all t ∈ R, there exists δ > 0 such that if
lims→−∞ ||u(s)− v(s)|| < δ, then lims→−∞ ||S(t, s)u(s)− v(t)|| → 0.

In autonomous systems, pullback attraction and the usual (forward) attraction are in-
terchangeable concepts because in such systems, the nonlinear process will satisfy S(t, s) =
S(t − s, 0). In the general nonautonomous context, they are distinct. However, they are
also equivalent under periodicity assumptions, and it is ultimately a consequence of this
fact that we can prove the following attraction property.

Corollary 6.6.1.1. Suppose conditions H.1–H.7 hold and, additionally, (5.1)–(5.2) is pe-
riodic with period T and c > 0 impulses per period. That is L(t+ T ) = L(t), f(t+ T, ·) =
f(t, ·), B(k + c) = B(k), g(k + c, ·) = g(k + c) and tk+c = tk + T for all t ∈ R and k ∈ Z.
Let u and v be mild solutions of (5.3) on the interval I = [s, t] for some t > s. For all
ν > 0, there exist positive constants C and δ (independent of t and s) such that if u and v
satisfy

• (I − Ps(s))u(s) = (I − Ps(s))v(s);

• ||u(µ)|| ≤ δ and ||v(µ)|| ≤ δ for all µ ∈ I;

then, ||Ps(t)[u(t)− v(t)]|| ≤ C||Ps(s)[u(s)− v(s)]||e(a+ν)(t−s).

Proof. Let t = kT + r for some r ∈ [0, T ) and let s = t− q for some q > 0. By uniqueness
of mild solutions – Lemma 5.1.1 – and the periodicity assumption, we can write

S(t, s) = S(kT + r, kT + r − q) = S(r, r − q).

From the smallness assumption, we can write u(t) = S(t, s)u(s) and v(t) = S(t, s)v(s)
(that is, we do not need to use the cutoff process Sδ). Also, the periodicity of the projector
Ps(·) guaranteed by Lemma 4.3.1 implies

Ps(r − q) = Ps(s− kT ) = Ps(s).

We can now apply part 1 Theorem 6.6.1 to the mild solutions û and v̂ defined on I = [r−q, r]
by û(µ) = S(µ, r − q)u(s) and v̂(µ) = S(µ, r − q)v(s) – recall that r ∈ [0, T ), so we can
apply the result with S∗ = T . We get the inequality

||Ps(r)[S(r, r − q)u(s)− S(r, r − q)v(s)]|| ≤ C||Ps(r − q)[u(s)− v(s)]||e(a+ν)q.

All of the previous observations imply that the above is equivalent to the inequality in the
statement of the proposition.
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Even this result is not quite strong enough to grant a reduction principle that is formally
analogous to what there is for ordinary differential equations. We postpone more in-depth
discussions until Section 6.8, but motivate some of the intricacies with an example.

6.6.1 A note on convergence rates of components in the centre
fibre bundle

From the discussion preceding Corollary 6.6.1.1, one might think we are free to conclude
that the centre manifold is locally attracting in the periodic case. Unfortunately, the
argument is incomplete, because while it may be reasonable to suspect that the mild
solution v in the centre manifold we constructed will converge to u, it generally does not
do this at an exponential rate. Moreover, it is difficult to characterize this rate in general.
To see this, consider the following two-dimensional autonomous example:

ẋ = (1 + y2)x2,

ẏ = −y.

There are a continuum of centre manifolds W(k) parameterized by k ∈ R:

W±(k) =

{
(x, y) : log |y|+ 1

2
y2 =

1

x
+ k, x < 0

}
∪ {(x, 0) : x ≥ 0},

obtained by restricting to the upper and lower half-plane. There is also an analytic centre
manifold, W(−∞) := {(x, 0) : x ∈ R}. The centre subspace Xc is precisely W(−∞),
whereas the stable subspace (which corresponds to the stable manifold in this case) is the
y axis; Xs = {(0, y) : y ∈ R}. The projection onto Xc is the orthogonal projection, so that
Pc(x, y) = (x, 0). However, notice that if x remains fixed, the solutions y of the equation

log |y|+ 1

2
y2 =

1

x
+ k

are each monotone with respect to k. It follows from the differential equation that solutions
in the left half-plane flow faster on W(k2) than on W(k1), whenever k2 > k1. As a
consequence, if (x, y) ∈ W(k1) and we project onto Xc to a coordinate (x, 0), then the map
onto some (x, ŷ) ∈ W(k2), the two solutions from (x, y) and (x, ŷ) will generally converge
to zero at different rates. It is our claim that, in particular, the difference between these
rates is on the order of 1

t2
.

83



Let us investigate this claim. Consider the initial condition (x0, y0) with x0 < 0 and,
without loss of generality, y0 > 0. We can write the component x in the centre subspace
as

Pcu(t) =
1

1
2
y2

0(e−2t − 1) + 1
x0
− t

.

Note, u(t) is contained in the centre manifold W(k′) with k′ = log y0 + 1
2
y2

0 − 1
x0

. Suppose
we choose W(k) to be the centre manifold in which we define the “candidate” solution
to which we compare, and we choose the upper half-plane part. The projection gives
Pc(x0, y0) = (x0, 0). To get the associated point (x0, ŷ0) on the centre manifold W(k), we
have to solve the equation

log ŷ0 +
1

2
ŷ0

2 =
1

x0

+ k, ŷ0 > 0.

To do this, we resort to an asymptotic. If 1
x0

+ k → −∞ (e.g. k is fixed and we assume
x0 → 0−) then the leading-order behaviour in ŷ0 is dominated by the logarithm. We can
then make the approximation

log ŷ0 ≈
1

x0

+ k,

so that ŷ0 ≈ exp( 1
x0

+k). The associated solution, when projected onto the centre subspace,
is

Pcv(t) =
1

1
2
e

2
x0

+2k−2t
+ 1

x0
− t

.

In Landau big theta notation, one can check directly that the asymptotic

Pc[u(t)− v(t)] = Θ

(
1

t2

)
, t→∞

is satisfied. This means that the left-hand side is asymptotically equivalent (up to mul-
tiplication by a nonzero constant) to 1

t2
as t → ∞. As claimed, the components of the

solutions u(t) and v(t) in the centre subspace converge at different rates; as x0 → 0−, the
difference in convergence rates is on the order of 1

t2

6.7 Dynamics on the centre manifold

Theorem 6.6.1 implies that in the absence of unstable directions, the centre manifold
contains all of the interesting bounded-time dynamics in a neighbourhood of the relevant
fixed point. This leads us to a natural question, namely: is there a nice representation of
the process restricted to the centre manifold?
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6.7.1 Integral equation

On the centre manifold, components of mild solutions on the centre fibre bundle are de-
coupled, as stated in the following lemma. The proof follows by direct calculation and the
second part of Theorem 6.5.1.

Lemma 6.7.1 (Dynamics on the centre manifold: integral equation). Let y : R → RCR
satisfy y(t) ∈ Wc(t) with ||y|| < δ. Consider the projection of y onto the centre fibre bundle:
w(t) = Pc(t)y(t). The projection satisfies the integral equation

w(t) = U(t, s)w(s) +

∫ t

s

U(t, µ)Pc(µ)χ0Fδ,µ(µ, C(µ,w(µ)))dµ+
∑

s<ti≤t

U(t, ti)Pc(ti)χ0Gδ,ti(i, C(ti, w(ti)))

(6.11)

6.7.2 Abstract ordinary impulsive differential equation

When a solution on the centre manifold is defined by a classical solution, we can show
that its projection satisfies a particular impulsive differential equation. This identification
carries over to solutions that merely have enough smoothness to ensure that their right-
hand derivatives exist and are elements of the space RCR(R,Rn). However, the following
condition on the jump map is needed.

Definition 6.7.1. A sequence of functionals J(k, ·) : RCR → Rn satisfies the overlap con-
dition if it admits a unique continuous extension to a functional J(k, ·) : G([−r, 0],Rn)→
Rn and this extension satisfies

J(k, φ+ χtj−tkh) = J(k, φ)

for all φ ∈ RCR and h ∈ Rn, whenever tj − tk ∈ [−r, 0).

The overlap condition roughly states that the jump functional does not have observable
“memory” at times in the past that happen to correspond to impulse times. The extension
property is satisfied for many typical jump conditions, such as those involving discrete
time-varying delays or distributed delays with reasonable kernels. We make use of it in
proof of the following theorem. The details are somewhat subtle, and we will spend a fair
bit more time on them in Section 8.1.2.

Theorem 6.7.1 (Dynamics on the centre manifold: abstract impulsive differential equa-
tion). Let y ∈ RCR1(R,Rn) satisfy yt ∈ Wc(t) with ||y|| < δ. Consider the projec-
tion w(t) = Pc(t)yt and define the linear operators L(t) : RCR1 → RCR and J (k) :
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G([−r, 0],Rn)→ G([−r, 0],Rn) by

L(t)φ(θ) =

{
L(t)φ, θ = 0
d+φ(θ), θ < 0

, J (k)φ(θ) =

{
B(k)φ, θ = 0
φ(θ+)− φ(θ), θ < 0

(6.12)

If the jump functionals B(k) and g(k, ·) satisfy the overlap condition, then w : R→ RCR1

satisfies, pointwise, the abstract impulsive differential equation

d+w(t) = L(t)w(t) + Pc(t)χ0Fδ(t, C(t, w(t))), t 6= τk (6.13)

∆w(tk) = J (k)w(t−k ) + Pc(tk)χ0Gδ(k, C(tk, w(tk))), t = tk, (6.14)

where w(t−k )(θ) := limε→0− w(tk−ε)(θ) is the non-uniform left limit at time tk and ∆w(tk)(θ) :=
w(tk)(θ)− w(t−k )(θ) is the non-uniform pointwise jump at time tk, defined for θ ∈ [−r, 0].

Proof. For brevity, denote F (µ) = Fδ,µ(µ, C(µ,w(µ))), F (µ) = χ0F (µ), F(µ) = Pc(µ)χ0F (µ)
and analogously for Gδ. We begin by noting that equation (6.11) allows us to write the
finite difference wε(t) = w(t+ ε)− w(t) as

wε(t) = [U(t+ ε, s)− U(t, s)]w(s) + (U(t+ ε, t)− I)

∫ t

s

U(t, µ)F(µ)dµ

+ U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, µ)F (µ)dµ+ (U(t+ ε, t)− I)
∑
s<ti≤t

U(t, ti)G(i)

+ U(t+ ε, t)
∑

t<ti≤t+ε

U(t, ti)G(i)

(6.15)

First, we show that d+U(t, s)φ = L(t)U(t, s)φ pointwise for φ ∈ RCR. For θ = 0, we have

1

ε
(U(t+ ε, s)φ(0)− U(t, s)φ(0)) =

1

ε

∫ t+ε

t

L(µ)U(µ, s)φdµ,

which converges to L(t)U(t, s)φ as ε→ 0+. For θ < 0 and ε > 0 sufficiently small,

1

ε
(U(t+ε, s)φ(θ)−U(t, s)φ(θ)) =

1

ε
(φ(t+ε+θ−s)−φ(t+θ−s)) −→ d+φ(t+θ−s) = d+U(t, s)φ(θ).

Therefore, d+U(t, s)φ = L(t)U(t, s)φ pointwise, as claimed. Since U(t, t) = I, this also
proves the pointwise convergence

1

ε
(U(t+ ε, t)− I)φ→ L(t)φ.
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Next, we show that

1

ε
U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, µ)F (µ)dµ→ Pc(t)F (t) = F(t) (6.16)

pointwise as ε → 0+. We do this by first proving that the sequence xn := 1
εn
U(t +

εn, t)Pc(t)
∫ t+εn
t

U(t, µ)F (µ)dµ is pointwise Cauchy for each sequence εn → 0+. Assuming
without loss of generality that εn is strictly decreasing, we have for all n ≥ m,

xn − xm =

[
1

εn
U(t+ εn, t)−

1

εm
U(t+ εm, t)

]
Pc(t)

∫ t+εn

t

U(t, µ)χ0F (µ)dµ

+
1

εm
U(t+ ε, t)

∫ t+εn

t+εm

Uc(t, µ)Pc(µ)χ0F (µ)dµ

Both integrals can be made arbitrarily small in norm by taking n,m ≥ N and N large
enough. Since 1

ε
U(t+ ε, t) is pointwise convergent as ε→ 0+, we obtain that the sequence

xn is pointwise Cauchy, and is hence pointwise convergent. Direct calculation of the limit
in the pointwise sense yields (6.16). Combining all of the above results with equation (6.15)
gives the pointwise equality

d+w(t) = L(t)U(t, s)w(s) + L(t)

∫ t

s

U(t, µ)F(µ)dµ+ F(t) + L(t)
∑
s<ti≤t

U(t, ti)G(i)

= L(t)w(t) + F(t),

which is equivalent to (6.13).

To obtain the difference equation (6.14), we similarly identify wε(tk)(θ) := w(tk)(θ) −
w(tk − ε)(θ) with the decomposition

wε(tk) = [U(tk, s)− U(tk − ε, s)]w(s) +

∫ tk

tk−ε
U(t, µ)F(µ)dµ+

∫ tk−ε

s

[U(tk, µ)− U(tk − ε, µ)]F(µ)dµ

+
∑

tk−ε<ti≤τk

U(tk, ti)G(i) +
∑

s<ti≤τk−ε

[U(tk, ti)− U(tk − ε, ti)]G(i)

Using Lemma 3.2.1 and Lemma 3.3.5, the above is seen to converge pointwise as ε→ 0+,
with limit

∆w(tk) = J̃ (k)U(t−k , s)w(s) + J̃ (k)

∫ tk

s

U(t−k , µ)F(µ)dµ+ G(k) + J̃ (k)
∑

s<ti<tk

U(t−k , ti)G(i),

(6.17)
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where J̃ (k)φ(θ) = χ0(θ)B(k)φ + χ(−r,0)(θ)[φ(θ) − φ(θ−)], and we assume without loss of
generality that r > 0 is large enough so that tk − r 6= tj for all j < k and all k ∈ Z. Let us
denote

U−(t, s)φ(θ) = lim
ε→0+

U(t− ε, s)φ(θ)

the strong left limit of the evolution family at t. This limit is well-defined pointwise, and
due to the overlap condition, we have

J̃ (k)U(t−k , ξ)φ = J (k)U−(tk, ξ)φ (6.18)

pointwise for all ξ < tk. Moreover, since

w(t−k ) = U−(tk, s)w(s) +

∫ tk

s

U−(tk, µ)F(µ)dµ+
∑

s<ti<tk

U−(tk, ti)G(i), (6.19)

we can obtain equation (6.14) by substituting (6.18) and (6.19) into (6.17).

We will not make much use of the abstract differential equation (6.13)–(6.14), and have
included it mostly for the purpose of comparison with analogous results for delay differential
equations. As we will see, the integral equation (6.11) will be more than sufficient.

6.7.3 A remark on coordinates and terminology

It is a slight abuse of terminology to describe (6.13)–(6.14) as an impulsive differential
equation on the centre manifold. More precisely, it is the dynamical system associated
to the projection onto the centre fibre bundle associated to a given solution in the centre
manifold. This precise description is, however, quite verbose, and for this reason we will
usually call (6.13)–(6.14) the impulsive differential equation on the centre manifold, even
if this is not exactly what it is.

The evolution equation (6.13)–(6.14) is quite abstract. It is an evolution equation in the
centre fiber bundle which, despite being finite-dimensional, is still rather difficult to use in
practice because the fibres RCRc(t) are not themselves constant in time. What is needed
is an appropriate coordinate system. This would in principle allow for the derivation of an
impulsive differential equation in Rp for p = dimRCRc. We expand on precisely this idea
in Section 8.1.
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6.8 Reduction principle

Given a nonhyperbolic equilibrium, one may want to study the orbit structure near this
equilibrium under parameter perturbation in the vector field or jump map defining the
impulsive functional differential equation (5.1)–(5.2). Assuming the sufficient conditions
for the existence of a centre manifold are satisfied, part 2 of Theorem 6.5.1 implies that on
the centre manifold, the dynamics are completely determined by those of the component
in the centre fibre bundle. Part 3 of the same theorem guarantees that the small bounded
solutions are all contained on the centre manifold. Lemma 6.7.1 completely characterizes
these dynamic in terms of an integral equation (6.11). As a consequence, bifurcations can
be detected by analyzing this integral equation instead, and no loss of generality occurs by
looking only on the centre manifold (at least for small perturbations of the parameter).

The next natural question is the following. If we detect a bifurcation on the centre
manifold and the branch of solutions (or union of solutions, for example a torus) is stable
when restricted to the centre manifold, are we guaranteed that this solution is stable in the
infinite-dimensional system provided RCRu is trivial? The answer is yes, and the follow-
ing results makes this precise. They are inspired by similar results for ordinary differential
equations in both finite and infinite-dimensional systems; see for instance Theorem 2.2
from Chapter 10 of Hale and Verduyn Lunel’s introductory text [39] for functional differ-
ential equations, Theorem 3.22 from Chapter 2 of [40] for ordinary differential equations
in Banach spaces, and the classic text of Jack Carr [14] for finite-dimensional ordinary dif-
ferential equations, as well as some extensions to infinite-dimensional problems. However,
we will require the vector field to be slightly more regular than previously.

Definition 6.8.1. The functional f : R × RCR → Rn is additive composite regulated
(ACR) if for all x ∈ RCR(R,Rn), Y ∈ RCR(R,Rn×m) and z ∈ RCR(R,Rm), the function
t 7→ f(t, xt + Ytz(t)) is an element of RCR(R,Rn).

Remark 6.8.1. ACR functionals are quite common in applications. For example, suppose
f : R×RCR → Rn can be written in the form

f(t, φ) = F

(
t, A(t)φ(−d(t)),

∫ 0

−r
K(t, θ)φ(θ)dθ

)
for d ∈ RCR(R, [−r, 0]), A ∈ RCR(R,Rn×n), K : R × [−r, 0] → Rn×n integrable in its
second variable, continuous from the right in its first variable and uniformly bounded, and
F : R×Rn×Rn → Rn jointly continuous from the right in its first variable and continuous
in its other variables. It is clear that

t 7→ A(t)[xt(−d(t)) + Yt(−d(t))z(t)] = A(t)[x(t− d(t)) + Y (t− d(t))z(t)]
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is an element of RCR(R,Rn). As the the integral term, the function

t 7→
∫ 0

−r
K(t, θ)[x(t+ θ) + Y (t+ θ)z(t)]dθ]

can be seen to be an element of RCR(R,Rn) by applying the dominated convergence the-
orem. From the assumptions on F , we conclude that f is ACR. The same holds true for
vector fields with multiple time-varying delays and distributed delays.

Lemma 6.8.1. Assume RCRu = {0}. Let Φt = [ φ
(1)
t · · · φ

(p)
t ] be row array whose ele-

ments form a basis for RCRc(t), the latter being p-dimensional, such that Φt = Uc(t, 0)Φ0.
Given a mild solution x(·) : I → RCR, write Pc(t)xt = Φtz(t) for some z ∈ Rp, so that

xt = Φtz(t) + h(t, z(t)) + ySt

with z ∈ Rp, h(t, z) := (I−Pc(t)C(t,Φtz), and ySt ∈ RCRs(t) is a remainder term. Assume
the matrix-valued function Yc(t) defined by the equation Pc(t)χ0 = ΦtYc(t) is continuous
from the right and possesses limits on the left. There exists positive constants ρ, C and α
such that for all t ≥ s, the remainder term satisfies

||ySt || ≤ C||ySs −H(s, z(s))||e−α(t−s),

provided ||xt|| ≤ ρ for all t ≥ s.

Proof. One can carefully verify that z(t) and ySt respectively satisfy the following integral
equations for all t ≥ s:

z(t) = z(s) +

∫ t

s

Yc(µ)F(µ, z(µ), ySµ )dµ+
∑
s<ti≤t

Uc(ti)G(i, z(ti), y
S
ti

), (6.20)

ySt = U(t, s)[ySs − h(s, z(s))] +

∫ t

s

U(t, µ)Ps(µ)χ0[F(µ, z(µ), ySµ )−F(µ, z(µ), 0)]dµ

(6.21)

+
∑
s<ti≤t

U(t, ti)Ps(ti)χ0[G(i, z(ti), y
S
ti

)− G(i, z(ti), 0)],

provided ρ < δ/N , where F(t, z, y) = Fδ,0(t,Φtz + h(t, z) + y), G(k, z, y) = Gδ,0(k,Φtkz +
h(tk, z) + y), and Yc(µ) is defined by the equation Pc(µ)χ0 = ΦµYc(µ). Because of our
assumption on Yc(µ), it follows (from the integral equation (6.20)) that z is continuous
from the right and possesses limits on the left. If we remark that

ySt = (I − Pc(t))xt = xt − Φtz(t),
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we can use Lemma 2.1.6 to conclude that t 7→ ||ySt || is an element of RCR(I,R). Using
spectral separation and the Lipschitz condition on the substitution operator, we can use
(6.21) to get the estimate

||ySt ||e−at ≤ Ke−as||ySs − h(s, z(s))||+
∫ t

s

KLδ||ySµ ||e−aµdµ+
∑
s<ti≤t

KLδ||ySti ||e
−ati ,

provided ||xt|| ≤ ρ for ρ sufficiently small. Next, we apply the Gronwall Inequality (Lemma
2.4.1) to the function t 7→ ||ySt ||e−at. After some simplifications, we get

||ySt || ≤ K(1 +KLδ)||ySs − h(s, z(s))|| exp

((
a+KLδ

(
1 +

1

ξ

))
(t− s)

)
.

We can always guarantee that the exponential convergence rate is in the form e−α(t−s) for
α > 0 by taking δ sufficiently small, since a < 0 and we have Lδ → 0 as δ → 0 by Corollary
6.3.0.1. The result follows.

The continuity condition on the matrix t 7→ Yc(t) comes up in a few places in this thesis.
Most noteworthy, it is used in Section 7.2 to guarantee temporal regularity properties of
the centre manifold. See in particular Section 7.2.3 and the discussion of Section 7.2.7.

Theorem 6.8.1 (Local attractivity of the centre manifold). Let the assumptions of Lemma
6.8.1 be satisfied and let f be an ACR functional. There exists a neighbourhood V of
0 ∈ RCR and positive constants K1, α1 such that if t 7→ xt is a mild solution satisfying
xt ∈ V for all t ≥ s, then there exists ut ∈ Wc(t) with the property that

||xt − ut|| ≤ K1e
−α1(t−s)

for all t ≥ s. That is, every solution that remains close to the centre manifold in forward
time is exponentially attracted to a particular solution on the centre manifold. More pre-
cisely, there exists u ∈ RCR([s,∞),Rn) such that t 7→ Φtu(t) satisfies the abstract integral
equation (6.11) for the coordinate on the centre manifold, and we have the estimates

||Pc(t)xt − Φtu(t)|| ≤ Ke−a1(t−s),

||Ps(t)xt − h(t, u(t))|| ≤ Ke−a1(t−s).

Proof. With the same setup as in the previous proof, let u(t;us) for t ≥ s denote the
solution of the integral equation

u(t) = us +

∫ t

s

Yc(µ)F(µ, u(µ), 0)dµ+
∑
s<ti≤t

Yc(ti)G(i, u(ti), 0),
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for given us ∈ Rp. Define w(t) = z(t) − u(t;us). With xt = Φtz(t) + h(t, z(t)) + ySt , we
have the following integral equations for w and ySt :

ySt = U(t, s)[ySs − h(s, w(s) + us)] +

∫ t

s

U(t, µ)Ps(µ)χ0M1(µ,w(µ) + u(µ;us), y
S
µ )dµ

(6.22)

+
∑
s<ti≤t

U(t, ti)Ps(ti)χ0M2(i, w(ti) + u(ti;us), y
S
ti

),

w(t) = w(s) +

∫ t

s

Yc(µ)N1(µ,w(µ), ySµ )dµ+
∑
s<ti≤t

Yc(ti)N2(i, w(ti), y
S
ti

), (6.23)

with M1, M2, N1 and N2 defined by

M1(µ, a, b) = F(µ, a, b)−F(µ, a, 0),

M2(i, a, b) = G(i, a, b)− G(i, a),

N1(µ, a, b) = F(µ, a+ u(µ;us), b)−F(µ, u(µ;us), 0),

N2(i, a, b) = G(i, a+ u(ti;us), b)− G(i, u(ti; s), 0).

The idea now is to reinterpret the integral equation for w as a fixed-point equation param-
eterized by yS(·) and u(·;us). Introduce the space

X = {φ ∈ RCR([s,∞),Rp) : ||φ(t)||ea(t−s) ≤ K}

equipped with the norm ||φ|| = supt≥s ||φ(t)||ea(t−s). Define Tw by

(Tw)(t) = −
∫ ∞
t

Yc(µ)N1(µ,w(µ), ySµ )dµ−
∑

t<ti<∞

Yc(ti)N2(i, w(ti), y
S
ti

). (6.24)

If w ∈ X, then from the assumption that f is an ACR functional we can conclude that
Tw ∈ RCR(R,Rn). So we consider the nonlinear function T : X → RCR(R,Rn). Notice
that if w is a fixed point of T , then w satisfies the integral equation (6.23). Working
backwards, it would then follow by Lemma 6.8.1 that

vt := Φt[w(t) + u(t;us)] + h(t, w(t) + u(t;us)) + ySt (6.25)

is a solution with the property that

||Pc(t)vt − Φtu(t;us)]|| = O(e−γt),

||Ps(t)vt − h(t, u(t;us))|| = O(e−γt)

92



as t → ∞ (recall that if w ∈ X, then w → 0 exponentially as t → ∞, while h(t, ·) is
uniformly Lipschitz with respect to t). It is at this stage that we refer the reader to the proof
of Theorem 2 of Carr’s book [14]. The setup having been completed, the proof that T can
be made a contraction on X provided δ is sufficiently small is the same as Carr’s argument,
and is omitted. Specifically, we have the following conclusion: for s ∈ R and any (us, y

S
s ) is

sufficiently small, T : X → X is a contraction. In particular, by making this dependence
on the fixed point explicit and writing T : (R×Rp ×RCRs(s))×X → X, one can ensure
that T is a uniform contraction. In the same way we proved that the centre manifold is
(uniformly in t) Lipschitz continuous, one can show that the fixed point S∗(s, u, yS) of
T (s, u, yS) is uniformly (with respect to s) Lipschitz continuous in Rp×RCRs(s), and the
Lipschitz constant can be made as small as needed by taking δ sufficiently small.

Now, for a given φ ∈ RCR, define us(φ) and ySs (φ) according to

Pc(s)φ = Φsus(φ), ySs (φ) = φ− Φsus(φ)− h(s, us(φ)).

Next, define Q(s, ·, ·) : Rp ×RCRs(s)→ Rp ×RCRs(s) by

Q(s, u, φ) = (u, φ) + (ΦsS
∗(s, us(φ), ySs (φ)), 0).

That is, Q(s, ·, ·) is a nonlinear perturbation from the identity. If we let ψ ∈ RCR, then
the function Qψ(s, ·, ·) : Rp ×RCRs(s)→ Rp ×RCRs(s) defined by

Qψ(s, u, φ) = (us(ψ), ψ − Φsus(ψ))− (ΦsS
∗(s, us(φ), ySs (φ)), 0)

satisfies the property that Q(s, u, φ) = (ψ1, ψ2) if and only if

QΦsψ1+ψ2(s, u, φ) = (u, φ).

S∗(s, ·, ·) is (uniformly in s) Lipschitz continuous with a Lipschitz constant that goes to
zero as δ → 0. Since ψ does not factor into the nonlinear term, Qψ can be made a uniform
(with respect to s and ψ) contraction by taking δ sufficiently small. As a consequence,
every (ψ1, ψ2) ∈ Rp ×RCRs(s) is in the range of Q(s, ·, ·) (in fact, Q(s, ·, · is a bijection).

Now, let xt defined for t ≥ s be a mild solution with ||xt|| for t ≥ s sufficiently small.
Write xs = Φsx

c
s+xSs for xcs ∈ Rp and xSs ∈ RCRs(s). Denote (vcs, v

S
s ) = Q−1(s, ·, ·)(xcs, xSs ).

Take note that vSs = xSs . From the above discussion, it follows that with u(t) = u(t; vcs), the
asymptotic of the theorem is satisfied. By restricting to a sufficiently small neighbourhood
of the origin, we can ignore the cutoffs on the vector field and jump map, thereby obtaining
results that are applicable to mild solutions of the system without the cutoff nonlinearity.
This proves the theorem.
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Remark 6.8.2. Suppose the (parameter-dependent) process S(t, s; ε) : RCR → RCR is
generated by a parameter-dependent impulsive RFDE with parameter ε ∈ Rm, and at ε = 0
the equilibrium 0 is nonhyperbolic with a p-dimensional centre manifold. One then considers
the spatially extended process on RCR× Rm defined by

(φ, ε) 7→ (S(t, s; ε)φ, ε)

0 ∈ RCR × Rm is now nonhyperbolic with a (p + m)-dimensional centre fibre bundle, so
that the function (x, ε) 7→ C(t, x, ε) defines a (p + m)-dimensional centre manifold. The
dynamics on this centre manifold are trivial in the ε component, while those in the x
component depend for each ε fixed on x 7→ C(t, x, ε).

For small parameters ε 6= 0, there may be small solutions in the parameter-dependent
centre manifold Wε

c defined by

Wε
c(t) = {C(t, x, ε) : x ∈ RCRc(t)}

that are locally asymptotically stable when restricted to Wε
c . There could also be stable

attractors therein. The stability condition in addition to continuity with respect to initial
conditions (Theorem 5.2.1) and attractivity of the centre manifold (Theorem 6.8.1) then
grants the analogous stability of such small solutions or attractors when considered in the
original infinite-dimensional system (5.1)–(5.2), provided ε is small enough and RCRu is
trivial.

To summarize, when the unstable fibre bundle is trivial, the dynamics on the centre
manifold completely determine all nearby dynamics. Local stability assertions associated
to small solutions and attractors on the parameter-dependent centre manifold carry over to
those of the original infinite-dimensional system. The parameter-dependent centre manifold
contains all such small solutions and attractors.
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Chapter 7

Centre manifold theory II: regularity

The content of Chapter 7.1 appears in Smooth centre manifolds for impulsive delay differ-
ential equations [21] by Church and Liu, while Chapter 7.2 contains material from Com-
putation of centre manifolds and some codimension-one bifurcations for impulsive delay
differential equations [20] by the same authors. Section 6.1.4 contains a minor correction
to the source material [21]; specifically, an inconsistency in the definition of the substitution

operator R̃δ and its formal derivatives R̃
(p)
δ . Only symbolic corrections to one proof were

necessary. In addition, the assumption H.3 is stronger than the condition stated in the
aforementioned publication and is in fact needed in all proofs related to the smoothness of
the centre manifold. The associated errata has been submitted to the publisher. Finally,
by using the definition of the cutoff nonlinearity from the previous chapter, we are able
to prove smoothness in state for the centre manifold without assuming periodicity on the
linear part, thereby improving on the result from [21]. Only symbolic changes to proofs
are needed to accomplish this.

7.1 Smoothness in state

In Section 12.3, we proved the existence of invariant centre manifolds associated to the
abstract integral equation (5.3). These invariant manifolds are images of a uniformly
Lipschitz continuous function C : RCRc → RCR. In this section, we will ultimately prove
that this function is (fibrewise) smooth. To accomplish this, we will need to introduce an
additional regularity assumption on the nonlinear parts of the vector field and jump map.

H.8 The functions cj and sequences {dj(k) : k ∈ Z} introduced in H.5 are bounded.
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Note that H.8 is a purely nonautonomous property and is trivially satisfied if the vector
field and jump functions are autonomous.

7.1.1 Contractions on scales of Banach spaces

The rest of this section will utilize several techniques from the theory of contraction map-
pings on scales of Banach spaces. In particular, many of the proofs that follow are inspired
by those relating to smoothness of centre manifolds appearing in [27, 46, 86], albeit adapted
somewhat so as to manage the explicitly nonautonomous and impulsive properties of the
problem. The following lemma will be very helpful. It is taken from Section IX, Lemma
6.7 of [27], but also appears as Theorem 3 in [86].

Lemma 7.1.1. Let Y0, Y, Y1 be Banach spaces with continuous embeddings J0 : Y0 ↪→ Y
and J : Y ↪→ Y1 and let Λ be another Banach space. Consider the fixed-point equation
y = f(y, λ) for f : Y × Λ→ Y . Suppose the following conditions hold.

b1) The function g : Y0 × Λ → Y1 defined by (y0, λ) 7→ g(y0, λ) = Jf(J0y0, λ) is of class
C1 and there exist mappings

f (1) : J0Y0 × Λ→ L(Y ),

f
(1)
1 : J0Y0 × Λ→ L(Y1)

such that D1g(y0, λ)ξ = Jf (1)(J0y0, λ)J0ξ for all (y0, λ, ξ) ∈ Y0×Λ×Y0 and Jf (1)(J0y0, λ)y =

f
(1)
1 (J0y0, λ)Jy for all (y0, λ, y) ∈ Y0 × Λ× Y .

b2) There exists κ ∈ [0, 1) such that f(·, λ) : Y → Y is Lipschitz continuous with Lipschitz

constant κ, and each of f (1)(·, λ) and f
(1)
1 (·, λ) is uniformly bounded by κ.

b3) Under the previous condition, the unique fixed point Ψ : Λ→ Y satisfying the equation
Ψ(λ) = f(Ψ(λ), λ) itself satisfies Ψ = J0 ◦ Φ for some continuous Φ : Λ→ Y0.

b4) f0 : Y0 × Λ → Y defined by (y0, λ) 7→ f0(y0, λ) = f(J0y0, λ) has a continuous partial
derivative

D2f : Y0 × Λ→ L(Λ, Y )

b5) The mapping (y, λ) 7→ J ◦ f (1)(J0y, λ) from Y0 × Λ into L(Y, Y1) is continuous.

Then, the mapping J◦Ψ is of class C1 and D(J◦Ψ)(λ) = J◦A(λ) for all λ ∈ Λ, where A =
A(λ) is the unique solution of the fixed point equation A = f (1)(Ψ(λ), λ)A+D2f0(Φ(λ), λ).
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The reason we will need this lemma is because substitution operators such as Rδ :
PCη,s → Bη,s(R,Rn)⊕ Bη,s

tk
(Z,Rn) defined in Corollary 6.3.0.1, though Lipschitz continu-

ous, are generally not differentiable. The surprising result is that if one instead considers
the codomain to be Bζ,s(R,Rn)⊕Bζ,s

tk
(Z,Rn) for some ζ > η, then the substitution operator

becomes differentiable. Since Xη-type spaces admit continuous embeddings J : Xη1 ↪→ Xη2

whenever η1 ≤ η2, the centre manifold itself can be considered to be embedded in any ap-
propriate weighted Banach space with high enough exponent η. An appropriate application
of Lemma 7.1.1 applied to the defining fixed-point equation (6.7) of the centre manifold
will allow us to prove that a composition of the embedding operator with the fixed point
is a C1 function. An inductive argument will ultimately get us to Cm smoothness.

7.1.2 A modified fixed-point equation, substitution operator and
candidate differentials

Recall the definition of the modified nonlinearities

Fδ,s(t, x) = f(t, x)ξ

(
||Pc(s)x||
Nδ

)
ξ

(
||(Ps(s) + Pu(s))x||

Nδ

)
Gδ,s(k, x) = g(k, x0−)ξ

(
||Pc(s)x0− ||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x0− ||

Nδ

)
.

Since s is fixed andRCRc(s) is finite-dimensional, we may assume without loss of generality
that || · || is smooth on RCRc(s) \ {0}. We introduce a symbolic modification of the fixed-
point operator;

Gη,sδ : PCη,s ××RCRc(s)→ PCη,s

defined in the same way as equation (6.7). The only difference here is that wish to make the
dependence on η, s and δ explicit. We denote the associated fixed point by ũη,s, provided
δ > 0 is sufficiently small.

From this point on, our attention shifts to proving the smoothness of ũη,s : RCRc(s)→
PCη,s as defined by the fixed point of (6.7). We begin with some notation. Define PC∞ =
∪η>0PCη. Let

V η = {u ∈ PCη : ||(I − P̂c)u||0 <∞},

where P̂c is the projection operator from Lemma 6.5.1. Equipped with the norm

||u||V η,s = ||Pcu||η,s + ||(I − Pc)u||0,
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the space V η,s is complete, where the s-shifted definitions are as outlined at the beginning
of Section 6.1 .

Let δ > 0 be chosen as in Lemma 6.5.1, define

V η
δ = {u ∈ V η : ||(I − P̂c)u||0 < δ}

and define V η
δ (t) ⊂ RCR by V η

δ (t) = {u(t) : u ∈ V η
δ }. Also, define the set V ∞δ = ∪η>0V

η
δ .

Set Bη = PCη(R,Rn)⊕Bη
τk

(Z,Rn) and B∞ = ∪η>0B
η. Finally, the bounded p-linear maps

from X1 × · · · ×Xp to Y for Banach spaces Xi and Y will be denoted Lp(X1 × · · ·Xp, Y ).
We may write simply Lp if there is no confusion.

By construction of the modified nonlinearity Rδ,s and the choice of δ from Lemma 6.5.1,
the functions u 7→ Fδ,s(t, u) and u 7→ Gδ,s(k, u) are Cm on V η

δ (t) and V η
δ (τk) respectively,

for all t ∈ R and k ∈ Z. We are therefore free to define

F̃
(p)
δ,s u(t) = DpF̃δ,s(t, u(t)), G̃

(p)
δ,su(k) = DpGδ,s(τk, u(τk)),

for 1 ≤ p ≤ m, where Dp denotes the pth Fréchet derivative with respect to the second
variable. For each u ∈ V ∞δ we can define a p-linear map R̃

(p)
δ,s (u) : PC∞×· · ·×PC∞ → B∞

by the equation

R̃
(p)
δ,s (u)(v1, . . . , vp)(t, k) = (F

(p)
δ,s u(t)(v1(t), . . . , vp(t)), G

(p)
δ,su(k)(v1(tk), . . . , vp(tk))). (7.1)

For p = 0, we define R̃
(0)
δ,s = Rδ,s.

7.1.3 Smoothness of the modified nonlinearity

In this section we elaborate on various properties of the substitution operator Rδ,s and its

formal derivative R̃
(p)
δ,s introduced in equation (7.1). First, we will need a result that states

that condition H.5 holds also for the modified nonlinearities when restricted to V ∞δ .

Lemma 7.1.2. For j = 1, . . . ,m, there exist constants c̃j, d̃j, q̃ > 0 such that

||DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ)|| ≤ c̃j||φ− ψ||, ||DjF̃δ,s(t, φ)|| ≤ q̃c̃j φ, ψ ∈ V ∞δ (t)

||DjG̃δ,s(k, φ)−DjG̃δ,s(k, ψ)|| ≤ d̃j||φ− ψ||, ||DjG̃(k, φ)|| ≤ q̃d̃j φ, ψ ∈ V ∞δ,s (τk).

Proof. We prove only the Lipschitzian property for DjFδ,s, since the boundedness and
corresponding results for DjGδ,s are proven similarly. Denote

X(s, φ) = ξ

(
||Pc(s)φ||
Nδ

)
ξ

(
||(I − Pc(s))φ||

Nδ

)
.
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When φ, ψ ∈ V ∞δ (t), X is m-times continuously differentiable and its derivative is globally
Lipschitz continuous. Moreover, the Lipschitz constant can be chosen independent of s
because of the uniform boundedness (property 1) of the projection operators. Let LipkX
denote the Lipschitz constant for DkX(s, ·). Then,

DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ) = Dj [f(t, φ)X(s, φ)− f(t, ψ)X(s, φ)]

=
∑

N1,N2∈P2(j)

D#N1f(t, φ)D#N2X(s, φ)−D#N1f(t, ψ)D#N2X(s, ψ)

=
∑

N1,N2∈P2(j)

D#N1 [f(t, φ)− f(t, ψ)]D#N2X(s, φ) +D#N1f(t, ψ)D#N2 [X(s, φ)−X(s, ψ)],

where P2(j) denotes the set of partitions of length two from the set {1, . . . , j} and #Y is
the cardinality of Y . Restricted to the ball B2δ(0), the Lipschitz constants for Djf(t, ·)
and the boundedness estimates from H.5 then imply the estimate

||DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ)|| ≤

 ∑
N1,N2∈P2(j)

(1 + q)c#N1(t)Lip#N2

X

 ||φ− ψ||.
As each of cj and dj are bounded, the Lipschitz constant admits an upper bound. Outside
of B2δ(0), X and all of its derivatives are identically zero.

Lemma 7.1.3. Let 1 ≤ p ≤ m, µi > 0 for i = 1, . . . , p, µ = µ1 + · · ·+µp and η ≥ µ. Then

we have R̃
(p)
δ,s (u) ∈ Lp(PCµ1 × · · · × PCµp , Bη) for all u ∈ V ∞δ , with

||R̃(p)
δ,s (u)||Lp ≤ sup

t∈R
||F̃ (p)

δ,s u(t)||e−(η−µ)|t| + sup
k∈Z
||G̃(p)

δ,su(k)||e−(η−µ)|τk|

= ||R̃(p)
δ,s (u)||η−µ.

Also, u 7→ R̃
(p)
δ,s (u) is continuous as a mapping R̃

(p)
δ,s : V σ

δ → Lp(PCµ1 × · · · × PCµp , Bη) if
η > µ, for all σ > 0.

Proof. For brevity, denote R̃δ = R̃δ,s, and similarly for F̃ and G̃. It is easy to verify that

99



R̃
(p)
δ (u) is p-linear. For boundedness,

||R̃(p)
δ (u)||Lp = sup

t∈R,k∈Z
||v||~µ=1

||F̃ (p)
δ u(t)(v1(t), . . . , vp(t))||e−η|t| + ||G̃(p)

δ u(k)(v1(tk), . . . , vp(tk))||e−η|τk|

≤ sup
t∈R
||v||~µ=1

||F̃ (p)
δ u(t)(v1(t), . . . , vp(t))||e−η|t| + sup

k∈Z
||u||~µ=1

||G̃(p)
δ u(k)(w1(k), . . . , wp(k))||e−η|τk|

≤ sup
t∈R
||v||~µ=1

||F̃ (p)
δ u(t)|| ·

[
||v1(t)|| · · · ||vp(t)||

]
e−η|t| + sup

k∈Z
||w||~µ=1

||G̃(p)
δ u(k)|| ·

[
||w1(k)|| · · · ||wp(k)||

]
e−η|τk|

= sup
t∈R
||F̃ (p)

δ u(t)||e−(η−µ)|t| + sup
k∈Z
||G̃(p)

δ u(k)||e−(η−µ)|τk|,

where ||v||~µ=1 is the set of all v = (v1, . . . , vp) ∈ PCµ1×· · ·×PCµp such that ||vi||µi = 1 for
i = 1, . . . , p. The latter term in the inequality is finite by Lemma 7.1.2 whenever η ≥ µ. In
particular, the latter lemma implies that for all φ ∈ V ∞δ , one has supt∈R ||DjF̃δ(t, φ(t))|| ≤
q̃c̃j, and similar for G̃k. This uniform boundedness can then be used to prove the continuity

of u 7→ R̃
(p)
δ (u) when η > µ; the proof follows that of [Lemma 7.3 [46]] and is omitted

here.

The proof of the following lemmas are essentially identical to the proofs of [Corollary
7.5, Corollary 7.6, Lemma 7.7 [46]] and are omitted here. The trivial modification stems
from in our case, the nonlinearity consists of two independent components defined by Fδ
and Gδ, as well as the time dependence. This latter complication is effectively resolved by
Lemma 7.1.2.

Lemma 7.1.4. Let η2 > kη1 > 0, 1 ≤ p ≤ k. Then, R̃δ,s : V η1

δ → Lp(PC
η1×· · ·×PCη1 , Bη2)

is Ck and DpR̃δ,s = R̃
(p)
δ,s .

Lemma 7.1.5. Let 1 ≤ p ≤ m, µi > 0 for i = 1, . . . , p, µ = µ1 + · · · + µp and η ≥ µ.

Then, R̃
(p)
δ,s : V σ

δ → Lp(PCµ1 × · · · × Πµp , Bη) is Ck−p provided η > µ+ (k − p)σ.

Lemma 7.1.6. Let 1 ≤ p ≤ k, µi > 0 for i = 1, . . . , p, µ = µ1 + · · ·µp and η > µ + σ for

some σ > 0. Let X : RCRc(s)→ V σ
δ be C1. Then, R̃

(p)
δ,s ◦X : RCRc(s)→ Lp(PCµ1 × · · ·×

Πµp , Bη) is C1 and

D
(
R̃

(p)
δ,s ◦X

)
(φ)(v1, . . . , vp, ψ) = R̃

(p+1)
δ,s (X(φ))(v1, . . . , vp, X

′(φ)ψ).

100



7.1.4 Proof of smoothness of the centre manifold and tangency
to the centre fibre bundle

With our preparations complete, we can formulate and prove the statement concerning the
smoothness of the centre manifold.

Theorem 7.1.1. Let J η2,η1
s : PCη1,s → PCη2,s denote the (continuous) embedding operator

for η1 ≤ η2. Let [η̃, η] ⊂ (0,min{−a, b}) be such that kη̃ < η. Then, for each p ∈ {1, . . . ,m}
and η ∈ (pη̃, η], the mapping Jηη̃s ◦ ũη̃,s : RCRc(s)→ PCη,s is of class Cp provided δ > 0 is
sufficiently small.

Proof. The proof here follows the same lines as Theorem 7.7 from Section IX of [27]. To
begin, we choose δ > 0 small enough so that Lemma 6.5.1 is satisfied in addition to having
L̃δ||Kηs || < 1

4
for all η ∈ [η̃, η]. By Lemma 6.2.3 and Corollary 6.3.0.1, this can always be

done in such a way that the inequality holds for all s ∈ R.

We proceed by induction on k. For p = 1 = k, we let η ∈ (η̃, η] and show that Lemma
7.1.1 applies with

Y0 = V η̃,s
δ , Y = PC η̃,s, Y1 = PCη,s, Λ = RCRc(s)

f(u, ϕ) = G̃ η̃,sδ (u, ϕ), f (1)(u, ϕ) = Kη̃s ◦ R̃
(1)
δ,s (u), f

(1)
1 (u, ϕ) = Kηs ◦ R̃

(1)
δ,s (u),

with embeddings J = J ηη̃
s and J0 : V η̃,s

δ ↪→ PC η̃,s. To check condition b1 we must first
verify the C1 smoothness of

V η̃,s
δ ×RCRc(s) 3 (u, ϕ) 7→ g(u, ϕ) = J ηη̃

s

(
U(·, s)ϕ+Kη̃s ◦ R̃δ,s(J0u)

)
.

The embedding operator J ηη̃
s is itself C1, as is ϕ 7→ U(·, s)ϕ and J0u 7→ R̃δ,s(J0u),

the latter due to Lemma 7.1.4. C1 smoothness of g then follows by continuity of the
linear embedding J0. Verification of the equalities D1g(u, ϕ)ξ = Jf (1)(J0u, ϕ)J0ξ and

Jf (1)(J0u, ϕ)ξ = f
(1)
1 (J0u, ϕ)Jξ is straightforward. Condition b2 follows by boundedness

of the embedding operators and the the small Lipschitz constant for G̃ η̃,sδ,s . For condition

b3, the fixed point is ũη̃,s : RCRc(s) → PC η̃,s, and we may factor it as ũη̃,s = J0 ◦ Φ with
Φ : RCRc(s)→ V η̃,s

δ defined by Φ(ϕ) = ũη̃,s(ϕ); the latter is continuous by Theorem 6.4.1
and the factorization is justified by Lemma 6.5.1. To check condition b4 we must verify
that

V η̃,s
δ ×RCRc(s) 3 (u, ϕ) 7→ f0(u, ϕ) = G̃ η̃,sδ,s (J0u, ϕ)
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has a continuous partial derivative in its second variable – this is clear since f0 is linear in
ϕ. Finally, condition b5 requires us to verify that the map (u, ϕ) 7→ J ηη̃

s ◦ Kη̃s ◦ R̃
(1)
δ,s (J0u)

is continuous from V η̃,s
δ ×RCRc(s) into L(RCRc(s),PCη,s), but this once again follows by

the continuity of the embedding operators and the smoothness of R̃δ,s from Lemma 7.1.4.

The conditions of Lemma 7.1.1 are satisfied, and we conclude that J ηη̃ ◦ ũη̃,s is of class
C1 and that the derivative D(J ηη̃ ◦ ũη̃,s) ∈ L(RCRc(s),PCη,s) is the unique solution w(1)

of the equation

w(1) = Kη̃s ◦ R̃
(1)
δ,s (ũη̃s(ϕ))w(1) + U(·, s) := F1(w(1), ϕ). (7.2)

The mapping F1 : L(RCRc(s),PCη,s)×RCRc(s)→ L(RCRc(s),PCη,s) is a uniform con-
traction for η ∈ [η̃, η] – indeed, F1(·, ϕ) is Lipschitz continuous with Lipschitz constant

L̃δ · ||Kηs || < 1
4
; this follows from Lemma 7.1.3 and is independent of s. Thus, ũ

(1)
s (ϕ) ∈

L(RCRc(s),PC η̃,s) ↪→ L(RCRc(s),PCη,s) for η ≥ η̃. Moreover, ũ
(1)
s : RCRc(s)→ PCη,s is

continuous if η ∈ (η̃, η].

Now, let 1 ≤ p ≤ k for k ≥ 1 and suppose that for all q ∈ {1, . . . , p} and all η ∈ (qη̃, η],
the mapping

J ηη̃
s ◦ ũη̃,s : RCRc(s)→ PCη,s

is of class Cq with Dq(J ηη̃
s ◦ ũη̃s) = J ηη̃

s ◦ ũ
(q)
η̃,s and ũ

(q)
η̃,s(ϕ) ∈ Lq(RCRc(s),PCqη̃,s) for each

ϕ ∈ RCRc(s), such that the mapping

J ηη̃
s ◦ ũ

(q)
η̃,s : RCRc(s)→ Lq(RCRc(s),PCη,s)

is continuous for η ∈ (qη̃, η]. Suppose additionally that ũ
(q)
η̃,s(ϕ) is the unique solution w(p)

of an equation

w(p) = Kη̃ps ◦ R̃
(1)
δ,s (ũη̃,s(ϕ))w(p) +H

(p)
η̃ (ϕ) := F

(p)
η̃ (w(p), ϕ), (7.3)

with H1 = U(·, s) and H
(p)
x (ϕ) for p ≥ 2 is a finite sum of terms of the form

Kpxs ◦ R̃
(q)
δ,s (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), · · · , ũ(rq)

η̃,s (ϕ))

with 2 ≤ q ≤ p, 1 ≤ ri < p for i = 1, . . . , q, such that r1 + · · · + rq = p. Under such

assumptions, the mapping F
(p)
η̃ : Lp(RCRc(s),PCη,s)×RCRc(s)→ Lp(RCRc(s),PCη,s) is

a uniform contraction for all η ∈ [pη̃, η]; see Lemma 7.1.3.
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Next, choose some η ∈ ((p + 1)η̃, η], σ ∈ (η̃, η/(p + 1)] and µ ∈ ((p + 1)σ, η). We will
verify the conditions of Lemma 7.1.1 with the spaces and functions

Y0 = Lp(RCRc(s),PCpσ,s), Y = Lp(RCRc(s),PCµ,s), Y1 = Lp(RCRc(s),PCη,s)
f(u, ϕ) = Kµs ◦ R̃

(1)
δ,s (ũη̃,s(ϕ))u+H

(p)
µ/p(ϕ), Λ = RCRc(s),

f (1)(u, ϕ) = Kµs ◦ R̃
(1)
δ,s (ũη̃,s(ϕ)) ∈ L(Y ),

f
(1)
1 (u, ϕ) = Kηs ◦ R̃

(1)
δ,s (ũη̃,s(ϕ)) ∈ L(Y1),

We begin with the verification of condition b1. We must check that

Lp(RCRc(s),PCpσ,s)×RCRc(s) 3 (u, ϕ) 7→ J ηµ ◦ Kµs ◦ R̃
(1)
δ,s (ũη̃,s(ϕ))u+ J ηµ ◦H(p)

µ/p(ϕ)

is of class C1, where now J η2η1 : Lp(RCRc(s),PCη1,s) ↪→ Lp(RCRc(s),PCη2,s). The above
mapping is C1 with respect to u ∈ Lp(RCRc(s),PCpσ,s) since it is linear in this variable.

With respect to ϕ ∈ RCRc(s), we have that ϕ 7→ J ηµKµs ◦ R̃
(1)
δ,s (ũη̃,s(ϕ)) is C1: this follows

by Lemma 7.1.6 with µ > (p + 1)σ and the C1 smoothness of ϕ 7→ J ση̃ ◦ ũη̃,s(ϕ) with

σ > η̃. For the C1 smoothness of the portion ϕ 7→ J ηµH
(p)
µ/p(ϕ), we get differentiability

from Lemma 7.1.6; we have that the derivative of ϕ 7→ H
(p)
µ/p(ϕ) is a sum of terms of the

form

Kµs ◦R̃
(q+1)
δ,s (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ))

+

q∑
j=1

Kµs ◦ R̃
(q)
δ,s (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rj+1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ)),

and each ũ
(j)
η̃,s is understood as a map into PCjσ,s. Applying Lemma 7.1.3 with µ > (p+1)σ

grants continuity of DH
(p)
µ/p(ϕ) and, subsequently, to J ηµDH

(p)
µ/p(ϕ). The other embedding

properties of condition b1 are easily checked. Condition b4 can be proven similarly.

The Lipschitz condition and boundedness of b2 follows by the choice of δ > 0 at the
beginning and the uniform contractivity of Hp described above. Condition b3 is proven by
writing

J ηµ ◦ Kµs ◦ R̃
(1)
δ,s (ũη̃,s)(ϕ)) = Kηs ◦ R̃

(1)
δ,s (ũη̃,s(ϕ))

and applying Lemma 7.1.3 together with the C1 smoothness of ũη̃,s to obtain the continuity

of ϕ 7→ R̃
(1)
δ,s (ũη̃,s) ∈ L(Y, Y1). This also proves the final condition b5 of Lemma 7.1.1, and
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we conclude that ũ
(p)
η̃,s : RCRc(s)→ Lp(RCRc(s),PCη,s) is of class C1 with ũ

(p+1)
η̃,µ = Dũ

(p)
η̃,s ∈

L(p+1)(RCRc(s),PCη,µ) given by the unique solution w(p+1) of the equation

w(p+1) = Kµs ◦ R̃
(1)
δ,s (ũη̃,s(ϕ))w(p+1) +H

(p+1)
µ/(p+1)(ϕ) (7.4)

where H
(p+1)
µ/(p+1)(ϕ) = Kµs ◦ R̃

(2)
δ,s (ũη̃,s(ϕ))(ũ

(p)
η̃,s(ϕ), ũ

(1)
η̃,s(ϕ)) + DH

(p)
µ/p(ϕ). Similar arguments

to the proof of the case k = 1 show that the fixed point w(p+1) is also contained in
L(p+1)(RCRc(s),PC η̃(p+1),s), and the proof is complete.

Corollary 7.1.1.1. C : RCRc → RCR is Cm and tangent at the origin to the centre
bundle RCRc. More precisely, C(t, ·) : RCRc(t) → RCR is Ck and DC(t, 0)φ = φ for all
φ ∈ RCRc(t).

Proof. Let η̃, η be as in the proof of Theorem 7.1.1. Define the evaluation map evt : PCη →
RCR by evt(f) = f(t). Since we can decompose the centre manifold as

C(t, φ) = evt(ũt(φ)) = evt(J ηη̃
t ũt(φ)),

boundedness of the linear evaluation map on the space PCη,t then implies the Ck smooth-
ness of C(t, ·). To obtain the tangent property, we remark that

DC(t, 0)φ = evt

(
D
(
J ηη̃
t ◦ ũt(0)

)
φ
)

= evt

(
ũ

(1)
η,t (0)φ

)
.

From equation (7.2) and Theorem 6.5.1, we obtain ũ
(1)
η,t (0) = U(·, t), from which it follows

that DC(t, 0)φ = φ, as claimed.

As a secondary corollary, we can prove that each derivative of the centre manifold is
uniformly Lipschitz continuous. The proof is similar to that of Corollary 6.4.1.1 if one
takes into account the representation of the derivatives ũ

(p)
η̃,s as solutions of the fixed-point

equations (7.4), whose right-hand side is a contraction with Lipschitz constant independent
of s.

Corollary 7.1.1.2. For each p ∈ {1, . . . , k}, there exists a constant L(p) > 0 such that
the centre manifold satisfies ||DpC(t, φ) − DpC(t, ψ)|| ≤ L(p)||φ − ψ|| for all t ∈ R and
φ, ψ ∈ RCRc(t).

We readily obtain the smoothness of the centre manifold in the case where the semilinear
equation is periodic. In particular, in such a situation many some of the assumptions H.1–
H.8 are satisfied automatically and can be ignored.
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Corollary 7.1.1.3. Suppose the semilinear equation (5.1)–(5.2) satisfies the following con-
ditions.

P.1 The equation is periodic with period T and c impulses per period. That is, L(t+T ) =
L(t) and f(t + T, ·) = f(t) for all t ∈ R, and B(k + c) = B(k) , g(k + c, ·) = g(k, ·)
and τk+c = τk + T for all k ∈ Z.

P.2 Conditions H.1–H.3 and H.5–H.6 are satisfied.

Then, the conclusions of Corollary 7.1.1.1 and Corollary 7.1.1.2 hold.

7.1.5 Periodic centre manifold

In this section we will prove that the centre manifold is itself a periodic function, provided
the conditions P.1–P.2 of Corollary 7.1.1.3 are satisfied. We begin with a preparatory
lemma.

Lemma 7.1.7. Define the operator Ns : RCRc(s)→ RCRc(s) by

Ns(φ) = Pc(s)S(s+ T, s)C(s, φ).

This operator is well-defined and invertible in a neighbourhood of 0 ∈ RCRc(s). Moreover,
the neighbourhood can be written U ∩RCRc(s) for some open neighbourhood U ⊂ RCR of
0 ∈ RCR, independent of s.

Proof. To show that Ns is invertible in a neighbourhood of the origin we will use the inverse
function theorem. The Fréchet derivative of Ns at 0 is given by

DNs(0)φ = Pc(s) ◦DS(s+ T, s)(0) ◦DC(s, 0)φ

= Pc(s+ T ) ◦ U(s+ T, s)φ

= Uc(s+ T, s)φ,

where we used Corollary 7.1.1.1 to calculate DC(s, 0) and Theorem 5.2.1 to calculate
DS(s + T, s)(0). Since U(s + T, s) is an isomorphism (Theorem 4.3.1) of RCRc(s) with
RCRc(s+ T ) = RCRc(s), we obtain the claimed local invertibility.

To show that the neighbourhood may be written as claimed, we notice that DNs(x) is
uniformly convergent (in the variable s) as x→ 0 to DNs(0). Indeed, we have the estimate

||DNs(x)−DNs(0)|| ≤ ||Uc(s+ T, s)Pc(s)|| · ||DC(s, x)−DC(s, 0)||,

105



and the Lipschitz property of Corollary 7.1.1.2 together with uniform boundedness of the
projector Pc(s) and centre monodromy operator Uc(s+T, s) grants the uniform convergence
as x → 0. As a consequence, the implicit function may be defined on a neighbourhood
that does not depend on s.

Theorem 7.1.2. There exists δ > 0 such that C(s+T, φ) = C(s, φ) for all s ∈ R whenever
||φ|| ≤ δ.

Proof. By Lemma 7.1.7, there exists δ > 0 such that if ||φ|| ≤ δ, we can write φ = Ns(ψ)
for some ψ ∈ RCRc(s). By Theorem 6.5.1 and the periodicity condition P.1,

C(s+ T, φ) = C(s+ T,Ns(ψ))

= C(s+ T, Pc(s+ T )S(s+ T, s)C(s, ψ))

= S(s+ T, s)C(s, ψ)

= S(s, s− T )C(s, ψ)

= C(s, Pc(s)S(s, s− T )C(s, ψ))

= C(s, Pc(s)S(s+ T, s)C(s, ψ))

= C(s,Ns(ψ)) = C(s, φ),

where the identity S(s+T, s) = S(s, s−T ) follows due to periodicity and Lemma 5.1.1.

7.2 Pointwise regularity in time

In the previous section we were concerned with the smoothness of φ 7→ C(t, φ). To contrast,
in this section we are interested in to what degree the function t 7→ DkC(t, φ) is differen-
tiable, for each k = 1, . . . ,m. Our observations in Section 3.2.2 should make it clear that
we cannot expect this function to be differentiable, but we would expect t 7→ C(t, φ)(θ) to
right-continuous and regulated for each fixed θ.

Perhaps it is better to motivate our ideas on regularity in time by explaining how we
will be using the centre manifold in applications. From Taylor’s theorem, C(t, φ) admits
an expansion of the form

C(t, φ) = DC(t, 0)φ+
1

2
D2C(t, 0)[φ]2 + · · ·+ 1

m!
DmC(t, 0)[φ]m +O(||φ||m+1),

where [φ]k = [φ, . . . , φ] with k factors, and the O(||φ||m+1) terms generally depend on t.
By Theorem 7.1.2, under periodicity assumptions these terms will be uniformly bounded
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in t for ||φ|| sufficiently small. This expansion can in principle be used in the dynamics
equation (6.13)–(6.14) on the centre manifold or its integral version (6.11), which will
permit us to classify bifurcations in impulsive RFDE. In later sections we will want to
make these dynamics equations concrete – that is, to pose them in a concrete vector space
such as Rp for some p ∈ N. By analogy with ordinary and delay differential equations,
this should also allow us to obtain a partial differential equation for the Taylor coefficients
DjC(t, 0). As these coefficients are time-varying, we should suspect this PDE to contain
derivatives in time as well.

In summary, we need to consider the differentiability of the function t 7→ DjC(t, 0)
for j = 1, . . . ,m. Since we know that this function will not actually be differentiable, we
consider instead the differentiability of

t 7→ DjC(t, 0)[φ1, . . . , φj](θ)

for each θ ∈ [−r, 0] and p-tuples φ1, . . . , φp. While a more realistic goal, even this is too
strong a condition. It is precisely here here that we see the biggest difficulty in translating
from an autonomous centre manifold formulation to a nonautonomous one based on fibre
bundles: the first differential DC(t, 0) : RCRc(t) → RCR of the centre manifold has a
different domain for each t. As a consequence, we can not even define the derivative of
t 7→ DC(t, 0)φ(θ), since we must have φ ∈ RCRc(t) for the right-hand side to be well-
defined. This problem is apparent for all higher differentials.

7.2.1 A coordinate system and pointwise PC1,m-regularity

To address the issue the centre manifold having a “time-varying domain”, first note if we
fix a sufficiently well-behaved coordinate system in RCRc(t) – for example, let φ1, . . . , φp
be a basis for for RCRc(0) and define φi(t) = Uc(t, 0)φi for i = 1, . . . , p to be a basis for
RCRc(t) – then the function w(t) of Lemma 6.7.1 and Theorem 6.7.1 can be written as
w(t) = Φtz(t) for z ∈ Rp, where Φt = [ φ1(t) · · · φp(t) ]. This motivates us to consider
instead a centre manifold in these coordinates.

Definition 7.2.1. The function C : R× Rp → RCR defined by

C(t, z) = C(t,Φtz). (7.5)

is the centre manifold in terms of the basis array Φ.
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If C(t, ·) is Cm-smooth, the chain rule implies the same is true for C(t, ·). It follows
that

C(t, w(t)) = DC(t, 0)z(t)+
1

2
D2C(t, 0)[z(t), z(t)]+· · ·+ 1

m!
DmC(t, 0)[z(t)]m+O(||w(t)||m+1),

so insofar as dynamics on the centre manifold are concerned, it is enough to study the
differentiability of t 7→ DjC(t, 0)[z1, . . . , zp](θ) for p-tuples z1, . . . , zp ∈ Rp. Specifically, the
temporal regularity we will attempt to prove is given in the following definition.

Definition 7.2.2. A function F : R × Rp → RCR is pointwise PC1,m-regular at zero if
it satisfies the following conditions.

• x 7→ F (t, x) is Cm in a neighbourhood of 0 ∈ Rp, uniformly in t;

• for j = 0, . . . ,m, DjF (t, 0)[z1, d, . . . , zj](θ) is differentiable from the right with limits
on the left separately with respect to t and θ, for all z1, . . . , zj ∈ Rp.

With this in mind, the result we will prove is as follows.

Theorem 7.2.1. Let φ1, . . . , φp be a basis for RCRc(0), and define

Φt = [ Uc(t, 0)φ1 · · · Uc(t, 0)φp ].

If the centre manifold C : RCRc → RCR is (fibrewise) Cm, then the centre manifold in
terms of the basis array Φ is effectively pointwise PC1,m-regular at zero provided certain
technical conditions are met (assumption H.10). Moreover, if θ ∈ RCR(R, [−r, 0]), then
t 7→ C(t, z)(θ(t)) is continuous from the right with limits on the left for all z ∈ Rp, and
z 7→ C(t, z) is Lipschitz continuous, uniformly for t ∈ R.

The technical condition will be introduced in Section 7.2.3.

7.2.2 Reformulation of the fixed-point equation

Given that C(t, z) = C(t,Φtz), we can equivalently write C(t, z) = vt(z)(t) with vt : Rp →
PCη,t the unique fixed point of the equation

vt(z) = Φ(·)z +Kηt (Rδ,t(vt(z))) (7.6)

for each |z| small enough, where Kηt is as defined in equation (6.3) and Rδ,t is the sub-
stitution operator from Section 6.3. Notice also that the nonlinear operator defining the
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right-hand side of the equation admits the same Lipschitz constant as original fixed-point
operator G from equation (6.7). Up to an appropriate embedding, the jth differential v

(j)
t

satisfies for j ≥ 2 a fixed-point equation of the form

v
(j)
t = Kηt ◦R

(1)
δ,t (vt)v

(j)
t +Kηt ◦H(j)(vt, v

(1)
t , . . . , v

(j−1)
t ), (7.7)

with the right-hand side defining a uniform contraction in v
(j)
t . H(j) can be written as a

finite linear combination of terms of the form

R
(q)
δ,t (vt)[v

(r1)
t , . . . , v

(rq)
t ],

for q ∈ {2, . . . , j}, such that r1 + · · · + rq = j. All of this follows from (the proof of)
Theorem 7.1.1. Explicitly,

H(j) = −R(1)
δ,t (vt)v

(j)
t +Dj

z[Rδ,t(vt(z))],

and one can verify by induction on j that H(j) contains no term of the form R(1)(vt)v
(j)
t

and that the coefficients in the aforementioned linear combination are independent of t.
To compare, for j = 0 and j = 1, we can compute directly from the definition of the fixed
point and by using Corollary 7.1.1.1 and the chain rule that

vt(0)(·) = 0, (7.8)

v
(1)
t (0)(·) = Φ(·). (7.9)

The assumption Df(t, 0) = Dg(k, 0) = 0 implies R
(1)
δ (0) = 0, so the fixed-point equation

(7.7) implies

v
(j)
t (0)(µ) =

[
Kηt ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(·))
]

(µ) (7.10)

for j ≥ 2. By definition of the basis array Φ, the following lemma is proven.

Lemma 7.2.1. If the centre manifold is C1, then the centre manifold in terms of the basis
array Φ is pointwise PC1,1-regular at zero. If the centre manifold is Cm, then the centre
manifold in terms of the basis array Φ is pointwise PC1,m-regular at zero provided

t 7→
[
Kηt ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]

(t)[z1, . . . , zj](θ),

θ 7→
[
Kηt ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]

(t)[z1, . . . , zj](θ)

are each, for j = 2, . . . ,m differentiable from the right with limits on the left, for all
z1, . . . , zj ∈ Rp.
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7.2.3 A technical assumption on the projections Pc(t) and Pu(t)

By definition of the bounded linear map Kηt from (6.3), it will be necessary to differentiate
(in t) integrals involving terms of the form µ 7→ U(t, µ)Ps(µ)χ0 and µ 7→ U(t, µ)Pu(µ)χ0.
Generally, if we assume RCRu(0) to be q-dimensional (guaranteed by Theorem 4.3.1 if the
linearization is periodic), then we can fix a basis ψ1, . . . , ψq for RCRu(0) and construct a
basis array

Ψt = [ Uu(t, 0)ψ1 · · · Uu(t, 0)ψq ]

for RCRu(t) that is formally analogous to the basis array Φt for the centre fibre bundle.
Under spectral separation assumptions, Uu(t, s) : RCRu(s) → RCRu(t) and Uc(t, s) :
RCRc(s)→ RCRc(t) are topological isomorphisms, from which it follows that there exist
unique Yc(t) ∈ Rp×n and Yu(t) ∈ Rq×n such that

Pc(t)χ0 = ΦtYc(t),

Pu(t)χ0 = ΨtYu(t).
(7.11)

Even under periodicity conditions, computing the action of these projections on the func-
tional χ0 ∈ RCR([−r, 0],Rn×n) is quite nontrivial and requires computing the abstract
contour integral (4.5). Though this can in principle be done numerically by discretizing
the monodromy operator – see Section 4.6.3 – there is little in the way of theoretical re-
sults guaranteeing, for example, that the matrix functions t 7→ Yc(t) and t 7→ Yu(t) are
respectively elements of RCR(R,Rp×n) and RCR(R,Rq×n). Such a result would make the
differentiation of the integrals appearing in the definition of Kηt much more reasonable. We
therefore introduce another hypothesis. We will discuss it in a bit more detail in Section
7.2.7.

H.9 There are (finite) basis arrays Φ and Ψ for RCRc and RCRu respectively for which
the matrix functions t 7→ Yc(t) and t 7→ Yu(t) from equation (7.11) are continuous
from the right and possess limits on the left.

7.2.4 Proof of Theorem 7.2.1

We deal first with the continuity of t 7→ C(t, z)(θ(t)) from the right and the existence of
its left limits. Since C(·, z) = vt(z)(·) ∈ PCη,t, it can be identified with a history function
t 7→ ct for some c ∈ RCR(R,Rn). But this implies C(t, z)(θ(t)) = ct(θ(t)) = c(t + θ(t)).
The conclusion follows because c ∈ RCR(R,Rn) and θ ∈ RCR(R, [−r, 0]), and right-
continuity and limits respect composition. As for the Lipschitzian claim, it follows by
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similar arguments to the proof of the original centre manifold Theorem 6.4.1 and Corollary
6.4.1.1.

Using the definition of the linear map Kηt in (6.3) and equation (7.10), we can explicitly

write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
U(t, µ)[I − Pc(µ)− Pu(µ)]χ0Ĥ

(j)
1 (µ)dµ−

∫ ∞
t

U(t, µ)Pu(µ)χ0Ĥ
(j)
1 (µ)dµ

+
t∑
−∞

U(t, ti)[I − Pc(ti)− Pu(ti)]χ0Ĥ
(j)
2 (ti)dti −

∞∑
t

U(t, ti)Pu(ti)χ0Ĥ
(j)
2 (ti)dti,

where each of Ĥ
(j)
1 (µ) and Ĥ

(j)
2 (ti) and H(j) are related by the equations

H(j) =
∑
i

ciR
(ri)
δ,t (0)[Φ

di,1
(·) , [v

(2)
t (0)(t)]di,2 , . . . , [v

(j−1)
t (0)(t)]di,j−1 ]

Ĥ
(j)
1 (µ) =

∑
i

ciD
rif(µ, 0)[Φdi,1

µ , [v
(2)
t (0)(µ)]di,2 , . . . , [v

(j−1)
t (0)(µ)]di,j−1 ]

Ĥ
(j)
2 (tk) =

∑
i

ciD
rig(k, 0)[Φ

di,1
tk
, [v

(2)
t (0)(tk)]

di,2 , . . . , [v
(j−1)
t (0)(tk)]

di,j−1 ].

The first line follows from the definition of H(j), while the other two come from the defini-
tion of the substitution operator. Note also that we have suppressed the inputs z1, . . . , zj;

technically, each of Ĥ
(j)
1 (µ) and Ĥ

(j)
2 (µ) are j-linear maps from Rp to RCR. Using assump-

tion H.9, we can equivalently write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
[U(t, µ)χ0 − ΦtYc(µ)−ΨtYu(µ)]Ĥ

(j)
1 (µ)dµ−

∫ ∞
t

ΨtYu(µ)Ĥ
(j)
1 (µ)dµ

+
t∑
−∞

[U(t, ti)χ0 − ΦtYc(ti)−ΨtYu(ti)]Ĥ
(j)
2 (ti)dti −

∞∑
t

ΨtYu(ti)Ĥ
(j)
2 (ti)dti.

(7.12)

At this stage we remark that Theorem 7.1.1 implies v
(i)
t (0)(·)[z1, . . . , zi] ∈ PC∞ for i =

1, . . . , j − 1, while Φt is pointwise differentiable from the right by its very definition. With
these details and assumption H.3, µ 7→ Ĥ

(j)
1 (µ)[z1, . . . , zj] is an element of RCR(R,Rn)

for every tuple z1, . . . , zj ∈ Rp. From assumption H.9, v
(j)
t (0)(t) is pointwise differentiable

from the right if and only if the limit

lim
ε→0+

1

ε

∫ t+ε

t

U(t+ ε, µ)χ0Ĥ
(j)
1 (µ)dµ
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exists pointwise. From equation (3.24) and Lemma 3.3.5, we can equivalently write the
integral above in terms of the fundamental matrix solution:∫ t+ε

t

U(t+ ε, µ)χ0Ĥ
(j)
1 (µ)dµ =

∫ t+ε

t

χ(−∞,t+ε+θ](µ)

(
I +

∫ t+ε+θ

µ

L(ζ)Vζ(·, µ)dζ

)
Ĥ

(j)
1 (µ)dµ.

If θ < 0, then the integrand vanishes when ε < −θ. Since µ 7→ Ĥ
(j)
1 (µ) is continuous from

the right, we conclude that

lim
ε→0+

1

ε

∫ t+ε

t

U(t, µ)χ0Ĥ
(j)
1 (µ)dµ = χ0Ĥ

(j)
1 (t),

so that t 7→ v
(j)
t (0)(t) is differentiable from the right (for θ fixed), as claimed. The proof

of existence of limits on the left is similar and omitted.

To get the analogous result for θ, it is worth recalling that from the fixed point formula-
tion, v

(j)
t (0) is a j-linear map from Rp to PCη,t. As a consequence, for all t ∈ R, θ ∈ [−r, 0]

and z1, . . . , zj ∈ Rp the equation

v
(j)
t (0)(t)[z1, . . . , zj](θ) = v

(j)
t (0)(t+ θ)[z1, . . . , zj](0)

is satisfied. The analogous differentiability and limit results for θ therefore follow from
those of t, completing the proof.

7.2.5 The hyperbolic part is pointwise PC1,m-regular at zero

Later we will need to also consider the Taylor expansions of the hyperbolic part H : R ×
Rp → RCR of the centre manifold in terms of a basis array φ, defined by

H(t, z) = (I − Pc(t))C(t, z). (7.13)

The hyperbolic part is guaranteed to be Cm-smooth in z, since (I − Pc(t)) is linear. To
show that it is pointwise PC1,m-regular at zero, we notice that H(t, z) = ht(z)(t), where
ht(z) can be written as

ht(z) = (I − Pc(t))Φ(·)z +K∗ ◦Rδ,t(vt(z))

in PC0. However, since (I−Pc(t)) is uniformly bounded, K∗ = (I−Pc(t))Kηt is well-defined
as a map from η-bounded inhomogeneities into PCη,t. Setting z = 0, it follows that

ht(0) = 0,

h
(1)
t (0)(t) = 0

h
(j)
t (0)(t) = K∗ ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(·)).
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On the other hand, for z 6= 0 we have

ht(z)(t) = K∗ ◦Rδ,t(vt(z))(t).

By the same argument as in the proof of Theorem 7.2.1, we can make the following con-
clusion.

Corollary 7.2.1.1. The hyperbolic part H(t, z) = (I − Pc(t))C(t, z) of the centre man-
ifold in terms of the basis array φ is pointwise PC1,m-regular at zero. Moreover, if θ ∈
RCR(R, [−r, 0]), then t 7→ H(t, z)(θ(t)) is continuous from the right and has limits on the
left for all z ∈ Rp, and z 7→ H(t, z) is Lipschitz continuous uniformly for t ∈ R.

7.2.6 Uniqueness of the Taylor coefficients

Theorem 7.2.1 guarantees that the coefficients in the Taylor expansion

C(t, z) = DC(t, 0)z +
1

2
D2C(t, 0)[z, z] + · · ·+ 1

m!
CmC(t, 0)[z, . . . , z] +O(||z||m+1)

are pointwise differentiable from the right and have limits on the left. However, the centre
manifold C : RCRc → RCR used to define the representation in terms of the basis array
Φ depends non-canonically on the choice of cut-off function used to define the substitution
operator Rδ,t. However, this cutoff function does not actually factor into the coefficients

DjC(t, 0). Indeed, each of µ 7→ v
(j)
t (0)(µ) is a sum of improper integrals and convergent

series that depend only the lower-order terms v
(i)
t (0)(·) for i < j – see equation (7.12)

– and is independent of the cutoff function. By induction, we can see from (7.8)–(7.10)
that, in fact, none of these lower-order terms depend on the cutoff function. The same
arguments apply to the hyperbolic part. Since this is the only non-canonical element in
the definition of the centre manifold (indeed, the renorming is only relevant outside of a
small neighbourhood of 0 ∈ RCR and so does not affect Taylor expansions), the following
corollary is proven.

Corollary 7.2.1.2. Let Φ be a basis array for RCRc. Let C1 and C2 be two distinct centre
manifolds, and let C1 and C2 respectively be the centre manifolds with respect to the basis
array Φ. Also, let H1 and H2 be the respective hyperbolic parts. Then, for j = 1, . . . ,m, we
have DjC1(t, 0) = DjC2(t, 0) and DjH1(t, 0) = DjH2(t, 0). That is, the Maclaurin series
expansion of the centre manifold in terms of the basis array Φ is unique, as is that of the
hyperbolic part.
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7.2.7 A discussion on the regularity of the matrices t 7→ Yj(t)

Hypothesis H.9 introduces a technical assumption on the matrices appearing in the decom-
position (7.11). It is our goal in this section to formally demonstrate that there is reason
to suspect that this hypothesis holds generally, although proving this result would likely
be difficult. We will consider only t 7→ Yc(t), since the discussion for t 7→ Yu(t) is the same.

When the linearization “has no delayed terms” and is spectrally separated as a finite-
dimensional system, t 7→ Yc(t) is automatically continuous from the right with limits on the
left. Abstractly, we would say that the functionals defining the linearization have support
in the subspace RCR0 = {χ0ξ : ξ ∈ Rn}. Let us prove this claim. Let X(t, s) denote the
Cauchy matrix associated to the linearization

ẋ = L(t)x(t), t 6= tk (7.14)

∆x = B(k)x(t−), t = tk. (7.15)

The projection Pc(t) onto the associated centre fibre bundle satisfies the equation

X(t, s)Pc(s) = Pc(t)X(t, s)

for all t ≥ s. However, since X−1(t, s) exists for all t, s ∈ R – see the monograph [8] for
the relevant background on impulsive differential equations in finite-dimensional spaces –
we have Pc(t) = X(t, 0)Pc(0)X−1(t, 0) for all t ∈ R. Moreover, t 7→ X(t, 0) is continuous
from the right and has limits on the left, from which it follows that the same is true
for Pc(t). Similarly, each of Ps(t) and Pu(t) is an element of RCR(R,Rn×n). If we write
Pc(t) = Φ(t)Yc(t) for Φ(t) = X(t, 0)Φ(0) a matrix whose columns form a basis forRCRc(t),
then the observation that the columns of Φ(t) are linearly independent implies we can write

Yc(t) = Φ+(t)Pc(t),

where Φ+(t) is the left-inverse of Φ(t). Since the rank of t 7→ Φ(t) is constant, t 7→ Φ+(t) is
continuous from the right and has limits on the left. It follows that t 7→ Yc(t) is an element
of RCR(R,Rp×n). If (7.14)–(7.15) is now considered as an impulsive RFDE with phase
space RCR([−r, 0],Rn) for some r > 0, then we can write

U(t, s)φ(θ) =

{
X(t+ θ, s)φ(0), t+ θ ≥ s
φ(t+ θ − s), t+ θ < s.

If one defines Pj(t) : RCR → RCR by

Pj(t)φ(θ) = X(t+ θ, t)Pj(t)φ(0),
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one can verify directly U(t, s) : RCR → RCR is spectrally separated with the triple of
projectors (Ps,Pc,Pu). But then,

Pc(t)χ0(θ) = X(t+ θ, t)Pc(t) = X(t+ θ, t)Φ(t)Yc(t) = Φ(t+ θ)Yc(t) = Φt(θ)Yc(t).

We already know that t 7→ Yc(t) is an element of RCR(R,Rp×n), and since this same
matrix satisfies the decomposition Pc(t)χ0 = ΦtYc(t), we are done.

In the general case, the situation is far more subtle. For simplicity, consider the nonau-
tonomous functional differential equation without impulses,

ẋ = L(t)xt.

Restricted to the subspace RCR1, the evolution family U(t, s) satisfies pointwise (in θ) the
abstract ordinary differential equation

d

dt
U(t, s)φ = L(t)U(t, s)φ, L(t)φ(θ) := χ0(θ)L(t)φ+ χ[−r,0)(θ)

d+

dθ
φ(θ).

for all φ ∈ RCR1. Recall that Pc(t) has range in RCR1, so we can evaluate both sides
at φ = Pc(s)χ0. From the commutativity property (Pc(t)U(t, s) = U(t, s)Pc(s)) of the
projectors and the identity Pc(t)χ0 = ΦtYc(t), the equation

[L(t)Φt]Yc(s) =
d

dt
[Pc(t)U(t, s)χ0]

holds pointwise in θ. If t 7→ Pc(t) was strongly differentiable, we could try to use the chain
rule to simplify the right-hand side. This would result in the equation

[L(t)Φt]Yc(s) = P ′c(t)U(t, s)χ0 + Pc(t)L(t)U(t, s)χ0.

Since this equation holds for all t ≥ s, we can set s = t to get the equation

[L(t)Φt]Yc(t) = P ′c(t)χ0 + Pc(t)L(t)χ0.

If 7→ Pc(t) really is strongly differentiable, then we have d
dt

[Pc(t)χ0] = P ′c(t)χ0. Also, we
notice that L(t)χ0 = χ0 · L(t)χ0. Then,

[L(t)Φt]Yc(t) =
d

dt
[ΦtYc(t)] + ΦtYc(t) · L(t)χ0.

Now, suppose t 7→ Yc(t) is differentiable. After some cancelling, this would imply

0 = ΦtY
′
c (t) + ΦtYc(t) · L(t)χ0.
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Recalling that the columns of Φt form a basis for RCRc(t), this would imply that Yc solves
the non-square matrix ordinary differential equation

Y ′c = −Yc · L(t)χ0.

Unfortunately, the above differential equation is nonsense. If L(t) has support in [−r, 0)
– that is, L(t)χ0 = 0 – the right-hand side is identically zero, which would imply that
Yc is constant. But since t 7→ etΛYc(t) is periodic, this implies that the eigenvalues of
Λ must be simple. This is not necessarily true, so we must conclude that t 7→ Pc(t) is
not strongly differentiable. As a consequence, it is not possible in general to prove that
Yc ∈ RCR(R,Rp×n) using strong differentiability properties of the projector. Since Yc(t)
is defined precisely by the equation ΦtYc(t) = Pc(t)χ0 and the right-hand side is defined
in (4.5) by a time-varying contour integral with a singular integrand, it would seem quite
difficult to prove the result generally.

The projector t 7→ Pc(t) is not even pointwise continuous. Consider the periodic case.
RCRc(t) is the invariant subspace of the monodromy operator Vt with the property that
||Vtφ|| = ||φ|| for all φ ∈ RCRc(t). However, since Vt = U(t+T, t), any element of RCRc(t)
will generally have discontinuities on the set Dt = {θ ∈ [−r, 0] : t + θ ∈ {tk : k ∈ Z}}.
Generally, Dt is nonempty and nonconstant; the discontinuities move by translation to
the left as t increases. Consequently, the discontinuities of Pc(t)φ for fixed φ ∈ RCR are
nonconstant in t, so t 7→ ||Pc(t)φ|| is generally discontinuous (from the right and left) at any
t ∈ R such that Dt is nonempty. This creates further problems in proving the regularity
of the matrix Yc(t).
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Chapter 8

Center manifold theory III:
Euclidean space representation,
approximation and visualization

The content of most of this chapter appears in Computation of centre manifolds and some
codimension-one bifurcations for impulsive delay differential equations [20] by Church and
Liu, although the results appearing therein are slightly less general, being only applicable
to systems with discrete delays. Theorem 8.1.1 was stated without proof; we provide one
here.

8.1 Euclidean space representation of the centre man-

ifold

In this chapter we will once again be studying the semilinear equation

ẋ = L(t)xt + f(t, xt), t 6= tk (8.1)

∆x = B(k)xt− + g(k, xt−), t = tk. (8.2)

We introduce some important conditions.

C.1 The linearization is periodic with period T and c impulses per period. That is,
L(t+ T ) = L(t) for all t ∈ R, B(k + c) = B(k) and tk+c = tk + T for all k ∈ Z.
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C.2 Conditions H.1–H.3, H.5–H.6 and H.9 are satisfied.

C.3 The sequences of functionals B(k) and g(k, ·) satisfy the overlap condition.

Conditions C.1 and C.2 are strong enough to guarantee that the (local) centre manifold
exists, is smooth, and in terms of the basis array Φ it is pointwise PC1,m-regular at zero.
Condition C.3 will be needed to ensure the dynamics on the centre manifold are well
defined. We will assume them throughout this chapter.

The centre manifold
C : R× Rp → RCR

in terms of Φ has range in RCRc ⊕ RCRs. If y : R → RCR is a solution in the centre
manifold – that is, y(t) = S(t, s)y(s) for all t ≥ s with y(t) ∈ Wc(t) – then we can use
property 2 of Theorem 6.5.1 and part 2 of Lemma 6.2.3 to write it as

y(t) = Φtz(t) +H(t, z(t)) (8.3)

where Φtz(t) = Pc(t)y(t) for some z : R → Rp. By definition of the basis array Φ and
the observation that any mild solution such as y defined for all time must in fact be the
history function of some element of RCR1(R,Rn) – see Lemma 5.1.1 – we must have
z ∈ RCR1(R,Rp). The present chapter is essentially an investigation into how the above
representation of solutions in the centre manifold can help us obtain a concrete version of
the dynamics on the centre manifold.

We need to introduce some extra notation. The set Mn×m(Rk) denotes the set of n×m
matrices with entries in the vector space Rk. If A ∈Mn×m(Rk), we Ai,j denotes the entry
in its ith row and jth column. The notation [A]a:b denotes the (b − a + 1) × m matrix
whose rows coincide with rows a through b of A.

For a j-dimensional multi-index ξ = (ξ1, . . . , ξj) where ξi ∈ N, we define |ξ| =
∑

i ξi. For

u ∈ Rj and a j-dimensional multi-index ξ with |ξ| = m, the ξ power of u is uξ = uξ11 · · ·u
ξj
j .

If X is a vector space and U ∈ Xj, we similarly define U ξ ∈ X |ξ| by

U ξ = (U1, . . . , U1, U2, . . . , U2, . . . , Uj . . . , Uj)

where the factor Ui appears ξi times. If u ∈ X and m ∈ N, we define um ∈ Xm by
um = (u, . . . , u).

For a vector multi-index ξ = (ξ1, . . . , ξj) where each ξi ∈ {e′1, . . . , e′k} for {e′i : i =
1, . . . , k} the standard ordered basis of Rk∗, we write |ξ| = j and define (u1 · · ·uj)ξ for
ui ∈ Rk as follows:

(u1 · · ·uj)ξ = (ξ1u1) · · · (ξjuj).
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For vectors in Rn written in component form, (u1, . . . , un)·(v1, . . . , vn) =
∑

i uivi denotes
the standard inner product.

If A ∈ Rm×n and B ∈Mn×k(R`), we define the overloaded product A ∗B ∈Mm×k(R`)
by the equation

[A ∗B]i,j =
n∑
u=1

Ai,uBu,j. (8.4)

It is readily verified that if A ∈ Rm×m is invertible, then A ∗ B = C if and only if
B = A−1 ∗ C. Moreover, ∗ satisfies the Leibniz law

d

dt
A(t) ∗B(t) =

(
d

dt
A(t)

)
∗B(t) + A(t) ∗

(
d

dt
B(t)

)
whenever t 7→ A(t) and t 7→ B(t) are differentiable. Clearly, when ` = 1 the overloaded
product reduces to the standard matrix product.

8.1.1 Definition and an approximation theorem

The first task is to replace the hyperbolic part of the centre manifold with something even
more concrete. First, we recall from the Floquet Theorem 4.4.1 that we can write the basis
array equivalently as

Φt = α(t)etWΦ0,

for α(t) : RCRc(0)→ RCRc(t) T -periodic and pointwise differentiable from the right with
limits on the left, and W ∈ L(RCRc(0)). Let Λ ∈ Cp×p denote the matrix associated to
W with respect to the ordered basis consisting of the columns of the array Φ0, so that

etWΦ0 = RetΛ

for some R ∈ L(Rp,RCRc(0)). Then, the basis array satisfies the Floquet decomposition

Φt = Qte
tΛ, (8.5)

where Qt = α(t)R. By construction, we can identify Qt(θ) = Q(t + θ) for some Q ∈
RCR(R,Rn×p) that is T -periodic.

Remark 8.1.1. We can guarantee that Λ is real by instead taking α(t) : RCRc(0) →
RCRc(t) to be 2T -periodic. The reason this can be done is because we know that the space
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RCRc(kT ) are isomorphic for k ∈ Z via the monodromy operator V0, by Theorem 4.2.2.
This then implies that there is an invertible matrix M such that ΦT = Φ0M. But then,

Φ2T = V0Φ0M = Φ0M
2.

Using (8.5), it follows that

Λ =
1

2T
log(M2),

which is guaranteed to have a real logarithm. Moreover, if log(M) is real, then 1
T

log(M)
still coincides with Λ as defined above.

Let us introduce a change of variables. Starting from equation (8.3), we let u(t) =
etΛz(t) so that Φtz(t) = Qtu(t). We then define h : R×Rn× [−r, 0]→ Rn by the equation

h(t, u, θ) = H(t, Qtu)(θ). (8.6)

With this transformation completed, equation (8.3) becomes

y(t) = Qtu(t) + h(t, u(t), ·). (8.7)

The function h : R × Rp × [−r, 0] → Rn will be referred to as the Euclidean space repre-
sentation of the centre manifold. Introduce the left limit in the first variable

h(t−, u, θ) = lim
ε→0−

h(t+ ε, u, θ).

We have the following approximation theorem.

Theorem 8.1.1. The Euclidean representation h : R × Rp × [−r, 0] → Rn of any centre
manifold enjoys the following properties.

1. h admits a Taylor expansion near u = 0:

h(t, u, θ) =
1

2!
h2(t, θ)u2 +

1

3!
h3(t, θ)u3 + · · ·+ 1

m!
hm(t, θ)um +O(um+1),

with hi(t, θ) = Di
2h(t, 0, θ), and this Taylor expansion unique and does not depend on

the choice of cutoff function.

2. t 7→ hi(t, ·) is periodic for i = 2, . . . ,m, and each of t 7→ hi(t, θ) and θ 7→ hi(t, θ) is
differentiable from the right with limits on the left.
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3. Pc(t)hi(t, ·) = 0 for i = 2, . . . ,m.

4. If u ∈ RCR(R,Rn) and θ ∈ [−r, 0], then we have lims→0− h(t + s, u(t + s), θ) =
h(t−, u(t−), θ). Also, t 7→ h(t, u(t), θ(t)) is an element of RCR(R,Rn) whenever
θ ∈ RCR(R, [−r, 0]).

Proof. The Taylor expansion is a consequence of Theorem 6.4.1 and the definition of the
Euclidean space representation of the centre manifold. Next, t 7→ C(t, φ) is periodic, from
which it follows that the same is true of the differentials Dj

2C(t, 0). Since h(t, u, ·) =
(I − Pc(t))C(t, Qtu), and each of t 7→ Qt and t 7→ Pc(t) are also periodic, the same is true
for t 7→ h(t, ·, ·) and its differentials t 7→ Dj

2h(t, ·, ·). For the projection, linearity of the
differential implies that Dj

2H(t, 0) = (I−Pc(t))Dj
2C(t, 0), so that Pc(t)D

j
2H(t, 0) = 0. The

same is true for h by its definition. As for the limit relation, the Fundamental Theorem of
Calculus and the triangle inequality can be used to obtain

||h(t+ s,u(t+ s), θ(t+ s))− h(t−, u(t−), θ(t−)||
≤ L||u(t+ s)− u(t−)||+ ||h(t+ s, u(t−), θ(t+ s))− h(t−, u(t−), θ(t+ s))||

+ ||h(t−, u(t−), θ(t+ s))− h(t−, u(t−), θ(t−)||,
where L is a Lipschitz constant for x 7→ D2h(t, x, ·) valid uniformly for all t. Note that
this Lipschitz constant is guaranteed to exist by Theorem 6.4.1, the uniform boundedness
of the projectors and the periodicity of t 7→ Qt. Since u(t+ s)→ u(t−), the first of the two
terms converges to zero as s → 0−. As for the second, since t 7→ H(t, z)(θ(t)) has limits
on the left, the same is true of t 7→ h(t, u(t−), θ(t)) for u(t−) fixed. For the third term,
θ 7→ h(t−, u(t−), θ) ∈ RCR gives the limit. This proves all assertions concerning limits
from the left. Limits from the right are proven analogously.

8.1.2 Dynamics on the centre manifold in Euclidean space

Recall that the centre fibre bundle component w(t) = Pc(t)y(t) satisfies the integral equa-
tion (6.11) whenever y : R → RCR is a mild solution with y(t) ∈ Wc(t). From (8.7),
it follows that w(t) = Φtz(t). But also, from Lemma 5.1.1, we can formally identify
y : R→ RCR with a right-continuous regulated function ỹ : R→ Rn by way of y(t) = ỹt.
Substituting into the integral equation, using assumption H.9 to write Pc(s)χ0 = ΦsYc(s)
and recalling that y is a small solution so we can ignore the impact of the cutoff function
on the nonlinearity, this gives after some simplification

Φtz(t) = Φtz(s) + Φt

∫ t

s

Yc(µ)f(µ, yµ)dµ+ Φt

∑
s<ti≤t

Yc(ti)g(i, yt−i ),
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where we recall by Theorem 6.5.1 that C(µ,w(µ)) = C(µ, Pc(µ)y(µ)) = y(µ). Since the
columns of Φt form a basis for RCRc(t), we can apply the coordinate map defined by
φi(t) 7→ ei to eliminate the basis array Φt from each side. The result is the following
integral equation in Rp:

z(t) = z(s) +

∫ t

s

Yc(µ)f(µ, yµ)dµ+
∑
s<ti≤t

Yc(ti)g(i, yt−i ). (8.8)

It is here that our derivation becomes a bit subtle. To motivate the next step, we prove
a result concerning the overlap condition, mild solutions and regulated left-limit histories,
which were introduced way back in Section 2.3.

Lemma 8.1.1. Suppose F (k, ·) : RCR → Rn satisfies the overlap condition. If x ∈
RCR(R,Rn) defines a mild solution t 7→ xt, then F (k, xt−k

) = F (k, x−tk) for all k ∈ Z.

Proof. By Lemma 5.1.1, such a solution x ∈ RCR(R,Rn) is classical, so its discontinuities
are a subset of {tk : k ∈ Z}. As a consequence, we can write

xt−k
−

∑
tk−tj∈[−r,0]

χtk−tj∆x(tk − tj) = x−tk .

Applying F (k, ·) to both sides and applying the overlap condition, we obtain the claimed
result.

To see why the above lemma is so helpful, let us take right-derivatives of both sides of
the integral equation (8.8) and check finite differences across the jump times tk. The result
is the impulsive differential equation

ż = Yc(t)f(t, yt), t 6= tk (8.9)

∆z = Yc(tk)g(k, yt−k
), t = tk, (8.10)

where the derivative operator is understood as the right-hand derivative ẋ = d+

dt
x(t). In

(8.9), we can replace yt with C(t, w(t)) = Φtz(t) + h(t, z(t), ·) and get a well-behaved
ordinary differential equation. In the second equation we have to take a pointwise left-
limit. This is a problem, however, because the pointwise left-limit is a limit in the θ
variable at a single point. In particular,

yt−(θ) =

{
Φt(θ)z(t) +H(t, z(t), θ), θ < 0
Φt−(0)z(t−) + lims→0− H(t+ s, z(t+ s), 0), θ = 0.
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Substituting this into the jump condition (8.10) would result in an implicit equation for
z(tk), which makes the impulsive differential equation (8.9)–(8.10) somewhat difficult to
work with. Lemma 8.1.1 solves this problem; if g(k, ·) : RCR → Rn satisfies the overlap
condition, we can replace yt−k

inside g(k, ·) with the regulated left-limit y−tk . In view of

Theorem 8.1.1, y−t can be written

y−t = Q−t u(t−) + h(t−, u(t−), ·). (8.11)

Substituting (8.11) into (8.10) and completing the change of variables u(t) = etΛz(t) de-
scribed in Section 8.1.1, the following theorem is proven.

Theorem 8.1.2. Suppose g(k, ·) : RCR → Rn satisfies the overlap condition and con-
ditions C.1 and C.2 are satisfied. Then, the abstract dynamics on the centre manifold
described by the integral equation (6.11) in the variable w(t) ∈ RCR are equivalent under
the time-periodic change of variables w(t) = Qtu(t) for u ∈ Rp to the ordinary impulsive
differential equation

d+

dt
u(t) = Λu(t) + etΛYc(t)f(t, Qtu(t) + h(t, u(t), ·)), t 6= tk (8.12)

∆z = etΛYc(t)g(k,Q−t u(t−) + h(t−, u(t−), ·)), t = tk. (8.13)

Remark 8.1.2. t 7→ etΛYc(t) is periodic. To see this, remark that from the definition of
Yc and the periodicity of the projectors Pc,

ΦtYc(t) = Pc(t)χ0 = Pc(t+T )χ0 = Φt+TYc(t+T ) = Qt+T e
(t+T )ΛYc(t+T ) = Φte

TΛYc(t+T ),

from which Φt being a basis for RCRc(t) implies the equality Yc(t) = eTΛYc(t + T ). As a
consequence, t 7→ etΛYc(t) := Ỹc(t) satisfies

Ỹc(t+ T ) = e(t+T )ΛYc(t+ T ) = e(t+T )Λ)e−TΛYc(t) = etΛYc(t) = Ỹc(t),

so it is periodic as claimed. If the nonlinear terms are also periodic (with the same period
T and g(k + c, ·) = g(k, ·) for all k ∈ Z) then the same is true of the impulsive differential
equation (8.12)–(8.12).

Because of the reduction principle – Theorem 6.5.1 together with Theorem 6.6.1 – the
ordinary impulsive differential equation (8.12)–(8.13) completely characterizes the dynam-
ics of all small solutions. From the perspective of bifurcations, this is quite useful because
we can study a concrete impulsive differential equation in Rp to detect the birth or destruc-
tion of periodic solutions or other invariant structures. When RCRu(t) is empty, stability
transitions can be analyzed. If one needs only terms of order two (eg. saddle-node bifurca-
tion, then the center manifold does not need to be calculated. In this case, the dynamics
on the center manifold are characterized by the following corollary.
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Corollary 8.1.2.1. Under the hypotheses of Theorem 8.1.2, the dynamics on the centre
manifold to quadratic order are equivalent by a time-periodic change of variables to those
of the impulsive differential equation

u̇ = Λu+ etΛYc(t)

[
1

2
D2f(t, 0)[Qtu]2

]
+O(u3), t 6= tk (8.14)

∆u = etΛYc(t)

[
1

2
D2g(k, 0)[Q−t u(t−)]2

]
+O(u3), t = tk. (8.15)

For Hopf bifurcation conditions, for example, we require the reduced dynamics equa-
tions to be explicit to cubic order. Recall from Theorem 8.1.1 that we can write

h(t, u, θ) =
1

2!
h2(t, θ)u2 +

1

3!
h3(t, θ)u3 + · · ·

for symmetric multilinear mappings hi(t, θ) : (Rp)i → Rn defined by hi(t, θ) = Di
2h(t, 0, θ).

It is then easily verified that to cubic order, the reduced dynamics are

u̇ = Λu+ eΛtYc(t)

[
1

2!
D2f(t, 0)[Qtu]2 +

1

3!

(
D3f(t, 0)[Qtu]3 + 3D2f(t, 0)[Qtu, h2(t, θ)u2]

)]
, t 6= tk

(8.16)

∆u = eΛtYc(t)

[
1

2!
D2g(k, 0)[Q−t u]2 +

1

3!

(
D3g(k, 0)[Q−t u]3 + 3D2g(k, 0)[Q−t u, h2(t−, θ)u2]

)]
, t = tk.

(8.17)

8.1.3 An impulsive evolution equation and boundary conditions

In the same way that the centre manifold associated to a nonhyperbolic equilibrium of an
ordinary differential equation satisfies a nonlinear partial differential equation, the centre
manifold of an impulsive RFDE satisfies a nonlinear impulsive evolution equation. This is
what we prove in this section.

At this stage, we should define a pair of linear operators that are in a certain sense
“generators” of the evolution family U(t, s) : RCR → RCR. They are

L(t)φ =

{
B(t)φ, θ = 0
d+φ(θ), θ < 0

, J (k)φ(θ) =

{
B(k)φ, θ = 0
φ(θ+)− φ(θ), θ < 0.

(8.18)

Also, we define ∆+
θ : RCR → G([−r, 0),Rn) by ∆+

θ φ(θ) = φ(θ+) − φ(θ). This operator
permits a decomposition of J (k) into

J (k) = χ0B(k) + χ[−r,0)∆
+
θ .
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Next, we introduce yet another jump operator. ∆t : RCR(R,Rn) → G([−r, 0],Rn) is
defined by

∆tφ(θ) = φt(θ)− lim
s→t−

φs(θ).

We will also need the notion of the regulated left limit of an RCR-valued function.

Definition 8.1.1. For a function f : R → RCR, we define the regulated left limit f− :
R→ F ([−r, 0],Rn) by the formal expression

f−(t)(θ) = lim
s→0−

f(t+ s)(θ).

Note that if x ∈ RCR(R,Rn), then x−t is an element of G([−r, 0],Rn) and, in particular,
it is continuous from the left. Also, ∆txt = xt − x−t . The following proposition is clear,
given Lemma 8.1.1.

Proposition 8.1.1. Let x : R → Rn be continuous except at times tk, where it is right-
continuous and has limits on the left. Then, ∆+

θ x
−
t (θ) = ∆txt(θ) for θ < 0 and all t ∈ R.

If the functionals B(k) and g(k, ·) satisfy the overlap condition and x is a solution of the
impulsive RFDE (5.1)–(5.2), then

B(k)xt−k
= B(k)x−tk , g(k, xt−k

) = g(k, x−tk). (8.19)

Finally, if x : R→ Rn is differentiable from the right, we define d+

dt
xt by the equation[

d+

dt
xt

]
(θ) =

d+

dt
xt(θ).

Let x : R → Rn be a complete solution such that t 7→ xt ∈ Wt. If assumption C.3 is
satisfied, this solution satisfies the abstract evolution equation

d+

dt
xt = L(t)xt + χ0f(t, xt), t 6= tk (8.20)

∆txt = J (k)x−t + χ0g(k, x−t ), t = tk, (8.21)

with L and J as defined in (8.18). In addition, the following boundary condition must be
satisfied across the jump interfaces t+θ = tk for all k ∈ Z and θ < 0 because of Proposition
8.1.1:

∆txt(θ) = ∆+
θ x
−
t (θ), t+ θ = tk, θ < 0. (8.22)
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Along the lines t + θ = s for s /∈ {tk : k ∈}, the condition ∆txt(θ) = ∆+
θ x
−
t (θ) is uninfor-

mative because x is continuous at s = t + θ. Note that all left-limits are now regulated
left-limits because we have used equation (8.19) of Proposition 8.1.1. It is at this stage
that we make the substitution (8.7) to write xt in terms of the Euclidean space represen-
tation of the centre manifold. The following theorem characterizes the Euclidean space
representation of the centre manifold in terms of an impulsive evolution equation.

Theorem 8.1.3. For any solution u of the finite-dimensional ordinary impulsive differen-
tial equation (8.12)–(8.13), the Euclidean space representation of the centre manifold is a
solution of the following boundary-value problem:

Qt(θ)[u̇− Λu] + ∂th(t, u, θ) + ∂uh(t, u, θ)u̇ = ∂θh(t, u, θ), θ < 0,t 6= tk

Qt(θ)∆u+ ∆th(t, u+ ∆u, θ) + Ω(t, h, u, θ)∆u = ∆+
θ h(t−, u, θ), θ < 0,(t = tk ∨ t+ θ = tk)

(8.23)

Qt(0)[u̇− Λu] + ∂th(t, u, 0) + ∂uh(t, u, 0)u̇ = L(t)h(t, u, ·) + f(t, Qtu+ h(t, u, ·)), θ = 0, t 6= tk

Qt(0)∆u+ ∆th(t, u+ ∆u, 0) + Ω(t, h, u, 0)∆u = J(k)h(t−, u, ·) + g(k,Qtu+ h(t−, u, ·)), θ = 0, t = tk,

(8.24)

where we denote u = u(t) when t 6= tk and u = u(t−) when t = tk, ∆u = u(tk)− u(t−k ), we
define Ω by

Ω(t, h, u, θ) =

∫ 1

0

∂uh(t−, u+ s∆u, θ)ds,

and all derivatives in t and θ are the right-derivatives ∂+

∂t
and ∂+

∂θ
.

Proof. First, we remark that Qt satisfies the following abstract impulsive differential equa-
tion:

d+

dt
Qt(θ) +QtΛ = χ0L(t)[Qt expΛ] + χ[−r,0)

d+

dθ
Qt(θ), t 6= tk

∆tQt(θ) = χ0B(k)[Q−t expΛ] + χ[−r,0)∆
+
θ Q
−
t (θ), t = tk,

(8.25)

where expΛ(θ) = eΛθ. It can be derived from the equality Φt = Qte
Λt and Proposition

8.1.1. Substituting the ansatz xt = Qtu(t) + h(t, u(t), ·) into equation (8.20), we obtain
when θ < 0 the equality

d+

dt
[Qt]u+Qtu̇+ ∂th+ ∂uhu̇ =

d+

dθ
[Qt]u+ ∂θh,

which is equivalent to the first equation from (8.23) if one takes into account (8.25). When
θ = 0, the same approach results in the first equation from (8.24).
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Next, we substitute the ansatz into (8.21). If one denotes u = u(t−), when θ < 0 and
t = tk, the result reduces to1

−Qt∆u+ ∆+
θ h(t−, u, θ) = h(t, u+ ∆u, θ)− h(t−, u, θ)

after cancelling several duplicate terms. The above is equivalent to

Qt∆u+ ∆th(t, u+ ∆u, θ) + h(t−, u+ ∆u, θ)− h(t−, u, θ) = ∆+
θ h(t−, u, θ).

The fundamental theorem of calculus implies Ω(t, h, u, θ) = h(t−, u + ∆u, θ) − h(t−, u, θ),
and from this we obtain the second equation of (8.23). The equation for t + θ = tk
is obtained by checking the boundary condition (8.22), while the equation for θ = 0 is
obtained by the same methods.

Remark 8.1.3. Note that h(t, θ, u) must possesses discontinuities along the lines t+θ = tk
for u fixed. These discontinuities are captured by the second equation of (8.23) when θ < 0,
and in the second equation of (8.24) when θ = 0. When t = tk − θ /∈ {tj : j < k}, we
have ∆u = ∆u(t) = 0 in the second equation of (8.23), and the result is the constraint
h(t, u, θ) = h(t−, u, θ+). In particular, even though we know that θ 7→ h(t, u, θ) is continuous
from the right, the same is not true of θ 7→ h(t−, u, θ); the latter is continuous from the
left.

The boundary-value problem (8.23)–(8.24) is implicit in terms of the variable u̇ and
∆u. To obtain an explicit boundary-value problem for (t, u, θ) 7→ h(t, u, θ), one would
replace every instance of u̇ and ∆u with the equations (8.12) and (8.13). The resulting
equations take up a lot of space, so we do not write them out explicitly.

8.2 Approximation by Taylor expansion

Equations (8.23)–(8.24) and (8.12)–(8.13) of Theorem 8.1.3 and Theorem 8.1.2 yield a
system of impulsive partial delay differential equations and boundary conditions for the
Euclidean space representation of the centre manifold.

In the u coordinates, the dynamics on the centre manifold are given by (8.12)–(8.13).
If one seeks to obtain the O(||u||k) dynamics on the center manifold, it is necessary to
compute the terms of order O(||u||k−1) of the center manifold h. Quadratic terms are

1Note that Q−t (θ+) = Qt(θ) for θ < 0.
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needed to analyze Hopf-like bifurcations, for instance. The quadratic coefficient h2(t, θ) of
the centre manifold can be represented in the form

h2(t, θ)[u, v] =

 c111(t, θ)u1v1 + · · · c11p(t, θ)u1vp + c121(t, θ)u2v1 + c122(t, θ)u2v2 + · · ·+ c1pp(t, θ)upvp
...

cn11(t, θ)u1v1 + · · · cn1p(t, θ)u1vp + cn21(t, θ)u1v1 + cn22(t, θ)u2v2 + · · ·+ cnpp(t, θ)upvp

 ,
(8.26)

and similarly for the higher-order terms, where symmetrically, cij = cji. In terms of vector
multi-indices, we can write

hm(t, θ)[u1, . . . , um] =
∑
|ξ|=m

cξ(t, θ)(u1 · · ·um)ξ (8.27)

for multiindex ξ = (ξ1, . . . , ξm) and ξi ∈ {∅, e′1, . . . , e′p}.
As a consequence of the above observations, one can substitute an appropriate order

O(||u||k) expansion of the impulsive differential equation (8.12)–(8.13) into the evolution
equation and boundary conditions (8.23)–(8.24) to obtain a O(||u||k) impulsive evolution
equation for the center manifold.

8.2.1 Evolution equation and boundary conditions for quadratic
terms

For the calculation of cubic order dynamics (eg. Hopf bifurcation), one needs to calculate
h2 before the dynamics on the center manifold (8.16)–(8.17) can be studied. Substituting
the aforementioned equation into the evolution equation and boundary conditions (8.23)–
(8.24) and keeping only the order two terms in u, we obtain the rather large equation
(8.28)–(8.31), which we must unfortunately pass to LaTeX in tiny mode in order to make
it fit within the page margins.

1

2
Qt(θ)e

Λt
Yc(t)D

2
2f(t, 0)[Qtu]

2
+

1

2
∂th2(t, θ)u

2
+ h2(t, θ)[Λu, u] =

1

2
∂θh2(t, θ)u

2
, θ < 0, t 6= tk (8.28)

1

2
Qt(θ)e

Λt
Yc(t)D

2
g(k, 0)[Q

−
t u]

2
+

1

2
∆th2(t, θ)u

2
=

1

2
∆

+
θ h2(t

−
, θ)u

2
θ < 0, t ∈ {tk, tk − θ}

(8.29)

1

2
Qt(0)e

Λt
Yc(t)D

2
2f(t, 0)[Qtu]

2
+

1

2
∂th2(t, 0)u

2
+ h2(t, θ)[Λu, u] =

1

2
L(t)h2(t, ·)u2

+
1

2
D

2
2f(t, 0)[Qtu]

2
, θ = 0, t 6= tk (8.30)

Qt(0)e
Λt
Yc(t)

1

2
D

2
g(k, 0)[Q

−
t u]

2
+

1

2
∆th2(t, 0)u

2
= J(k)h2(t

−
, ·)u2

+
1

2
D

2
g(k, 0)[Q

−
t u]

2
, θ = 0, t = tk. (8.31)

In this equation, all partial derivatives are right-hand derivatives. Notice that upon ex-
pansion, the coefficients of each binomial uξ = uξ1uξ2 generates a system of coupled linear
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impulsive partial differential equations for the associated coefficients cξ of the quadratic
expansion of the center manifold. This system can be solved by a variation of the method
of characteristics; this is done in Section 8.2.2.

The pattern established here continues to mth order expansions. In particular, each
multinomial uξ = uξ11 · · ·uξmm with

∑
m ξk = m generates a system of coupled impulsive

PDEs for the uξ coefficient of hm(t, θ). The order i < m expansions hi(t, θ) are generally
needed to compute the order m terms, so the procedure must be done iteratively. The
calculations quickly become taxing, and the use of computer algebra software is highly
recommended to keep track of all of the differentials.

8.2.2 Solution by the method of characteristics

The system of impulsive partial differential equations (8.28)–(8.31) must be solved in order
to obtain the quadratic order term the center manifold. A similar equation can be derived
for the p-th order terms, and this equation will typically depend on the lower-order terms.
For notational simplicity, we will only present the method as it applies to computing the
quadratic term h2.

First, some preparations. Given the representation (8.27) we can write

h2(t, θ)[u, u] =
∑
ξ∈Ξ

hξ2(t, θ)(uu)ξ,

for u ∈ Rp, where Ξ is a set of p-dimensional multiindices in two variables that is both
permutation-free (ie. (ei, ej) ∈ Ξ implies (ej, ei) ∈ Ξ if and only if i = j) and complete
(ie. for every p-dimensional multiindex in two variables ζ, either ζ ∈ Ξ or ζ = (ei, ej) and
(ej, ei) ∈ Ξ ). In this setting we have

hξ2(t, θ) =

{
2cξ, ξ = (ei, ej), i 6= j
cξ, ξ = (ei, ei).

Writing everything in terms of scalar products, there exists a β×β matrix Λ2 with β =
(
p+1

2

)
such that

h2(t, θ)[u, u] = [ (uu)ζ1 · · · (uu)ζβ ] ∗ hΞ
2 , (8.32)

h2(t, θ)[Λu, u] = [ (uu)ζ1 · · · (uu)ζβ ] ∗ Λ2 ∗ hΞ
2 , (8.33)

where hΞ
2 = (hζ12 , . . . , h

ζβ
2 ) ∈ (Rn)β is interpreted as a (β × 1) array whose ith entry is hζi2 ,

and Ξ = {ζ1, . . . , ζβ}. As such, the matrix multiplication needs to be interpreted in an
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overloaded sense as in equation (8.4). For example, with p = 3, Ξ = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}
and the data

Λ =

 0 1 0
0 0 0
0 0 0

 , ζ1 = (e1, e1), ζ2 = (e1, e2), ζ3 = (e1, e3),
ζ4 = (e2, e2), ζ5 = (e2, e3), ζ6 = (e3, e3).

we first calculate h2[Λu, u]. Written in terms of the coefficients hζi2 , it is

h2[Λu, u] = h2

 u2

0
0

 ,
 u1

u2

u3

 = h11
2 u1u2 +

1

2
h12

2 u
2
2 +

1

2
h13

2 u2u3.

We can then readily extract the matrix Λ2 satisfying the expression (8.33), and we find it
is

Λ2 =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1

2
0 0 0 0

0 0 1
2

0 0 0
0 0 0 0 0 0

 .

Next, we write

Qt(θ)e
ΛtY (t)D2

2f(t, 0)[Qtu]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ F(t, θ) (8.34)

Qtk(θ)e
ΛtkY (tk)D

2gk(0)[Qt−k
u]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ Gk(θ) (8.35)

D2
2f(t, 0)[Qtu]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ a(t) (8.36)

D2gk(0)[Qt−k
u]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ bk, (8.37)

where F(t, θ), Gk(θ), a(t), and bk are β × 1 arrays with entries in Rn. Note that as
Qte

Λt = Φt, equations (8.34) and (8.35) could be simplified further. Substituting equations
(8.32)–(8.37) into (8.28)–(8.31) and cancelling fractions, it follows upon comparing powers
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(uu)ζi , it follows that hΞ
2 must satisfy the impulsive functional differential equation

F(t, θ) + ∂th
Ξ
2 (t, θ) + 2Λ2 ∗ hΞ

2 (t, θ) = ∂θh
Ξ
2 (t, θ), θ < 0, t 6= tk

(8.38)

Gk(θ) + ∆th
Ξ
2 (t, θ) = ∆−θ h

Ξ
2 (t, θ), θ < 0, t ∈ {tk, tk − θ}

(8.39)

F(t, 0) + ∂th
Ξ
2 (t, θ) + 2Λ2 ∗ hΞ

2 (t, 0) = L(t)� hΞ
2 (t, ·) + a(t), θ = 0, t 6= tk

(8.40)

Gk(0) + ∆th
Ξ
2 (t, 0) = J(k)� hΞ

2 (t−, ·) + bk, θ = 0, t = tk,
(8.41)

and we define the overloaded operator L(t)� by

L(t)� hΞ
2 (t, ·) =

 L(t)hζ1(t, ·)
...

L(t)hζβ(t, ·)

 ,
and similarly for J(k). Note also that all derivatives are taken from the right: ∂t = ∂+

∂t
and

∂θ = ∂+

∂θ
. The following proposition characterizes the solutions of the above inhomogeneous

linear impulsive system.

Proposition 8.2.1. Every solution z = z(t, θ) of the inhomogeneous system (8.38)–(8.41)
can be expressed in the form

z(t, θ) = e2Λ2θ ∗

n(t+ θ)−
∫ 0

θ

e−2Λ2s ∗ F(t− s+ θ, s)ds−
∑

θ<tk−t≤0

e−2Λ2tk ∗ Gk(t− tk + θ)

 , (8.42)

where t 7→ n(t) is a solution of the inhomogeneous linear impulsive delay differential equa-
tion

F(t, 0) + ṅ(t) + 2Λ2 ∗ n(t) = L(t)� [e2Λ2(·) ∗ nt] +m(t), t 6= tk

Gk(0) + ∆n(t) = J(k)� [e2Λ2(·) ∗ nt− ] + nk, t = tk
(8.43)

m(t) = a(t)− L(t)�

∫ 0

(·)
e−2Λ2s ∗ F(t− s+ ·, s)ds+

∑
(·)<tk−t≤0

e−2Λ2tk ∗Gk(t− tk + ·)


nk = bk − J(k)�

∫ 0

(·)
e−2Λ2s ∗ F(t−k − s+ ·, s)ds+

∑
(·)<tj−tk≤0

e−2Λ2tj ∗Gj(t
−
k − tj + ·)

 .
(8.44)
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Proof Outline. Solving the equations (8.38)–(8.39) along the characteristic lines t + θ =
constant, one can show that every solution has the form of (8.42) for some function n. To
show that such a function n satisfies the impulsive delay differential equation (8.43)–(8.44),
one substitutes the ansatz into into equations (8.40)–(8.41), taking note that ∂tz(t, 0) =
ṅ(t) and ∆tz(t, 0) = ∆n(t).

Solving the inhomogeneous system (8.43) is a nontrivial matter. Moreover, there are
infinitely many solutions of the form prescribed by the above proposition, since the inhomo-
geneous equation (8.43) can have many bounded solutions. We must recall some additional
properties of the centre manifold to identify the unique solution z = hΞ

2 corresponding to
the true coefficient vector of h2(t, θ) in the expansion (8.32). We state the result in the
form of a corollary. It is essentially a consequence of Theorem 8.1.1.

Corollary 8.2.0.1. Let the centre manifold be effectively PC1,2 at zero and let the as-
sumptions of Theorem 6.4.1 hold. The (β × 1) array hΞ

2 with [hΞ
2 ]i = hζi2 in the expansion

h2(t, θ)[u, u] =

β∑
i=1

hζi2 (t, θ)[uu]ζi

is the unique solution of the inhomogeneous linear impulsive PDE (8.38)–(8.41) satisfying
the following constraints.

1. Projection constraint: Pc(t)h
ζi
2 (t, ·) = 0 for all t ∈ [0, T ) and i = 1, . . . , β.

2. Periodicity constraint: t 7→ hΞ
2 (t, ·) is periodic.

8.2.3 Verification of projection constraint

It is not obvious how one should verify the projection constraint in Corollary 8.2.0.1. The
projection Pc(t) is generally defined by the contour integral (4.5) in terms of the mon-
odromy operator. In practice, the projection could be approximated by first discretizing
the monodromy operator as in Section 4.6.3 and performing a numerical integration. There
are a few details that need to be worked out here, but we will not focus on them in this
thesis.
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8.3 Geometry and visualization: examples

Here we consider two examples of centre manifold computation. The first (Section 8.3.1)
is a finite-dimensional toy example where the centre manifolds can all be explicitly calcu-
lated. The second one (Section 8.3.2) requires Taylor expansions. Both examples contain
a parameter ε that controls the “size” of the impulse effect and, for all ε small enough,
the centre manifold is one-dimensional. This allows us to visualize the centre manifolds
as depending on the parameter ε and study how the introduction of impulses affects their
geometry. Both examples are intentionally simple. In particular, the linear parts contain
no delays.

8.3.1 An explicit scalar example without delays

Consider the finite-dimensional impulsive system

ẋ = x2, t 6= k, ∆x = 0, t = k (8.45)

ẏ = −y, t 6= k, ∆y = εy, t = k. (8.46)

This system has several useful properties. First, for all ε ∈ (−1, e − 1), the unique
equilibrium at the origin is nonhyperbolic with a one-dimensional centre fiber bundle
RCRc = span(e1) that is constant in time. Moreover, when ε = 0 this system is a classical
example of a system with infinitely-many centre manifolds, the only analytic one being the
x axis. The centre manifolds are all graphs of

y = c exp

(
1

x

)
χ(−∞,0)(x), c ∈ R. (8.47)

Our first step will be to introduce a time-dependent change of variables. Define y =
(1 + ε)btc−tw. This change of variables eliminates the impulse effect from (8.45)–(8.46)
entirely. The result is the autonomous system

ẋ = x2, (8.48)

ẇ = (log(1 + ε)− 1)w. (8.49)

The centre manifolds of the above autonomous system are all orbits. Explicitly solving the
differential equations and rearranging shows that they can be represented in the form

w = c exp

(
1

x
(1− log(1 + ε))

)
χ(−∞,0)(x),
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Figure 8.1: The forward orbit through (−1, 1) of system (8.45)–(8.46) plotted for time
t ∈ [0, 200] and parameter ε = 1, illustrated by the solid (blue) line. On the intervals
[k, k + 1) for k = 0, . . . , 9, the graphs of y = c exp

(
1
x

)
(equation (8.47)) on which the

solution travels are indicated by dashed (black) lines and are plotted for x < 0.

where c ∈ R is a constant. Inverting the change of variables and simplifying the expression
somewhat, the centre manifolds of the original system (8.45)–(8.46) can be written as the
graphs of

y = c(1 + ε)btc−t
(

e

1 + ε

)1/x

χ(−∞,0)(x) := hε(t, x) (8.50)

The solutions of (8.45)–(8.46) on the centre manifold can be understood in two ways.
The most elegant description is simply that they are curves (x(t), y(t)) that satisfy, for
a specific c ∈ R, equation (8.50). A more cumbersome but perhaps more concrete in-
terpretation is that they are curves (x(t), y(t)) such that for each k ∈ Z, there exists
ck ∈ R such that (x(t), y(t)) satisfies equation (8.47) with c = ck for t ∈ [k, k + 1), and
ck+1 = (1 + ε)ck. This second interpretation can be visualized with the help of Figure
8.1, while the equivalence between the two interpretations can be visualized dynamically
by consulting Supplementary Animation 1 in the UWSpace repository associated to this
thesis [17], where a simulated solution is plotted as it travels along the time-varying centre
manifold (8.50) for parameter ε = 1 and c = e/2, while simultaneously travelling along
distinct centre manifolds given by equation (8.47). The effect of varying ε can be seen in
Supplementary Animation 2, a plot of the time-varying graph of (x, ε) 7→ y = hε(t, x) with
c = e/2, plotted for x ∈ [−1, 0] and ε ∈ (−1, 1] over five cycles, t ∈ [0, 5].
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8.3.2 Two-dimensional example with quadratic delayed terms

We consider in this section the equation

ẋ = −x+ y2, t 6= k, ∆x = εy(t−), t = 2kπ (8.51)

ẏ = x− x2(t− π)− y2(t− π), t 6= k, ∆y = 0, t = 2kπ (8.52)

ε̇ = 0, t 6= k, ∆ε = 0, t = 2kπ. (8.53)

Considered in isolation, the planar system (8.51)–(8.52) has, with ε treated as a parameter,
a single zero Floquet exponent for all ε ∈ R. Thus, for each ε, the centre manifold at the
origin is one-dimensional. Taking ε as a state variable we obtain (8.51)–(8.53), and it is for
this system that we will calculate (approximate) the two-dimensional centre manifold at
the origin. Taking one-dimensional slices for fixed ε small will produce the centre manifolds
for the parameterized system (8.51)–(8.52).

The linearization of (8.51)–(8.53) at (0, 0, 0) admits the monodromy operator Vt and
associated resolvent R(z;Vt)

Vtξ(θ) =

 e−(2π+θ) 0 0
1− e−(2π+θ) 1 0

0 0 1

 ξ(0) := V (θ)ξ(0), (8.54)

R(z;Vt) = z−1(IRCR + V [I − z−1V (0)]−1ev0), z 6= 0, 1. (8.55)

One can similarly calculate a basis matrix Φt for the centre fiber bundle, the projection
Pc(t) : RCR → RCRc(t), and the matrix Y (t). We find

Φt =

 0 0
1 0
0 1

 , Pc(t)φ(θ) =

 0 0 0
1 1 0
0 0 1

φ(0), Y (t) =

[
1 1 0
0 0 1

]
. (8.56)

It follows that we can take Qt = Φt and Λ = 0 in the Floquet decomposition. The
nonlinearity f of the vector field contains only the second-order term, and we have

Qt(θ)u =

 0
u1

u2

 , 1

2
D2f(0)[Qtu]2 =

 u2
1

−u2
1

0

 . (8.57)

Similarly, the nonlinearity of the jump map g also contains only the second-order term,
and we have at t = 2kπ,

1

2
D2g(0)[Q2kπ−u]2 =

 u1u2

0
0

 . (8.58)
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Using (8.56), (8.57) and (8.58), we can read off the impulsive delay differential equations
and boundary conditions (8.28)–(8.31) for the second-order term h2. These are listed in
8.3.3, where the rest of the calculations are completed. In particular, the coefficients cξ of
the quadratic-order expansion h2u

2 = h11
2 u

2
1 +h12

2 u1u2 +h22
2 u

2
2 are computed therein. Given

that h = 1
2
h2u

2 + O(u3), the quadratic order expansion of the centre manifold is found to
be

h(t, u, θ) =
1

2

 1
−1
0

u2
1 +

1

2
h12

2 (t, θ)u1u2 +O(u3), (8.59)

where the function t 7→ h12
2 (t, θ) is 2π-periodic, has discontinuities along the lines t + θ =

2kπ, and is given, for t ≥ 2π, by (8.67).

As ε is stationary in (8.51)–(8.53), we actually have u2 = ε. Therefore, the parameter-
dependent centre manifold for the planar system (8.51)–(8.52) is obtained by replacing u2

with ε and u1 with u in (8.59), and dropping the third row, as this last row corresponds
to the dynamics in ε. The result is

hε(t, θ, u) =
1

2

[
1
−1

]
u2 +

1

2
εh̃12

2 (t, θ)u+O(u3) := hε,2(t, θ, u) +O(u3) (8.60)

where h̃12
2 denotes the first two rows of h12

2 (the third row is identically zero). When ε = 0,
the centre manifold is identical to the one that would be obtained by the usual adjoint-
based method for autonomous delay differential equations. This can be verified by direct
calculation.

Supplementary Animation 3 at the UWSpace repository [17] provides plots of the two
components (z1, z2) = hε,2(t, θ, u) of the quadratic term of the centre manifold for u ∈
[−1, 1], θ ∈ [−2π, 0], animated over five periods: t ∈ [0, 10π]. The parameter ε = −1

2

is chosen for illustrative purposes. In this animation it is easy to see the propagating
discontinuity along the characteristics t + θ = 2kπ predicted by Remark 8.1.3. A static
portrait at the fixed moment of time t = π is provided in Figure 8.2.

8.3.3 Detailed calculations associated to Example 8.3.2

Substituting (8.56), (8.57) and (8.58) into equations (8.28)–(8.31), we obtain

∂th2u
2 − ∂θh2u

2 = 0, θ < 0, t 6= 2πk
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Figure 8.2: The two components (z1, z2) = hε,2(t, θ, u) of the quadratic-order truncation of
the parameter-dependent centre manifold for Example 8.3.2, plotted at the time snapshot
t = π on the grid (u, θ) ∈ [−1, 1] × [−2π, 0], with parameter ε = −0.5. Notice the
discontinuity along the plane θ = −π.
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 0
u1u2

0

+ ∆th2u
2 −∆+

θ h2(t−, θ) = 0, θ < 0, t = 2πk

∂th2u
2 −

 −1 0 0
1 0 0
0 0 0

h2(t, 0)u2 −

 u2
1

−u2
1

0

 = 0, θ = 0, t 6= 2πk

 0
u1u2

0

+ ∆th2u
2 −

 u1u2

0
0

 = 0, θ = 0, t = 2πk

The second-order term h2(t, θ)u2 is given by

h2u
2 = c11u

2
1 + 2c12u1u2 + c22u

2
2 = h11

2 u
2
1 + h12

2 u1u2 + h22
2 u

2
2

for hζ2 ∈ R3, so there is a system of three 3-dimensional systems to solve. In this example,
the impulsive PDEs for each of the coefficients hζi2 of (8.38)–(8.41) decouple because Λ = 0
implies Λ2 = 0. With respect to the multi-index ordering ζ1 = (e1, e1), ζ2 = (e1, e2),
ζ3 = (e2, e2), we have

∂th
Ξ
2 = ∂θh

Ξ
2 , θ < 0, t 6= 2πk (8.61) 0

e2

0

+ ∆th
Ξ
2 = ∆+

θ h
Ξ
2 (t−, θ), θ < 0, t = 2πk (8.62)

∂th
Ξ
2 =

 −1 0 0
1 0 0
0 0 0

� hΞ
2 (t, 0) +

 e1 − e2

0
0

 , θ = 0, t 6= 2kπ (8.63)

 0
e2

0

+ ∆th
Ξ
2 =

 0
e1

0

 , θ = 0, t = 2kπ, (8.64)

We will solve the equations for hζi2 invididually.

The u2
1 coefficient

The partial differential equation (8.61)–(8.62) becomes the trvial transport equation:

∂th
ζ
2 = ∂θh

ζ
2, t 6= 2kπ (8.65)

∆th
ζ
2 = ∆+

θ h
ζ
2(t−, θ), t = 2kπ, (8.66)
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for ζ = (e1, e1). Therefore, the functions F and G of Proposition 8.2.1 are both zero, and
it follows that h11

2 (t, θ) = h11
2 (t + θ, 0). The latter is determined solely by the boundary

conditions (8.63)–(8.64). Namely, t 7→ h11
2 (t, 0) satisfies the impulsive differential equation

∂th
11
2 (t, 0) =

 −1 0 0
1 0 0
0 0 0

h11
2 (t, 0) +

 1
−1
0

 , t 6= 2πk

∆th
11
2 (t, 0) = 0, t = 2πk

It follows that h11
2 (t, θ) is given by

h11
2 (t, θ) = h11

2 (t+ θ, 0) =

 e−(t+θ) 0 0
1− e−(t+θ) 1 0

0 0 1

h11
2 (0, 0) +

 1− e−(t+θ)

e−(t+θ) − 1
0

 .
Finally, we apply the constraint of Corollary 8.2.0.1 to identify the unknown constant
h11

2 (0, 0) = (α, β, γ). We therefore require both Pc(t)h
11
2 (t, ·) = 0 and h11

2 (t, θ) = h11
2 (t +

2π, θ), where the period is 2π. Evaluating these two constraints and simplifying produces
the systems of equations [

α + β
γ

]
= 0, (α− 1)(e−(t+θ) − e−(t+θ+2π)

(1− α)(e−(t+θ) − e−(t+θ+2π))
γ

 = 0

It follows that α = 1, β = −1 and γ = 0, so that the coefficient h11
2 (t, θ) is the constant

h11
2 (t, θ) =

 1
−1
0

 .
The u2

2 coefficient

With ζ = (e2, e2), the partial differential equation (8.61)–(8.62) for h22
2 similarly reduces

to the transport equation (8.65)–(8.66), so that we have h22
2 (t, θ) = h22

2 (t + θ, 0). The
boundary condition (8.63)–(8.64) contains no inhomogeneous terms, and it follows that

h22
2 (t, θ) =

 e−t 0 0
1− e−t 1 0

0 0 1

 c22(0, 0).
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The periodicity constraint h22
2 (t+2π, θ) = h22

2 (t, θ) implies that h22
2 (0, 0) = (α, β, γ) satisfies

α = 0. The projection constraint Pc(t)h
22
2 (t, ·) = 0 then yields β = 0 and γ = 0, from

which we conclude that h22
2 ≡ 0.

The u1u2 coefficient

Contrary to the previous two coefficients, there is an inhomogeneity in the impulsive
partial differential equation (8.61)–(8.62) for the final index ζ = (e1, e2). Specifically, in
the notation of Proposition 8.2.1,

Gk = [ 0 1 0 ]′, F = 0, bk = [ 1 0 0 ]′, a = 0,

which means the coefficient h12
2 is of the form

h12
2 (t, θ) = n(t+ θ)−

∑
θ<2kπ−t≤0

 0
1
0

 ,
whereas n is a solution of the impulsive differential equation

ṅ =

 −1 0 0
1 0 0
0 0 0

n, t 6= 2kπ

∆n =

 1
−1
0

 t = 2kπ.

The general solution of the above system is given by

n(t) = X(t, 0)

 α
β
γ

+



∑
0<2kπ≤tX(t, 2kπ)

 1
−1
0

 , t > 0

−
∑

t<2kπ≤0X(t, 2kπ)

 1
−1
0

 , t ≤ 0.

X(t, s) =

 e−(t−s) 0 0
1− e−(t−s) 1 0

0 0 1

 .
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Checking the projection condition Pc(t)h
12
2 (t, ·) = 0, we find that γ = 0 and α + β = 0.

Verifying the periodicity condition h12
2 (t+ 2π, θ) = h12

2 (t, θ) at θ = 0 and t = 0, we see that
α must satisfy the equation e−2πα + 1 = α, which implies

α =
1

1− e−2π
, β = − 1

1− e−2π
, γ = 0.

It is not necessary to check at other arguments t and θ because Corollary 8.2.0.1 guarantees
that the constants α, β, γ are uniquely specified. Therefore, the u1u2 coefficient vector is
given, for t ≥ 2π, by

h12
2 (t, θ) =

1

1− e−2π
X(t+ θ, 0)

 1
−1
0

− ∑
θ<2kπ−t≤0

 0
1
0


+

∑
0<2kπ≤t+θ

X(t+ θ, 2kπ)

 1
−1
0

 .
(8.67)

For t < 2π, one may extend backwards by periodicity.
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Chapter 9

Hyperbolicity

The past three chapters have been devoted to the centre manifold,Wc. The centre manifold
is essentially nonlinear version of the centre fibre bundle RCRc. However, there are other
linear invariant fibre bundles, including the unstable fibre bundle RCRu and the stable
fibre bundle RCRs. There are also the direct sums RCRc ⊕RCRu and RCRc ⊕RCRs –
the centre-unstable fibre bundle and the centre-stable fibre bundle. Classically, these fibre
bundles have nonlinear analogues: the unstable manifold, stable manifold, centre-unstable
manifold and centre-stable manifold. Under a finer notion of spectral separation – that is,
an exponential N -splitting – one obtains an extended hierarchy [74] of (linear) invariant
fibre bundles and associated (nonlinear) invariant manifolds. In this chapter we focus on
the other two elementary invariant manifolds, namely the unstable and stable manifolds.
As the proofs are very similar to the analogous ones associated to the centre manifold,
many of them will be skipped over.

9.1 More bounded solutions from inhomogeneities

Let us introduce a few more spaces of exponentially weighted functions. The notation will
be similar to what we have in Section 6.1. First, we define

PC(−s,Rn) = {f |(−∞,s] : f ∈ PC(R,Rn)}, PC(+s,Rn) = {f |[s,∞) : f ∈ PC(R,Rn)}.
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Next, for s ∈ R, define Z−s = {k ∈ Z : tk ≤ s} and Z+s = {k ∈ Z : tk ≥ s}. We introduce
some exponentially weighted function spaces

PCη,−s = {φ : (−∞, s]→ RCR : φ(t) = ft, f ∈ PC(−s,Rn), ||φ||η,−s <∞}
PCη,+s = {φ : [s,∞)→ RCR : φ(t) = ft, t ∈ PC(−(s− r),Rn), ||φ||η,+s <∞}

Bη,−s(−s,RCR) = {f : (−∞, s]→ RCR : ||f ||η,−s <∞}
Bη,+s(+s,RCR) = {f : [s,∞)→ RCR : ||f ||η,−s <∞}
PCη,−s(−s,Rn) = {f ∈ PC(−s,Rn) : ||f ||η,−s <∞}
PCη,+s(+s,Rn) = {f ∈ PC(+s,Rn) : ||f ||η,+s <∞}
Bη,−s
tk

(Z−s,Rn) = {f : Z−s → Rn : ||f ||η,−s <∞}
Bη,+s
tk

(Z−s,Rn) = {f : Z+s → Rn : ||f ||η,+s <∞},

with the norms

||f ||η,−s =

{
supt≤s ||f(t)||e−η(t−s), dom(f) = (−∞, s]
supk∈Z−s ||f(k)||e−η(tk−s), dom(f) = Z−s

||f ||η,+s =

{
supt≥s ||f(t)||e−η(t−s), dom(f) = [s,∞)
supk∈Z+s

||f(k)||e−η(tk−s), dom(f) = Z+s

Next, we introduce analogues linear operator Kηs from Section 6.2. We have

Kη−s : PCη,−s ⊕Bη,−s
tk

(Z−s,Rn)→ Bη,−s(−s,RCR)

Kη+s : PCη,+s ⊕Bη,+s
tk

(Z+s,Rn)→ Bη,+s(+s,RCR)

defined as follows:

Kη−s(F,G)(t) =

∫ t

s

U(t, µ)Pu(µ)[χ0F (µ)]dµ+

∫ t

−∞
U(t, µ)[I − Pu(µ)][χ0F (µ)]dµ (9.1)

+
t∑
s

U(t, ti)Pu(ti)[χ0Gi]dti +
t∑
−∞

U(t, ti)[I − Pu(ti)][χ0Gi]dti,

Kη+s(F,G)(t) =

∫ t

s

U(t, µ)Ps(µ)[χ0F (µ)]dµ−
∫ ∞
t

U(t, µ)[I − Ps(µ)][χ0F (µ)]dµ (9.2)

+
t∑
s

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)[I − Ps(ti)][χ0Gi]dti.

The following result is the appropriate analogue of Lemma 6.2.3. Its proof is similar to
(and easier than) that of the aforementioned result, and is omitted.
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Lemma 9.1.1. Let H.1, H.2, H.5 and H.7 hold.

1. For η ∈ (0,min{−a, b}), Kη−s and K−η+s are bounded linear maps with norms that can
be chosen independent of s. For any compact interval J ⊂ (0,min{−a, b}), the norms
are bounded uniformly for η ∈ J .

2. For η ∈ (0,min{−a, b}), Kη−s has range in PCη,−s and v = Kη−s(F,G) is the unique
solution of (6.1) in PCη,−s such that Ps(s)v(s) = 0.

3. For −η ∈ (0,min{−a, b})Kη+s has range in PCη,+s and v = Kη+s(F,G) is the unique
solution of (6.1) in PCη,+s such that Pu(s)v(s) = 0.

9.2 Unstable manifold

Let η ∈ (0,min{−a, b}). At this stage, we reintroduce the substitution operators

R : PCη,−s → Bη,−s(−s,Rn)⊕Bη,−s
tk

(Z−s,Rn),

defined by R(x)(t, k) = (f(t, x(t)), g(k, x(tk)0−)). One can then prove the following lemma.

Lemma 9.2.1. Let H.4 and H.7 hold. The substitution operator defined above is m-times
continuously differentiable. Moreover, on the ball Bδ(0) in PCη,−s, the substitution operator
is Lipschitz continuous with Lipschitz constant Lδ that satisfies Lδ → 0 as δ → 0.

This lemma is the reason we do not need to cut off the nonlinearity. It is a consequence
of the fact that if u ∈ PCη,−s ∩ Bδ(0) for η > 0, then ||u(t)|| ≤ δ for all t ≤ s. Let
η ∈ (0,min{−a, b}) and introduce a map G−s : PCη,−s ×RCRu(s)→ PCη,−s defined by

G−s(u, ϕ) = U(·, s)ϕ+Kη−s(R(u)).

In the same way that we prove Theorem 6.4.1, one can show that if ||ϕ|| < δ1 is small
enough, then G−s(·, ϕ) has a unique fixed point in some ball Bδ2(0) ∩ PCη,−s. Moreover,
δ1 and δ2 can be chosen independent of s, and the fixed point is (uniformly in s) Lipschitz
continuous with respect to ϕ.

Theorem 9.2.1. Let assumptions H.1–H.7 hold. There exist δ1 and δ2 > 0 such that for
all ϕ ∈ Bδ1(0) ∩ RCRu(s), there is a unique u∗−s = u∗−s(ϕ) ∈ Bδ2(0) ∩ PCη,−s such that
u∗−s = Gη−s(u∗−s, ϕ).
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Definition 9.2.1. The local unstable manifold, Wu ⊂ R ×RCR, is the nonautonomous
set whose t-fibres for t ∈ R are given by

Wu(t) = Im{U(t, ·)}, (9.3)

where U : RCRu ∩ Bδ1(0) → RCR is the (fibrewise) Lipschitz map defined by U(t, φ) =
u∗−t(φ)(t).

Corollary 9.2.1.1. There exists a constant L > 0 such that ||U(t, φ)−U(t, ψ)|| ≤ L||φ−ψ||
for all t ∈ R and φ, ψ ∈ RCRu(t).

The local unstable manifold is similarly negatively invariant under the nonautonomous
process S(t, s) : RCR → RCR, in the following sense. The proof is similar to the proof of
part 1 of Theorem 6.5.1.

Theorem 9.2.2. Let conditions H.1–H.7 hold. Then, for ϕ sufficiently small and t ≤ s,
we have u∗−s(ϕ)(t) ∈ Wu(t). In particular, if (s, φ) ∈ Wu, then exists a unique mild solution
u ∈ PCη,−s of (5.1)–(5.2) with the property that u(t) ∈ Wu(t), ||u||η,−s ≤ δ2, and u(s) = φ.

To prove smoothness of the unstable manifold (in the state space), we will apply the
implicit function theorem to the solutions of the equation F−s = 0, with

F−s(u, ϕ) = u− G−s(u, ϕ).

Because of Lemma 9.2.1, Fs is m-times continuously differentiable, F−s(0, 0) = 0 and
DuF−s(0, 0) = I. One can then directly apply the implicit function theorem to guaran-
tee the existence of an m-times continuously differentiable ϕ 7→ ũ∗−s(ϕ) defined on some
neighbourhood Bρ(0) ⊂ RCRu(s), such that F−s(ũ∗−s(ϕ), ϕ) = 0. By restricting to Bδ1(0),
we get the equality ũ∗−s = u∗−s. Since this operation allows formal differentiation of the
fixed-point equation, we immediately get Du∗−s(0) = U(·, s). Finally, as the evaluation
functional evs : PCη,−s → RCR defined by evs(f) = f(s) is linear and bounded, the
following theorem is proven.

Theorem 9.2.3. U(t, ·) : RCRu(t) → RCR is m times continuously differentiable, and
DU(t, 0)φ = φ for all φ ∈ RCRu(t).

9.3 Stable manifold

With −η ∈ (0,min{−a, b}), we can define the substitution operator

R : PCη,+s → Bη,+s(+s,Rn)⊕Bη,+s
tk

(Z+s,Rn),
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with the same formula as previously. In the same way as before, the following lemma is
applicable. It is a consequence of the fact that, if ||u||η,+s ≤ δ and η < 0, then ||u(t)|| ≤ δ
for all t ≥ s.

Lemma 9.3.1. Let H.4 and H.7 hold. The substitution operator defined above is m times
continuously differentiable. Moreover, on the ball Bδ(0) in PCη,+s, the substitution operator
is Lipschitz continuous with Lipschitz constant Lδ that satisfies Lδ → 0 as δ → 0.

We can then proceed to define the fixed-point operator G+s : PCη,+s × RCRs(s) →
PCη,+s by

G+s(u, ϕ) = U(·, s)ϕ+Kη+s(R(u)),

and ultimately obtain the following results. They are proven similarly to the analogous
results in Section 6.4 and Section 6.5.

Theorem 9.3.1. Let assumptions H.1–H.7 hold. There exist δ1 and δ2 > 0 such that for
all ϕ ∈ Bδ1(0) ∩ RCRu(s), there is a unique u∗+s = u∗+s(ϕ) ∈ Bδ2(0) ∩ PCη,+s such that
u∗+s = Gη+s(u∗+s, ϕ).

Definition 9.3.1. The local stable manifold, Ws ⊂ R×RCR, is the nonautonomous set
whose t-fibres for t ∈ R are given by

Ws(t) = Im{T (t, ·)}, (9.4)

where T : RCRs ∩ Bδ1(0) → RCR is the (fibrewise) Lipschitz map defined by T (t, φ) =
u∗+t(φ)(t).

Corollary 9.3.1.1. There exists a constant L > 0 such that ||T (t, φ)−T (t, ψ)|| ≤ S||φ−ψ||
for all t ∈ R and φ, ψ ∈ RCRs(t).

Theorem 9.3.2. Let conditions H.1–H.7 hold. If (s1, φ) ∈ Ws and φ is sufficiently small,
then (t, S(t, s1)φ) ∈ Ws for all t ≥ s1. Additionally, for each γ > 0 there exist δ > 0 and
C > 0 such that for all ϕ ∈ RCRs(s1) with ||ϕ|| ≤ δ, we have the estimate

||S(t, s1)T (s1, ϕ)|| ≤ Ce(a+γ)(t−s1),

where we remind the reader that S is the nonlinear process introduced in Lemma 5.1.1.

Theorem 9.3.3. T (t, ·) : RCRs(t) → RCR is m times continuously differentiable, and
DT (t, 0)φ = φ for all φ ∈ RCRs(t).
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9.4 Linearized stability and instability

Proposition 5.3.1 states that when the unstable and centre fibre bundles are trivial, the
fixed point 0 of the nonlinear equation (5.1)–(5.2) is exponentially stable. With the help
of the the unstable manifold, we can prove a converse, completing our extension of the
classical linearized stability/instability theorem. The following lemma will be helpful in
proving the linearized instability theorem; its proof is an elementary consequence of the
definition of instability, and is omitted.

Lemma 9.4.1. Suppose there exists ε > 0 such that for all s ∈ R, there exists sequences
xn ∈ RCR and tn ∈ R with xn → 0 and tn > s satisfying tn →∞, such that ||S(tn, s)xn|| ≥
ε. Then, the fixed point 0 is unstable.

Theorem 9.4.1. Let assumptions H.1–H.7 hold. Assume for all δ > 0 sufficiently small,
there exists c(δ) ≥ 0 satisfying limδ→0+ c(δ) = 0 and such that

||f(t, φ)− f(t, ψ)|| ≤ c||φ− ψ||
||g(k, φ)− g(k, ψ)|| ≤ c||φ− ψ||,

for all t ∈ R, k ∈ Z and φ, ψ ∈ Bδ(0). The fixed point 0 ∈ RCR is:

• exponentially stable if RCRc and RCRu are both trivial;

• unstable if RCRu is nontrivial.

Proof. The exponential stability result is precisely Proposition 5.3.1. For the instability
result, let s ∈ R be given. Let s < tn → ∞, and let ϕn ∈ RCRu(tn) be a sequence such
that ||ϕn|| = δ1. Consider the sequence ξn = U(tn, ϕn). From the fixed point equation, it
follows that Pu(tn)ξn = ϕn for all n. Also, we have

δ1 = ||ϕn|| = ||Pu(tn)ξn|| ≤ N ||ξn||,

from which we get the lower bound ||ξn|| ≥ 1
N
δ1 for all n ∈ N. From Theorem 9.2.2, there

exists a mild solution un ∈ PCη,−tn satisfying un(tn) = ξn. From the bound ||un||η,−tn ≤ δ2,
we have the exponential estimate ||un(t)|| ≤ δ2e

η(t−tn) for all t ≤ tn. In particular, we have
||un(s)|| ≤ δ2e

η(s−tn). Since tn →∞, we get un(s)→ 0 as n→∞. Applying Lemma 9.4.1
with the sequence xn = un(s) and ε = 1

N
δ1, we get the claimed result.
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Chapter 10

Codimension-one bifurcations

The content of this chapter appears in Computation of centre manifolds and some codimension-
one bifurcations for impulsive delay differential equations [20] by Church and Liu.

This chapter contains two results. The first (Section 10.1) is a normal form calculation
associated to saddle-node and transcritical bifurcations in a general periodic impulsive
delay differential equation with one delay. The second (Section 10.2) considers bifurcations
at Hopf points. The system to be studied will be the n-dimensional system

ẋ = A(t)x(t) +B(t)x(t− r) + q1(t)ε+ f(t, x(t), x(t− r), ε), t 6= k (10.1)

∆x = Cx(t−) + Ex(t− r) + q2ε+ g(x(t−), x(t− r), ε), t = k, (10.2)

where q1 and q2 are column vectors, and t 7→ f(t, ·, ·, ·), t 7→ A(t), t 7→ B(t) and t 7→ q1(t)
are periodic with period 1. We will assume that f and g are sufficiently smooth and
f(t, 0, 0, 0) = g(0, 0, 0) = 0, so that 0 is an equilibrium point when ε = 0. Also, we assume
Df(t, 0, 0, 0) = 0 and Dg(0, 0, 0) = 0, so that f and g contain all terms of order 2 and
above in x(t), x(t− r) and ε. We will also assume that the delay satisfies r < 1. Much of
the results will depend on the properties of the linear system

ẋ = A(t)x(t) +B(t)x(t− r), t 6= k (10.3)

∆x = Cx(t−) + Ex(t− r), t = k. (10.4)

This is precisely the linearization of (10.1)–(10.2) at the origin with parameter ε = 0. We
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will also need the formal adjoint equation

d

ds
z1 = −z1(s)A(s)− z1(s+ r)E(s+ r), s /∈ {k, k − r} (10.5)

∆z1 =

{
−z1(k)C(I + C)−1, s = k
−z1(k)E, s = k − r, (10.6)

and the augmented linear homogeneous system

π̇ = A(t)π(t) +B(t)π(t− r) + q1(t)ε, t 6= k (10.7)

∆π = Cπ(t−) + Eπ(t− r) + q2ε, t = k (10.8)

ε̇ = 0, t 6= k, (10.9)

∆ε = 0, t = k. (10.10)

Finally, we denote F (t, xt, ε) = f(t, xt(0), xt(−r), ε) and G(xt, ε) = g(xt(0), xt(−r), ε).
Remark 10.0.1. The results of this section do not depend crucially on the assumption that
r < 1, but rather that the linear and nonlinear terms in the jump map satisfy the overlap
condition and that r ≤ 1. For example, if the jump condition (10.2) does not have delayed
terms then it is no issue to allow r = 1. The assumption r < 1 is made more for ease
of presentation than anything, and the methodology applied in this section of the present
paper can easily be extended to accommodate r > 1. In particular, the generic results of
Corollary 10.1.1.1 and Corollary 10.2.1.1 remain true for r arbitrary, provided the overlap
condition is satisfied. They also hold if there is more than one delay and more than one
impulse per period, under similar assumptions.

10.1 Fold bifurcation

Suppose the linearized system (10.3)–(10.4) at ε = 0 has one-dimensional centre fiber
bundle: RCR0

c(t) = span{φt}. This means that zero is a Floquet exponent and there is a
single rank 1 Floquet eigensolution φt. The superscript 0 is used to distinguish the fiber
bundles of the system (10.3)–(10.4) from those of (10.7)–(10.10).

To study bifurcations at the origin for (10.1)–(10.2) at ε = 0, we must expand the state
space by taking ε as an additional state variable. This results in the augmented system

d

dt

[
x
ε

]
= L(t)

[
xt
εt

]
+

[
f(t, x(t), x(t− r), ε)

0

]
, t 6= k (10.11)

∆

[
x
ε

]
= J

[
xt−
εt−

]
+

[
g(x(t−), x(t− r), ε)

0

]
, t = k, (10.12)
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and the linear functionals L and J are defined by

L(t)

[
w
y

]
=

[
A(t) q1(t)

0 0

] [
w(0)
y(0)

]
+

[
B(t) 0

0 0

] [
w(−r)
y(−r)

]
,

J
[
w
y

]
=

[
C q2

0 0

] [
w(0)
y(0)

]
+

[
E 0
0 0

] [
w(−r)
y(−r)

]
.

Observe that the linearization of the augmented system (10.11)–(10.12) is (10.7)–(10.10).
The centre fiber bundle, in particular, has become two-dimensional, but the unstable fiber
bundle remains c-dimensional.

Lemma 10.1.1. The centre fiber bundle RCRc(t) associated to the linearization of the
augmented system (10.11)–(10.12) is two-dimensional. A basis matrix is

Φt =

[
φt πt
0 1

]
,

where φt spans the centre fiber bundle of the original linearization (10.3)–(10.4) at ε =
0, and t 7→ (πt(0), 1) is a Floquet eigensolution of rank ≤ 2 with exponent zero of the
augmented homogeneous system (10.7)–(10.10). Also, the unstable fiber bundle RCRu(t)
of the augmented system remains c-dimensional.

Proof. That (φt, 0) is a solution in the centre fiber bundle is clear, so dimRCRc(t) ≥ 1.
On the other hand, any solution (x, ε) of the linearization (10.7)–(10.10) must satisfy
ε = constant, so in searching for other solutions in RCRc(t) with such a nonzero constant,
we may without loss of generality assume a solution of the form (πt, 1), where t 7→ πt(0)
solves

π̇ = A(t)π(t) +B(t)π(t− r) + q1(t), t 6= k (10.13)

∆π = Cπ(t−) + Eπ(t− r) + q2, t = k. (10.14)

Observe however that for any pair of solutions πt and ωt of the above system, the difference
ht = πt−ωt satisfies the homogeneous equation (10.3)–(10.4) and, consequently, if (πt, 1) ∈
RCRc(t), then πt is unique up to addition by a multiple of φt. Thus, dimRCRc(t) ≤ 2.
Moreover, because of the inhomogeneity, any solution of the form (πt, 1) cannot satisfy
||πt|| → 0 as t→∞ or t→ −∞. By spectral separation, if follows that if t 7→ (πt, 1) is an
eigensolution, then (πt, 1) ∈ RCRc(t).

Next, we prove that RCRu(t) = RCR0
u(t) × {0}, thereby proving that RCRu(t) is

c-dimensional. Let (ωt, ε) ∈ RCRu(t), and assume by way of contradiction that ε = 1,
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because if ε = 0 then we must have ωt ∈ RCR0
c(t), and if ε 6= 1 we can rescale. But

this means (ωt, 1) ∈ RCRu(t), which is a contradiction to the above result that all such
eigensolutions must be in RCRc(t). Thus, RCRu(t) contains only eigensolutions of the
form (ωt, 0), and so RCRu(t) = RCR0

u(t)× {0} is c-dimensional.

Finally, by way of contradiction, assume that dimRCRc(t) = 1 andRCRc(t) is spanned
by (φt, 0). Consider the element (0, 1) ∈ RCR = RCR([−r, 0],Rn)×RCR([−r, 0],R). Due
to the decomposition RCR = RCRc(0)⊕RCRs(0), there exists a unique c ∈ R such that
(0, 1) = c(φ0, 0)+(a0, b0) for some (a0, b0) ∈ RCRs(0). Consequently, b0 = 1, and it follows
that (a0, 1) ∈ RCRs(0). It follows that the solution t 7→ (at, 1) through (a0, 1) is defined
on [0,∞) and, by forward invariance of RCRs, we have (at, 1) ∈ RCRs(t), which is a
contradiction because as has been proven above, such a solution can only be in RCRc(t).
That πt is a Floquet eigensolution with exponent zero and of rank ≤ 2 is a consequence
the Floquet decomposition (8.5).

Lemma 10.1.2. Let ρ(t) ∈ Rn∗ be a nontrivial periodic solution of the formally adjoint
equation (10.5)–(10.6), normalized with respect to φt such that

N(ρ, φ) :=

∫ 1

0

ρ(t)[φ(t) + rB(t)φ(t− r)]dt+ ρ(0)rEφ(−r) = 1. (10.15)

This normalization is always attainable. Define the quantity

a01 =

∫ 1

0

ρ(t)q1(t)dt+ ρ(0)q2. (10.16)

The Floquet eigensolution t 7→ (πt(0), 1) from Lemma 10.1.1 is rank 1 if and only if a01 = 0.
Under the above normalization, πt satisfies the equality

π1 = π0 + a01φ0, (10.17)

and the matrix Λ of the Floquet decomposition Φt = Qte
Λt for t 7→ Qt of period one, is

Λ =

[
0 a01

0 0

]
.

Proof. The proof of this result makes use of a modification and slight generalization of [[4],
Theorem 1 & Lemma 5] adapted to the right-continuous solution formalism. The proof is
omitted.

151



Proposition 10.1.1. The inhomogeneous linear system

ẋ = A(t)x+B(t)x(t− r) + f(t), t 6= k

∆x = Cx(t−) + Ex(t− r) + g, t = k,

has a periodic solution if and only if∫ 1

0

ρi(s)f(s)ds+ ρi(0)g = 0 (10.18)

for every nontrivial periodic solution ρi of the formally adjoint homogeneous system (10.5)–
(10.6). Also, the number of linearly independent periodic solutions of the homogeneous
system (10.3)–(10.4) and its formal adjoint (10.5)–(10.6) is the same.

Using Proposition 10.1.1, it is clear that the condition a01 = 0 is equivalent to the
periodicity of πt. Next we show that Λ has the claimed form. To begin, we remark that
(π(t), 1) being a Floquet eigensolution of rank ≤ 2 and exponent zero implies it can be
written in the form π(t) = tv(t) + w(t) for periodic v and w. Substituting into (10.13)–
(10.14) and factoring, we can write

t(v̇ − Av −Bv(t− r)) + v + ẇ + rBv(t− r) = Aw +Bw(t− r) + q1, t 6= k
(10.19)

t(∆v − Cv(t−)− Ev(t− r)) + ∆w + rEv(t− r) = Cw(t−) +Bw(t− r) + q2, t = k.
(10.20)

Since w is periodic and hence bounded, it follows that the order t terms must vanish.
Consequently, v must in fact be a periodic solution of (10.3)–(10.4), and it follows that
vt = cφt for a constant c. But this in turn means

π1(θ) = (1 + θ)v1(θ) + w1(θ)

= θv0(θ) + w0(θ) + v0(θ)

= π0(θ) + cφ0(θ).

Thus, Φ1 satisfies the decomposition

Φ1 = Φ0

[
1 c
0 1

]
:= Φ0M.

If a01 = 0, we must chose c = 0, with the result being the matrix Λ = logM = 02×2

as claimed. On the other hand, if a01 6= 0, we substitute our ansatz v(t) = cφ(t) into
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(10.19)–(10.20) to obtain the following inhomogeneous system for w:

ẇ = Aw +Bw(t− r) + q1 − c[φ(t) + rBφ(t− r)], t 6= k

∆w = Cw(t−) + Ew(t− r) + q1 − crEφ(t− r), t = k.

Applying Proposition 10.1.1 to the above inhomogeneous system, we conclude that as w
is periodic, c must satisfy the equation

a01 − cN(ρ, φ) = 0.

It follows that N(ρ, φ) 6= 0, and as it is linear in ρ, we can always attain the normalization
condition N(ρ, φ) = 1. Therefore, c = a01, and we get

Λ = logM = log

[
1 a01

0 1

]
=

[
0 a01

0 0

]
.

Lemma 10.1.3. Write the matrix Y (t) ∈ R2×(n+1) associated to the projection Pc(t) :
RCR([−r, 0],Rn+1)→ RCRc(t) in block form

Y =

[
Y11 Y12

Y21 Y22

]
for Yi1 ∈ R1×n and Yi2 ∈ R1×1. We have Y21 = 0 and

φtY11(t) =
1

2πi

∫
Γ1

(zI − V 0
t )−1χ0dz, (10.21)

where V 0
t : RCR → RCR is the monodromy operator associated to the linear system

(10.3)–(10.4) and Γ1 is a positively-oriented contour whose interior is bounded away from
zero, and enclosing 1 ∈ C.

Proof. By definition, we have

Φt

[
Y11(t)
Y21(t)

]
=

1

2πi

∫
Γ1

(zI − Vt)−1diag(1, 1, . . . , 1, 1, 0)χ0dz, (10.22)

where the diagonal matrix has n ones. We start by partially solving the operator equation

R(z;Vt)diag(1, . . . , 1, 0)χ0 = ψ ∈ RCR([−r, 0],Rn+1).
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By linearity of the monodromy operator Vt, if we write

ψ =

[
ψπ
0

]
+

[
0
ψε

]
for ψπ ∈ RCR([−r, 0],Rn) and ψε ∈ RCR([−r, 0],R), and the operator equation is equiv-
alent to

diag(1, . . . , 1, 0)χ0 = zψ − Vt
[
ψπ
0

]
− Vt

[
0
ψε

]
.

Note, however, that the dynamics of the augmented system (10.7)–(10.10) are trivial in
ε, and the left-hand side of the above equation is zero in the ε component. Consequently,
ψε ≡ 0. Similarly, Vt[ ψπ 0 ]ᵀ ∈ RCR([−r, 0],Rn)×{0}, so the equation for the component
ψπ takes the form

χ0 = zψπ − V 0
t ψπ,

which implies ψπ satisfies the equation R(z;V 0
t )χ0 = ψπ. Taking all of the above into

account together with the representation of Φt from Lemma 10.1.1, we see that equation
(10.22) is equivalent to[

φtY11(t) + πtY21(t)
Y21(t)

]
=

1

2πi

∫
Γ1

[
(zI − V 0

t )−1χ0

0

]
dz,

which readily implies Y21 = 0 and the characterization of Y11 specified in equation (10.21).

With the above three lemmas at hand we can compute the quadratic-order dynamics
on the centre manifold (8.14)–(8.15). First, however, we note that because the dynamics of
ε in (10.11)–(10.12) are trivial, we can abuse notation and write u = (u1, u2) ∈ R2 instead
as u = (u, ε).

Lemma 10.1.4. Consequently, the nontrivial dynamics on the centre manifold, to quadratic
order, are given by

u̇ = a01ε+
1

2
Y11(t)D2F (t, 0)[(φtu+ (πt − a01tφt)ε, ε)]

2, t 6= k (10.23)

∆u =
1

2
Y11(0)D2G(0)[(φ−0 u+ π−0 ε, ε)]

2, t = k, (10.24)

for |ε| small, and all differentials are in the RCR variable.
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Proof. First, using Lemma 10.1.1 and Lemma 10.1.2, we can calculate

Qt =

[
φt πt − a01tφt
0 1

]
.

Next, the quadratic-order dynamics for (u, ε) are given by (8.14)–(8.15):

d

dt

[
u
ε

]
= Λ

[
u
ε

]
+

1

2
Y (t)

 D2F (t, 0)

[
Qt

[
u
ε

]]2

0

 , t 6= k,

∆

[
u
ε

]
=

1

2
Y (t)

 D2G(0)

[
Qt−

[
u
ε

]]2

0

 , t = k.

By periodicity of Qt and Y (t), we can replace Qt− with Q0− and Y (t) with Y (0) in the
second equation, since the jumps occur at the integers. Also, because of the structure of
Y (t) supplied by Lemma 10.1.3, the above reduces to equation (10.23)–(10.24) together
with the trivial equations ε̇ = 0 and ∆ε = 0.

Theorem 10.1.1 (Fold bifurcation). Let the centre fiber bundle associated to the linear
system (10.1)–(10.2) be one-dimensional, with λ = 0 being the only Floquet exponent with
zero real part. Let a01 be as stated in Lemma 10.1.2 and let πt satisfy equation (10.17). As-
sume the functions ρ(t) and φ(t) satisfy the normalization condition (10.15) and introduce
the quantities

a20 =

∫ 1

0

Y11(s)D2F (s, 0)[(φs, 0)]2ds+ Y11(0)D2G(0)[(φ−0 , 0)]2,

a11 =

∫ 1

0

Y11(s)D2F (s, 0)[(φs, 0), (πs − a01sφs, 1)]ds+ Y11(0)D2G(0)[(φ−0 , 0), (π−0 , 1)].

The following are true.

1. If a01 6= 0 and a20 6= 0, the nonlinear system (10.1)–(10.2) undergoes a fold (saddle-
node) bifurcation of periodic orbits from the equilibrium 0 at parameter ε = 0. More
precisely, the iterated discrete-time dynamics on the parameter-dependent centre man-
ifold are locally topologically equivalent near (u, ε) = 0 to the quadratic-order trun-
cated dynamics

u 7→ u+ a01ε+
1

2
a20u

2.
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2. Suppose a01 = 0. If a11 6= 0 and a20 6= 0, and x = 0 is a solution pf (10.1)–(10.2) for
all |ε| small enough, then this system undergoes a transcritical bifurcation of periodic
orbits from the equilibrium 0 at parameter ε = 0. More precisely, the iterated discrete-
time dynamics on the parameter-dependent centre manifold are locally topologically
equivalent near (u, ε) = 0 to the quadratic-order truncated dynamics

u 7→ u+ a11εu+
1

2
a20u

2.

3. If RCR0
u(t) is trivial, the stability of fixed points of the iterated dynamics carry over

to the analogous bifurcating periodic orbits in (10.1)–(10.2).

Proof. Starting from the quadratic-order dynamics (10.23)–(10.24) on the centre manifold,
we define the stroboscopic (Poincaré) map u 7→ S(u, ε) mapping the state u at time t = 0
to the state at time t = 1 for parameter ε. This function is smooth and following [19], it
admits a Taylor expansion of the form

S(u, ε) = u+ q01ε+
1

2
q20u

2 + q11uε+
1

2
q02ε

2 +O(||(u, ε)||3)

near (u, ε) = 0. Each of the coefficients qij is a solution of a particular initial-value problem
evaluated at t = 1. Namely, qij = vij(1) where vij(0) = 0 and

v̇01 = a01, t ∈ R
v̇20 = Y11(t)D2F (t, 0)[(φt, 0)]2, t 6= k

v̇11 =
1

2
Y11(t)D2F (t, 0)[(φt, 0), (πt − a01tφt, 1)], t 6= k

∆v20 = Y11(0)D2G(0)[(φ−0 , 0)]2, t = k

∆v11 =
1

2
Y11(0)D2G(0)[(φ−0 , 1), (π−0 , 1)], t = k.

The differential equation for v02 is not shown because it will not be needed. Solving
the above differential equations, it follows that the Stroboscopic map admits the Taylor
expansion

S(u, ε) = u+ a01ε+
1

2
a20u

2 + a11εu+O(ε2 + ||(u, ε)||3).

As the dynamics on the centre manifold are periodic, the orbit structure and bifurcations
can be determined by analyzing the iterated map u 7→ S(u, ε). The conclusions 1–2 of
the theorem now follow directly from the saddle-node bifurcation theorem for maps [92].
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The stability assertion in the presence of a trivial unstable fiber bundle follow by upper
semicontinuity of the spectrum of compact operators under perturbations [51], and the
continuity of the fixed points of the iterated dynamics for |ε| small. Alternatively, one can
use Theorem 6.8.1.

Remark 10.1.1. The above theorem could easily be generalized to the setting where there
is more than one impulse per period. The period can also be any positive real number, since
one can always rescale time so that the period is unity. Note also that there is no need to
calculate πt unless the nondegeneracy condition a20 6= 0 of the saddle-node bifurcation fails.

The following corollary is a statement of the generic fold bifurcation theorem for the
system (10.1)–(10.2). The genericity conditions are the transversality conditions a01 6= 0
and a20 6= 0.

Corollary 10.1.1.1 (Generic Fold Bifurcation). For any generic impulsive delay differen-
tial equation (10.1)–(10.2) having at ε = 0 the equilibrium 0 with a single Floquet exponent
λ = 0 and one-dimensional centre fiber bundle, there is a neighbourhood N of 0 ∈ RCR
and a smooth invertible change of parameters η = η(ε) satisfying η(0) = 0, such that for
η > 0, there are exactly two periodic orbits of period 1 in N that trivialize to the equilibrium
as η → 0+, while for η < 0 there are no periodic orbits in N .

10.1.1 Example: fold bifurcation in a scalar system with delayed
impulse

Consider the scalar equation

ẋ = log(2)x− x2(t− 1/2) + εσ(t), t 6= k (10.25)

∆x = − 1√
2
x(t− 1/2) + ε, t = k, (10.26)

where σ(t) is periodic with period 1. When ε = 0, the linearization at the origin has
φ(t) = 2t−btc as the unique periodic solution up to scaling. Moreover, every solution of the
linearization at 0 of the above impulsive delay differential equation is eventually a solution
of (ie. (10.25)–(10.26) is FD-reducible [24] to) the system

ż = log(2)z, t 6= k

∆z = −1

2
z, t = k.
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Since any solution of (10.25)–(10.26) defined for all time must satisfy the above finite-
dimensional system, and since it has only the Floquet exponent 0 with multiplicity 1, we
conclude that the linearization of (10.25)–(10.26) hasRCRc(t) = span{φt} andRCRu(t) =
{0}. We are therefore in a position to apply Theorem 10.1.1.

The formal adjoint system to the linearization is

ẏ = − log(2)y, t 6= k − 1/2

∆y =
1√
2
y(k), t = k − 1/2.

From this, we can calculate the nontrivial periodic solution

ρ(t) =

{
2−t+btc, 0 ≤ t− btc < 1

2

21−t+btc, 1
2
≤ t− btc < 1,

by solving the equation in reverse time from (t, y) = (1, 1). Next we verify the normalization
condition (10.15). We have

N(ρ, φ) =

∫ 1

0

ρ(t)φ(t)dt+ ρ(0)
1

2
· −1√

2
φ(−1/2)

=

∫ 1
2

0

1dt+

∫ 1

1
2

2dt− 1

2
√

2
2

1
2

= 1,

so ρ is already normalized relative to φ. The calculation of the function Y11(t) is carried
out in Section 10.1.2; we find that Y11(t) = ρ(t). We have enough information to calculate
the coefficients a01 and a20:

a01 = 1 +

∫ 1/2

0

2−sσ(s)ds+

∫ 1

1/2

21−sσ(s)ds,

a20 =

∫ 1

0

−2φ(s− 1/2)2ds = − 3

log(2)
.

Since a20 is nonzero, Theorem 10.1.1 guarantees a saddle-node bifurcation occurs at ε = 0
assuming a01 6= 0.

For example, if we choose σ(t) = sin(2πt), then a01 = 0.88881 ± 10−5 is positive and
a20 is negative. Reading off the discrete-time dynamics from the theorem, we predict that
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Figure 10.1: Simulations of the scalar impulsive system (10.25)–(10.26) from Section 10.1.1
for various parameters ε, with the forcing function σ(t) = sin(2πt), from the constant initial
condition x0 = 1

2
. Time t on the horizontal with x(t) on the vertical axis. Top row left to

right: solutions with ε = 0, ε = 0.2 and ε = 0.4. Bottom row from left to right: ε = 0.8,
ε = 1, and ε = 1.2.

there should be a single, locally asymptotically stable periodic orbit when ε > 0, the origin
should be semistable when ε = 0, and there should be no small periodic orbits when
ε < 0. These conclusions should all hold true provided |ε| is sufficiently small. Indeed, we
can verify numerically that these conclusions are consistent for 0 ≤ ε ≤ 1, although the
bifurcating periodic orbit appears to undergo a period doubling bifurcation between ε = 1
and ε = 1.2; see Figure 10.1. Solutions rapidly diverge in the regime ε < 0 and we do not
provide accompanying figures.

10.1.2 Calculation of the function Y11(t) for Example 10.1.1

First, we remark that because of the periodicity of the monodromy operator and the
matrix Y (t), it suffices to compute the restriction of Y11(t) to the interval [0, 1) and extend
periodically. We begin by computing the monodromy operator V 0

t on this restriction. One
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can verify that this is given by

V 0
t ξ(θ) =


2θ+1ξ(0), t+ θ < 0, t ≤ 1

2

2θξ(0), t+ θ ≥ 0, t ≤ 1
2

2θ(2ξ(0)− 2t−
1
2 ξ(t− 1/2)), t > 1

2

Next, we solve the equation (zI − V 0
t )−1χ0 = ψ. This is equivalent to

χ0 = zψ − V 0
t ψ. (10.27)

We do two cases separately: first, with t ≤ 1
2
, and then with t > 1

2
.

If t ≤ 1
2
, equation (10.27) evaluated at θ = 0 produces the following algebraic equation

for ψ(0):
1 = zψ(0)− ψ(0).

Therefore, ψ(0) = (z−1)−1. Evaluating (10.27) at θ < 0 and substituting in the constraint
ψ(0) = (z − 1)−1 produces the equation

0 = zψ(θ)− 1

z − 1

{
21+θ, t+ θ < 0
2θ, t+ θ ≥ 0.

Solving the above equation for ψ(θ), combining the two results and simplifying, we have
determined that for t ≤ 1

2
,

(zI − V 0
t )−1χ0 =

2θ

z(z − 1)


z, θ = 0
2, t+ θ < 0
1, t+ θ ≥ 0.

(10.28)

Next, we consider the case t > 1
2
. Evaluating equation (10.27) at θ = 0 and θ = 1

2
− t <

0, we obtain the following pair of linear equations for the unknowns ψ(0) and ψ(1/2− t):

1 = (z − 2)ψ(0) + 2t−
1
2ψ(1/2− t)

0 = −2
3
2
−t + (z + 1)ψ(1/2− t).

Solving this equation, we find[
ψ(0)

ψ(1/2− t)

]
=

1

z(z − 1)

[
z + 1

2
3
2
−t

]
. (10.29)
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Next, evaluating (10.27) at θ < 0 and expressing one of the terms as matrix product yields
the equation

0 = zψ(θ)− 2θ[ 2 −2t−
1
2 ]

[
ψ(0)

ψ(1/2− t)

]
.

Solving the equation for ψ(θ) and combining it with (10.29), we conclude that for t > 1
2
,

(zI − V 0
t )−1χ0 =

2θ

z(z − 1)

{
z + 1, θ = 0

2, θ < 0.
(10.30)

Next we calculate the Dunford integral (2πi)−1
∫

Γ1
(zI − V 0

t )−1χ0dz. Using (10.28) and
(10.30) together with residue theorem, we obtain after much simplification

1

2πi

∫
Γ1

(zI − V 0
t )−1χ0(θ)dz =

{
21+θ, t ≤ 1

2
, t+ θ < 0 or t > 1

2

2θ, t ≤ 1
2
, t+ θ ≥ 0.

By Lemma 10.1.3, we can calculate Y11(t) by multiplying the above by 1/φt(θ), and the
result should be independent of θ. Initially, we obtain

1

φt(θ)

1

2πi

∫
Γ1

(zI − V 0
t )−1χ0(θ)dz =

{
21−t+bt+θc, t ≤ 1

2
, t+ θ < 0 or t > 1

2

2−t+bt+θc, t ≤ 1
2
, t+ θ ≥ 0.

(10.31)

When t > 1
2
, we have 1− t+ bt+ θc = 1− t. Conversely, when t ≤ 1

2
, we have

t+ θ < 0 ⇒ 1− t+ bt+ θc = −t
t+ θ ≥ 0 ⇒ −t+ bt+ θc = −t.

Therefore, in both cases, we see that (10.31) can be written independent of θ, with the
result being Y11(t) = ρ(t) on [0, 1). Extending by periodicity, the claim is proven.

10.2 Cylinder bifurcation

This time we will assume (10.3)–(10.4) has a pair ±iω of complex conjugate Floquet
exponents, and there are no other Floquet exponents with zero real part. This means
the centre fibre bundle has the real basis matrix Φ0

t = [ φ1,t φ2,t ], so that RCR0
c(t) =

span{φ1,t(θ), φ2,t(θ)}. As the Floquet exponents are ±iω, equation (8.5) implies the de-
composition

Φ0
t = Q0

t exp

([
0 ω
−ω 0

]
t

)
, (10.32)
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where t 7→ Qt is periodic with columns in RCR. Finally, we let dimRCR0
u(t) = c.

The analysis of this section is similar to the previous one, with some modifications. To
motivate our first result, recall that a Neimark-Sacker bifurcation occurs in the iterated
map

z 7→ A(ε)z +
1

2
B(ε)[z, z] +

1

6
C(ε)[z, z, z] +O(||z||4) (10.33)

for a 2 × 2 matrix A(ε) and symmetric multilinear maps B(ε) and C(ε), at z = 0 with
parameter ε = 0, provided the following are satisfied [54]:

• the eigenvalues µ1(ε) and µ2(ε) of A(ε) satisfy µi(0) = e±iω, and eikω 6= 1 for k =
1, 2, 3, 4;

• the crossing condition1 r′(0) 6= 0 is satisfied, where

r′(0) =
1

2

d

dε

∣∣∣
ε=0
µ1(ε)µ2(ε) 6= 0;

• the first Lyapunov coefficient [54] d(0),

d(0) = Re

(
e−iω

1

2

[
〈p, C0[q, q, q]〉+ 2〈p,B0[q, (I − A0)−1B0[q, q]]〉

+ 〈p,B0[q, (e2iωI − A0)−1B[q, q])〉
])

,

(10.34)

satisfies d(0) 6= 0, where 〈a, b〉 = a1b1 + a2b2 is the standard inner product on C2,
A0 = A(0), B0 = B(0) and C0 = C(0), q satisfies A0q = eiωq, p satisfies Aᵀ0p = e−iωp,
and 〈p, q〉 = 1.

Our approach in analyzing the Hopf bifurcation condition in (10.1)–(10.2) will be to
first expand the state space as in equation (10.11)–(10.12) and determine the nontrivial
dynamics on the parameter-dependent centre manifold near (xt, ε) = (0, 0). This will be a
two-dimensional impulsive differential equation. The iterated dynamics of the associated
stroboscopic map at parameter ε = 0 will be compared to (10.33), while the dynamics

1Precisely, this condition states the eigenvalues must cross the boundary of |z| = 1 in C transversally.
This is equivalent to the modulus |µi(ε)| being increasing or decreasing at ε = 0 which, given that |z| = zz,
is equivalent to the condition we have supplied.

162



for |ε| small will provide a way to calculate r′(0). This will allow us to effectively lift the
Neimark-Sacker bifurcation into the nonlinear dynamics of (10.1)–(10.2).

To begin, we introduce some additional notation. The symbols Dx and Dε will denote
the partial derivative operators acting on functions H : RCR × R → Rn. We then set
Hxx = D2

xH(0), Hxxx = D3
xH(0), and Hxε = DεDxH(0), where the first two are symmetric

bilinear and trilinear maps on RCR repsectively, and the latter is a linear operator on
RCR. For H(t, ·, ·) : RCR × R → Rn, we overload the notation and write, for example,
Hxx(t) = H(t, ·, ·)xx.

The following three lemmas provide the foundation of our result. They are analogues
of Lemma 10.1.1, Lemma 10.1.2 and Lemma 10.1.3, and the proofs follow from the same
reasoning.

Lemma 10.2.1. The centre fiber bundle RCRc(t) associated to the linearization of the
parameter augmented system (10.11)–(10.12) is three-dimensional. A basis matrix is

Φt =

[
φ1,t φ2,t πt
0 0 1

]
,

where φt spans the centre fiber bundle of the original linearization (10.3)–(10.4) at ε =
0, and t 7→ (πt(0), 1) = (π(t), 1) is a Floquet eigensolution with exponent zero of the
homogeneous impulsive delay differential equation (10.7)–(10.10). Also, the unstable fiber
bundle RCRu(t) of the parameter-augmented system remains c-dimensional.

Lemma 10.2.2. The Floquet eigensolution t 7→ (πt(0), 1) is rank 1, so π(t) = πt(0) is the
unique periodic solution of the system (10.7)–(10.8) with ε ≡ 1. The matrices Λ and Qt of
the Floquet decomposition Φt = Qte

Λt are

Λ =

[
Λω 02×1

01×2 0

]
, Λω =

[
0 ω
−ω 0

]
, Qt =

[
Q0
t πt

0 1

]
, (10.35)

where Q0
t is the same periodic matrix appearing in (10.32).

Lemma 10.2.3. Write the matrix Y (t) ∈ R3×(n+1) associated to the projection Pc(t) :
RCR([−r, 0],Rn+1)→ RCRc(t) in block form

Y =

 Y11 Y12

Y21 Y22

Y31 Y32
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for Yi1 ∈ R1×n and Yi2 ∈ R1×1. We have Y31 = 0 and

φ1,tY11(t) + φ2,tY21(t) =
1

2πi

∫
Γ

(zI − V 0
t )−1χ0dz, (10.36)

where V 0
t : RCR → RCR is the monodromy operator associated to the linear system

(10.3)–(10.4) and Γ is a positively-oriented contour whose interior is bounded away from
zero, enclosing both of e±iω and no other eigenvalues of V 0

t .

At this stage, we should point out that because of the trivial dynamics of the parameter
ε and the form of Φt, the Euclidean space representation of the three-dimensional centre
manifold of the augmented system (10.11)–(10.12) takes the form

h(t, (u, ε), θ) =

[
h(t, u, ε, θ)

0

]
for h(t, u, ε, θ) ∈ Rn and u ∈ R2. Consequently, Lemma 10.2.1 though Lemma 10.2.3
together with Theorem 8.1.2 imply that the dynamics on the two-dimensional slice of the
three-dimensional centre manifold at parameter ε are

u̇ = Λωu+ eΛωt

[
Y11(t)
Y21(t)

]
F (t, Q0

tu+ επ̃t + h(t, u, ε, ·), ε), t 6= k (10.37)

∆u =

[
Y11(0)
Y21(0)

]
G(Q0

0−u+ επ̃0− + h(0−, u, ε, ·), ε), t = k. (10.38)

Next we consider h̃(t, u, θ) := h(t, u, 0, θ), the centre manifold at parameter ε = 0.
As we will need the cubic order terms in the iterated map (10.33), it will be necessary
to compute h̃ to quadratic order in u. As Theorem 8.1.1 implies the expansion h̃ =
1
2
h̃2 +O(||u||3), the following lemma is of use and implies the fairly striking result that, for

Hopf bifurcation conditions, the projection constraint of Proposition 8.2.0.1 is not actually
needed to determine the quadratic term of the centre manifold at ε = 0.

Lemma 10.2.4. In terms of the expansion

h̃2(t, θ)[u, u] = h11
2 u

2
1 + h12

2 u1u2 + h22
2 u

2
2,

the vector function hΞ
2 = (h11

2 , h
12
2 , h

22
2 ) ∈ (Rn)3 is the unique periodic solution of period one

of the impulsive partial delay differential equation (8.38)–(8.41) satisfying the constraint
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Pc(t)h
ij
2 (t, ·) = 0 for all t ∈ [0, 1) and unordered pairs i, j ∈ {1, 2}, with the data

Λ2 =

 0 −ω
2

0
ω 0 −ω
0 ω

2
0

 ,
F(t, θ) =

(
φ1,t(θ)Y11(t) + φ2,t(θ)Y21(t)

) Fxx(t)[Q
0
t,1]2

Fxx(t)[Q
0
t,1, Q

0
t,2]

Fxx(t)[Q
0
t,2]2

 ,
G(θ) = (φ1,0

(
θ)Y11(0) + φ2,0(θ)Y21(0)

) Gxx[Q
0
0−,1]2

Gxx[Q
0
0−,1, Q

0
0−,2]

Gxx[Q
0
0−,2]2

 .
Moreover, the inhomogeneous linear system (8.43)–(8.44) from Proposition 8.2.1 has a
unique periodic solution n(t) of period T , so the vector hΞ

2 of coefficients of the centre
manifold at parameter ε = 0 is given precisely by the right-hand side of equation (8.42).
Also, if RCRu(t) is trivial, the set

nt +RCR†c(t) ⊂ RCR3

is globally attracting, where RCR†c(t) is the centre fiber bundle associated to the homoge-
neous equation

ṅ(t) + 2Λ2 ∗ n(t) = L(t)� [e2Λ2(·) ∗ nt], t 6= tk (10.39)

∆n(t) = J(k)� [e2Λ2(·) ∗ nt− ], t = tk. (10.40)

Proof. Since Λ = Λω =

[
0 ω
−ω 0

]
, one can readily compute

h2[Λu, u] = h2(t, θ)

[[
ωu2

−ωu1

]
,

[
u1

u2

]]
= ω

(
h11

2 u2u1 +
1

2
h12

2 u
2
2 −

1

2
h12

2 u
2
1 − h22

2 u1u2

)

= [ u2
1 u2u1 u1u2 u2

2 ] ∗ Λ2 ∗


c11

c21

c12

c22

 .
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so that Λ2 does indeed have the claimed form. Verifying that F and G are as stated in the
lemma can be done in a similar manner, taking into account Lemma 10.2.2 and Lemma
10.2.3.

Since (8.43)–(8.44) is inhomogeneous, we can write any given periodic solution in the
form n(t) = n0(t) +M(t)y, where n0(t) is a particular periodic solution, M(t) is a matrix
whose columns consist of a maximal linearly independent set (finite, due to the Floquet
theory) of real periodic solutions of the homogeneous equation, and y is a real vector of
appropriate dimension. To characterize M(t), we write down the homogeneous equation:

ṅ+ 2Λ2 ∗ n = L(t)� [e2Λ2(·) ∗ nt], t 6= k (10.41)

∆n = J(k)� [e2Λ2(·) ∗ nt− ], t = k, (10.42)

where we remember that multiplications involving Λ2 and its exponentials are treated as
array multiplications. Introducing a change of variables w(t) = e2Λ2t∗n(t) for w ∈ (Rn)β×1,
we find by applying the Leibniz law that w satisfies the homogeneous equation

ẇ = L(t)� wt, t 6= k (10.43)

∆w = J(k)� wt− , t = k. (10.44)

Thus, the dynamical system for w is merely the β-fold product of the homogeneous system
(10.3)–(10.4) with itself. Recall that this system has, a priori, no nontrivial periodic
solutions, and the only Floquet exponents on the imaginary axis are ±iω. Since the
eigenvalues of 2Λ2 are λ = 0 and λ = ±i2ω, the transformation u 7→ e2Λ2t ∗ u is uniformly
bounded, so every periodic solution of (10.41)–(10.42) must be of the form e−2Λ2t ∗ w(t)
for a periodic solution w(t) of (10.43)–(10.44). Since ω 6= 0, the only periodic solution
of this form is the trivial solution, thereby proving that the T -periodic solution of the
inhomogeneous equation is unique. That nt+RCR†c(t) is attracting whenRCRu(t) is trivial
follows by the uniform boundedness of the transformation and the spectral separation of
RCR3 by the homogeneous system (10.43)–(10.43).

We cannot hope to obtain an explicit, fully general formula for the solution c(t, θ)
encoding the coefficients of h̃2(t, θ). The difficulty arises in solving the inhomogeneous
impulsive delay system (8.43)–(8.44) of Proposition 8.2.1. See later Example 10.2.1.

At this stage, we will assume that one has computed the second-order term h̃2 of the
centre manifold at parameter ε = 0, or some sufficiently precise numerical approximation
thereof. To prove the following lemma, we could apply the method of [19], as is done in
the proof of Theorem 10.1.1. However, the calculations are obviously a bit messier in this
case. For the sake of transparency, we provide a self-contained proof.
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Lemma 10.2.5. The iterated dynamics defined by the Stroboscopic (Poincaré) map as-
sociated to the impulsive differential equation (10.37)–(10.38) on the parameter dependent
centre manifold, at the fixed parameter ε = 0, are given to cubic order by

u 7→ Ω(1)u+
1

2!

(∫ 1

0

Ω(1)Ỹ (s)Fxx(s)[Φ
0
su]2ds+ Ỹ (0)Gxx[Φ

0
1−u]2

)
+

1

3!

(∫ 1

0

Ω(1)Ỹ (s)

[
Fxxx(s)[Φ

0
su]3 + 3Fxx(s)[Φ

0
su, h̃2(s, ·)[Ω(s)u]2] + · · ·

+ 3Fxx(s)

[
Φ0
su,Φ

0
s

∫ s

0

Ỹ (t)Fxx(t)[Φ
0
tu]2dt

]
ds

]
+ · · ·

+ Ỹ (0)

[
Gxxx[Φ

0
1−u]3 + 3Gxx[Φ

0
1−u, h̃2(1−, ·)[Ω(1)u]2] + · · ·

+ 3Gxx

[
Φ0

1−u,Φ
0
1−

∫ 1

0

Ỹ (t)Fxx(t)[Φ
0
tu]2dt

]])
+O(||u||4)

(10.45)

where Λω =

[
0 ω
−ω 0

]
, Ω(t) = eΛωt, and Ỹ (t) =

[
Y11(t)
Y21(t)

]
.

Proof. The cubic-order dynamics (8.16)–(8.17) on the centre manifold at parameter ε = 0
are

u̇ = ΛS + eΛtỸ (t)

[
1

2
F 2(t)[Q0

tu]2 +
1

3!
(D3F (t)[Q0

tu]3 + 3D2F (t)[Q0
tu, h̃2(t, ·)u2])

]
, t 6= k

∆u = Ỹ (0)

[
1

2!
D2G[Qk−u]2 +

1

3!
(D3G[Q0

k−u]3 + 3D2G[Q0
k−u, h̃2(k0, ·)u2])

]
, t = k,

where for brevity we write F 3 = Fxxx, F
2 = Fxx and similarly for G. Let t 7→ S(t, u) be

the unique solution of the above ordinary impulsive differential equation, defined for time
t ≥ 0 and satisfying the initial condition S(0, u) = u. It follows that t 7→ S(t, u) satisfies
the impulsive differential equation

Ṡ = ΛS + eΛtỸ (t)

[
1

2
F 2(t)[Q0

tS]2 +
1

3!
(D3F (t)[Q0

tS]3 + 3D2F (t)[Q0
tS, h̃2(t, ·)S2])

]
, t 6= k

(10.46)

∆S = Ỹ (0)

[
1

2!
D2G[Q0

k−S]2 +
1

3!
(D3G[Q0

k−S]3 + 3D2G[Q0
k−S, h̃2(k−, ·)S2])

]
, t = k.

(10.47)
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Our objective is to compute a degree three Taylor expansion of u 7→ S(1, u) near u = 0.
The function S : R+ × R2 → R2 is C3 in its second variable and C1 in its first variable
except at times t ∈ Z, where it is right-continuous [19]. Consequently, the multiple partial
derivatives t 7→ ∂ukS := Suk for k = 1, 2, 3 themselves satisfy a set of impulsive differential
equations that can be calculated by formally differentiating (10.46)–(10.47) with respect
to u, keeping in mind that S = S(t, u). Also, we have the initial conditions Su(0, 0) = I,
Suu(0, 0) = 0 and Suuu(0, 0) = 0. The formal differentiation process produces

Ṡu = ΛSu + eΛtỸ (t)

(
D2F (t)[Q0

tS,Q
0
tSu] +

1

3!

(
3D3F (t)[Q0

tS,Q
0
tS,Q

0
tSu] + · · ·

+ 3D3F (t)[Q0
tSu, h̃2(t, ·)S2 + h̃2(t, ·)[S, Su]

))
, t 6= k

Ṡuu = ΛSuu + eΛtỸ (t)

(
D2F (t)[Q0

tSu]
2 +D2F (t)[Q0

tS,Q
0
tSu] + · · ·

+
1

3!

(
3D2F (t)[Q0

tS,Q
0
tS,Q

0
tSuu] + 6D2F (t)[Q0

tS,Q
0
tSu, Q

0
tSu] + · · ·

+ 3D2F (t)[Q0
tSuu, h̃2(t, ·)S2] + 12D2F (t)[Q0

tSu, h̃2(t, ·)[S, Su] + · · ·

+ 6D2F (t)[Q0
tS, h̃2(t, ·)[Su, Su] + h̃2(t, ·)[S, Suu]

)
, t 6= k

∆Su = Ỹ (k)

(
D2G[Q0

k−S,Q
0
k−Su] +

1

3!

(
3D3G[Q0

k−S,Q
0
k−S,Q

0
k−Su] + · · ·

+ 3D3G[Q0
k−Su, h̃2(k−, ·)S2 + h̃2(k−, ·)[S, Su]

))
, t = k

∆Suu = Ỹ (k)

(
D2G[Q0

k−Su]
2 +D2G[Q0

k−S,Q
0
k−Su] + · · ·

+
1

3!

(
3D2G[Q0

k−S,Q
0
k−S,Q

0
k−Suu] + 6D2G[Q0

k−S,Q
0
k−Su, Q

0
k−Su] + · · ·

+ 3D2G[Q0
k−Suu, h̃2(k−, ·)S2] + 12D2G[Q0

k−Su, h̃2(k−, ·)[S, Su] + · · ·

+ 6D2G[Q0
k−S, h̃2(k−, ·)[Su, Su] + h̃2(k−, ·)[S, Suu]

)
, t = k,

and we refrain from calculating the impulsive differential equation for Suuu for now. Take
note that each of S = S(t, u), Su = D2S(t, u) and Suu = D2

2S(t, u) is evaluated at an
arbitrary u ∈ R2. If one calculates the impulsive differential equation for Suuu and evaluates
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each of S, Su and Suu at u = 0, many terms cancel because S(t, 0) = 0. The result is

Ṡu = ΛSu, t 6= k

Ṡuu = ΛSuu + eΛtỸ (t)D2F (t)[Q0
tSu]

2, t 6= k

Ṡuuu = ΛSuuu + eΛtỸ (t)
[
D3F (t)[Q0

tSu]
3 + 3D2F (t)[Q0

tSu, h̃2(t, ·)[Su]2] + · · · t 6= k

+ 3D2F (t)[Q0
tSu, Q

0
tSuu]

]
,

∆Su = 0, t = k

∆Suu = Ỹ (k)D2G[Q0
k−Su]

2, t = k

∆Suuu = Ỹ (k)
[
D3G[Q0

k−Su]
3 + 3D2G[Q0

k−Su, h̃2(k−, ·)[Su]2] + · · · t 6= k

+ 3D2G[Q0
k−Su, Q

0
k−Suu]

]
It follows that Su(0, t) = eΛt = Ω(t), so that Q0

tSu = Φ0
t . Taking this into account,

solving the above impulsive differential equations at the prescribed initial conditions and
substituting into the Taylor expansion

S(1, u) = Su(1, 0)u+
1

2!
Suu(1, 0)[u, u] +

1

3!
Suuu(1, 0)[u, u, u] +O(||u||4)

produces the right-hand side of (10.45). As u 7→ S(1, u) is precisely the stroboscopic
(Poincaré) map, the lemma is proven.

Remark 10.2.1. If the vector field and jump map have no quadratic terms in the state xt
– that is, if Fxx = Gxx = 0 – one does not need to compute h̃2 at all, since the evaluations
of h̃2 in the iterated dynamics (10.45) only appear in the action of the second differentials
D2F (s) and D2G. This assumption does not, however, preclude mixed quadratic terms of
the form εLxt for L linear.

With these preparatory lemmas in place, we are ready to state and prove our bifurcation
theorem at a Hopf point.

Theorem 10.2.1 (Cylinder bifurcation). With the notation and assumptions of Lemma
10.2.1 through Lemma 10.2.3, suppose the following nondegeneracy conditions are satisfied:

G.1 eimω 6= 1 for m = 1, 2, 3, 4.

G.2 γ(0) 6= 0, where

γ(0) =
1

2

(
trB +

∫ 1

0

trA(s)ds

)
(10.48)
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where B ∈ R2×2 and A(t) ∈ R2×2 are defined by

B = Ỹ (0)
(
Gxx[π0− , Q

0
0− ] +GεxQ

0
0−

)
A(t) = Ω(t)Ỹ (t)

(
Fxx(t)[πt, Q

0
t ] + Fεx(t)Q

0
t

)
G.3 The first Lyapunov coefficient d(0) associated to the two dimensional discrete-time

map (10.45) of Lemma 10.2.5 is nonzero.

Then, the equilibrium point at the origin of the nonlinear impulsive delay differential
equation (10.1)–(10.2) undergoes a bifurcation to an invariant cylinder at the critical pa-
rameter ε = 0. Specifically, for |ε| small, there is a unique periodic orbit t 7→ y(t, ε) that
satisfies yt(·, ε) → 0 as ε → 0, in addition to a two-dimensional parameter-dependent in-
variant fiber bundle Σε ⊂ S1 × RCR that exists for d(0)γ(0)ε < 0 and is periodic. The
t-fiber Σε(t) can be locally realized as

Σε(t) = Q0
tσε(t) +O(ε),

where t 7→ σε(t) ⊂ R2 is periodic with its image a curve of diameter O(
√
ε), and continuous

in the Hausdorff metric except at integer times, where it is continuous from the right. Also,
if in addition RCR0

u(t) is trivial, then

• yε is asymtotically stable for γ(0)ε < 0, stable for ε = 0 and unstable for γ(0)ε > 0,
while Σε(t) is attracting for γ(0)ε > 0 provided d(0) < 0;

• yε is asymptotically stable for γ(0)ε < 0 and unstable for γ(0)ε ≥ 0, while Σε(t) is
unstable for γ(0)ε < 0 provided d(0) > 0.

Moreover, the assertions concerning the stability and existence of the periodic orbit y(t, ε)
for ε 6= 0 are true regardless of the nondegeneracy condition G.3.

Proof. The persistence of the equilibrium to a periodic orbit for |ε| small follows by the
remark that the iterated dynamics satisfy, to linear order, u 7→ Ω(1)u at the parameter
ε = 0. As Ω(1) is invertible, the implicit function theorem guarantees the iterated dynamics
posses a unique, small fixed point for 0 < |ε| � 1. Lifting this fixed point into the nonlinear
impulsive delay differential equation, the result is a unique, small periodic orbit.
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The periodic orbit vε(t) is C1 in ε. Near ε = 0, we can infer from (10.37)–(10.38)
that vε(t) = O(ε2). If we perform a time- and parameter-dependent change of coordinates
y = z + vε, (10.37)–(10.38) becomes

ż = Λωz + eΛωtỸ (t)
[
F (t, Q0

t (vε + z) + πtε, ε)− F (t, Q0
t z + πtε, ε)

]
, t 6= k (10.49)

∆z = eΛωkỸ (k)
[
G(Q0

k−(vε + z) + πk−ε, ε)−G(Q0
k−vε + πk−ε, ε)

]
, t = k. (10.50)

Comparing to the iterated map (10.33), the Floquet mulipliers of the trivial equlibrium
z = 0 of (10.49)–(10.50) are precisely the eigenvalues of A(ε) for the iterated map obtained
via the stroboscopic (Poincaré) map for the above dynamical system. The linearization of
the above system is

ż = Λωz + eΛωtỸ (t)
[
DxF (t, Q0

tvε + πtε, ε)Q
0
t

]
z, t 6= k

∆z = eΛωkỸ (k)
[
DxG(Q0

k−vε + πk−ε, ε)Q
0
k−

]
z, t = k,

and it follows from Liouville’s formula for impulsive differential equations [8] that the
product of the Floquet multipliers is

µ1(ε)µ2(ε) = det
(
I + Ỹ (0)DxG(Q0

0−vε(0
−) + π0−ε, ε)Q

0
0−

)
· · ·

× exp

(∫ 1

0

tr
[
eΛωtỸ (t)Dxf(t, Q0

tvε(t) + πtε, ε)Q
0
t

]
dt

)
.

Using Jacobi’s formula and the asymptotic vε(t) = O(ε2), we can readily calculate the
derivative of µ1(ε)µ2(ε) at ε = 0. It then follows that r′(0) is as given by equation (10.48).

It follows that under assumptions G.1 through G.3, the discrete-time dynamical system
defined by the Stroboscopic map Sε : R2 → R2 of (10.49)–(10.50) undergoes a Neimark-
Sacker bifurcation at parameter ε = 0. Inverting the change of variables, the same is true
of the original system (10.37)–(10.38). There is a closed curve σε(0) ⊂ R2 that exists for
d(0)γ(0) < 0, is invariant under Sε, and is attracting and stable for γ(0)ε > 0 and unstable
for γ(0)ε < 0. The fixed point vε(0) of Sε satisfies the stability and attraction properties of
the theorem, and the same is true of t 7→ vε(t). The stability and attraction persist when
considered in the infinite-dimensional context of (10.1)–(10.2) provided RCRu(t) = {0}
because of Theorem 6.8.1.

Let t 7→ Xε(t; 0, w) denote the unique solution of (10.49)–(10.50). Because σε(0) is
invariant under Sε, the fiber bundle

σε = {(t, x(t)) : ∃w ∈ σε(0), x(t) = X(t; 0, w)}
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is invariant under the process Xε and the t-fiber σε(t) is periodic with period 1. The
continuity of t 7→ X(t; 0, w) for t ∈ [k, k + 1) and k ∈ Z leads naturally to the continuity
of fiber t 7→ σε(t). Also, σε(0) has diameter [54] O(

√
ε), and continuity implies the same

of σε(t). Moreover, ||σε(t)|| = O(
√
ε), and we can write σε(t) = vε(t) + σ0

ε (t) for another
closed curve σ0

ε (t) of diameter O(
√
ε).

By invariance of the parameter-dependent centre manifold, it follows from the repre-
sentation (8.3) of solutions on the centre manifold and the description of the matrix Qt

from (10.35) that
Σε(t) = Q0

tσε(t) + πtε+ h̃(t, σε(t), ε, ·) ⊂ RCR
naturally defines an invariant fiber bundle Σ ⊂ R×RCR of the nonlinear impulsive delay
differential equation (10.1)–(10.2), with

Σε =
⋃
t∈R

{t} × Σε(t).

The fiber bundle is periodic in the sense that Σε(t + 1) = Σε(t), and so can be identified
as being a subset of S1 ×RCR. Since h = O(||(u, ε)||2), we can write

Σε(t) = Q0
tσε(t) + πtε+O(||(σε(t), ε)||2)

= Q0
tσε(t) +O(ε+ ||(vε(t) + σ0

ε (t), ε)||2)

= Q0
tσε(t) +O(ε+ |

√
ε+ ε|2)

= Q0
tσε(t) +O(ε).

Finally, the attractivity properties of Σε follow by recognizing that it is a locally attracting
invariant set within the centre manifold and applying Theorem 6.8.1.

A brief discussion of the name cylinder bifurcation we have proposed is due. Because
the system (10.1)–(10.2) is periodic, there is a natural nonautonomous forward process

S : R× (S1 ×RCR)→ S1 ×RCR, S(t, (s, φ)) = (s+ t mod 1, x(s,φ)(t)), t ≥ s

associated to it, where x(s,φ) : [s, s+ α)→ RCR is the unique solution through the initial
condition (s, φ) and defined on a maximal interval of existence. The process satisfies the
semigroup properties S(t, (t, ·)) = IRCR and

S(t, (s, S(s, (u, φ)))) = S(t, (u, φ))

whenever t ≥ s ≥ u. As such, S1 × RCR is the state space of the nonautonomous
dynamical system generated by (10.1)–(10.2); see [21] as well as the monograph [52] for
related definitions.
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Each of the t-fibers Σε(t) of the bifurcating invariant fiber bundle are homeomorphic
to the circle S1. The set

Σε =
⋃
t∈R

{t mod 1} × Σε(t) ⊂ S1 ×RCR

naturally has the structure of a topological manifold with boundary {0} × Σε(0), while
every interior slice {s} × Σε(s) for s 6= 0 has a neighbourhood homeomorphic to the open
cylinder (0, 1) × S1. The nontrivial boundary is the result of t 7→ σε(t) being periodic
but lacking continuity at the integers, being only right-continuous there and generically
possessing a finite jump. The name cylinder bifurcation we propose stems from this fact.
When the impulse effect is trivial, there are no discontinuities in the time evolution of
t 7→ σε(t) and we obtain the classical bifurcation pattern to an invariant torus. Such torus
bifurcations typically occur from periodic orbits in autonomous delay differential equations
or from equilibrium points in periodically forced delay differential equations [76]. Finally,
the generic cylinder bifurcation is as follows, with the genericity conditions being γ(0) 6= 0
and d(0) 6= 0.

Corollary 10.2.1.1 (Generic Cylinder Bifurcation). For any generic impulsive delay dif-
ferential equation (10.1)–(10.2) having at ε = 0 the equilibrium 0 with a single pair of
complex conjugate Floquet exponent λ = ±iω for ω ∈ (0, 2π) and two-dimensional centre
fiber bundle, there is a neighbourhood N of 0 ∈ RCR and a smooth invertible change of
parameters η = η(ε) satisfying η(0) = 0 such that for η > 0, there is an invariant cylinder
in S1 × N that trivializes to S1 × {0} (i.e. to the equilibrium) as η → 0+, together with a
unique periodic orbit in N that persists for all |η| sufficiently small and trivializes to the
equilibrium as η → 0.

10.2.1 Example: impulsive perturbation from a Hopf point re-
sults in a cylinder bifurcation

We will study the effect of linear impulsive perturbations on a scalar delay differential
equation at a Hopf point:

ẋ = −π
2
x(t− 1) + s2(t)x2(t− 1) + s3(t)x3(t), t 6= kT

∆x = εx(t−), t = kT,

where T ≥ 1 is a fixed period and s2(t) and s3(t) are real periodic functions of period
T . When ε = 0, the impulse effect is trivial and the linearization of the associated delay
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differential equation has a pair of simple complex-conjugate eigenvalues ±iπ
2

on the imag-
inary axis, and all other have negative real parts. Thus, perturbing the vector field from
this configuration would generically lead to a Hopf bifurcation if s2 and s3 were constant.
Otherwise, if they were periodic and nonconstant, we would expect a bifurcation to an
invariant torus [76].

One can easily verify that [ cos π
2
(t+ θ) sin π

2
(t+ θ) ] is a basis matrix for RCR0

c(t).
Performing a rescaling of time t 7→ Tt, the result is

ẋ = −Tπ
2
x(t− 1/T ) + σ2(t)x2(t− 1/T ) + σ3(t)x3(t), t 6= k (10.51)

∆x = εx(t−), t = k, (10.52)

where σi(t) = Tsi(t/T ) is periodic with period 1. After this transformation, Φ0
t =

[ cos(π
2
T (t+ θ)) sin(π

2
T (t+ θ)) ] is a the new basis for RCR0

c(t), ±iTπ2 are the Floquet
exponents on the imaginary axis, and we have the representation Φ0

t = Q0
t exp(tΛTπ

2
).

Therefore, ω and Q0
t are

ω =
Tπ

2
, Q0

t (θ) = Q0(θ) =

[
cos

(
Tπ

2
θ

)
sin

(
Tπ

2
θ

) ]
.

Using this information, we can verify the first nondegeneracy conditions G.1 of Theorem
10.2.1. We find that G.1 is equivalent to the condition

T and
3T

4
are not integers.

To check the nondegeneracy condition G.2, we require Ỹ (t) and πt. In 10.3, we compute
Ỹ (t) and find

Ỹ (t) = e−Λωt
4

4 + π2

[
2
π

]
.

The explicit calculation of πt is a much more difficult problem: one must compute the
unique periodic solution π(t) of the linear inhomogeneous equation

ẏ = −Tπ
2
π(t− 1/T ), t 6= k

∆y = 1, t = k.
(10.53)

When T is rational, the periodic solution can be computed explicitly, although the calcu-
lation can be very lengthy. Alternatively, although π(t) is not asymptotically stable, every
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solution y(t) satisfies yt → πt + et as t→∞ for some et ∈ RCRc(t), and since the latter is
completely characterized, one could numerically simulate an arbitrary solution and solve
an appropriate linear equation to compute π(t) to any desired precision. Still another way
is to discretize the monodromy operator and compute an approximation using a discretized
variation-of-constants formula. To demonstrate one of the (in principle) more analytically
tractable cases however, we will focus our attention on a specific choice of T satisfying the
nondegeneracy condition G.1. One of the simplest choices is T = 3

2
. As demonstrated in

10.3, the periodic solution is y(t) = e1 ·S(t−btc), where S : [0, 1)→ R3 is defined piecewise
by the expression

S(t) =


eAtu0, t ∈ [0, 1/3)

eAt(e3 + eA
1
3u0), t ∈ [1/3, 2/3)

eAt(e2 + eA
1
3 e1 + eA

2
3u0), t ∈ [2/3, 1),

A = −3π

4

 0 1 0
0 0 1
1 0 0

 , (10.54)

u0 = (I − eA)−1(e1 + e
1
3
Ae2 + e

2
3
Ae3), (10.55)

where {e1, e2, e3} is the standard ordered basis of R3. The expression is rather cumbersome,
so we do not display it explicitly in terms of elementary functions. A plot (Figure 10.6)
of this periodic solution is provided in 10.3. The nondegeneracy condition G.2, is then
equivalent to

γ(0) =
4

4 + π2

(
1− π

∫ 1

0

σ2(u)e2 · S(u)du

)
6= 0. (10.56)

Being affine linear in the coefficient σ2, the condition γ(0) 6= 0 is indeed generic.

At this stage, we will make a choice for the coefficient σ2. Choosing σ2(t) = 1
2

sin(2πt),
numerical integration yields

γ(0) =
4

4 + π2

(
1− π

∫ 1

0

1

2
sin(2πu)e2 · S(u)du

)
= 0.30854± 10−5, (10.57)

so the nondegeneracy condition G.2 passes and, in particular, Theorem 10.2.1 predicts the
existence of a nontrivial periodic orbit t 7→ y(t, ε) that is locally asymptotically stable for
ε < 0 and unstable for ε > 0.

Next, we calculate the quadratic approximation h2 of the centre manifold. We must
solve the impulsive evolution equation (8.38)–(8.41) subject to the data and constraints
from Lemma 10.2.4. The first step is to calculate the unique periodic solution n0(t) satis-
fying (8.43)–(8.44). The second equation (8.44) is trivial for the present example, so n0(t)
satisfies the inhomogeneous linear delay differential equation

F(t, 0) + ṅ+ 2Λ2n(t) = −3π

4
e−

2
3

Λ2n(t− 2/3) +m(t). (10.58)
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with the functions F(t, θ) and m(t) being given in 10.3.3. We devise a numerical routine
in Section 10.3.2 to approximate the periodic solution. With σ2(t) = 1

2
sin(2πt), a plot

of the result is provided in Figure 10.7. A numerical approximation of the coefficient
vector hΞ

2 is then obtained by substituting the approximation into (8.42), with the integral
being computed by numerical quadrature. Supplementary Animation 4 at the UWSpace
repository [17] provides an animation of the components over two periods t ∈ [0, 2].

Visualizing the quadratic term 1
2
h̃2 of the two-dimensional centre manifold is slightly

more complicated because even though the two independent parameters u1, u2 are real,
h̃2(t, ·)[u1, u2] is an element ofRCR for each t ∈ R. However, since (u1, u2) 7→ 1

2
h̃2(t, θ)[u1, u2]

is a scalar field with a zero at the origin, we can get a sense of the geometry in a neighbour-
hood of this point using the Hessian matrix. To provide a coarse but faithful depiction of
the geometry, we will therefore generate a plot of the eigenvalues of

θ 7→ eig

[
h11

2 (t, θ) 1
2
h12

2 (t, θ)
1
2
h12

2 (t, θ) h22
2 (t, θ)

]
:= eig(H(t, θ)),

for θ ∈ [−1, 0] and animated over two periods t ∈ [0, 2], where eig(H) denotes the eigen-
values of H, and the matrix above is indeed the Hessian of (u1, u2) 7→ h(t, θ)(u1, u2) at the
origin. A visualization is provided by Supplementary Animation 5 [17], and it is clear that
the classification of the origin is generally nonconstant in (t, θ), as there are θ-intervals
where the origin is a saddle, maximum or minimum for fixed t. These intervals themselves
are nonconstant in t. Snapshots of the animation are provided in Figure 10.2.

By fixing a particular θ ∈ [−1, 0], we can generate a contour plot of (u1, u2) 7→
1
2
h̃2(t, θ)[u1, u2] and animate the result over two periods t ∈ [0, 2] to see the transitions

between different topological classifications of the origin. This is done alongside a numeri-
cal computation of the Hessian determinant in Supplementary Animation 6 [17] for θ = 0
to help with identifying the classification transitions. Fixed snapshots from one period of
transitions of the contour plot are provided in Figure 10.3 for the same times used in the
snapshots of the Hessian eigenvalue plot (Figure 10.2).

To compute the Lyapunov coefficient d(0), we will need to fix a choice of σ3. We
choose σ3(t) = −2. For our example, the Lyapunov coefficient was calculated by first
defining a MATLAB function that computes the right-hand side of (10.45) using numerical
quadrature (specifically, MATLAB’s built-in trapezoidal method trapz) and our previously
computed approximation of h̃2. Then, we used numerical differentiation (with iterated
use of gradient) to calculate the associated bilinear and trilinear maps in (10.34), the
normalized right- and left- eigenvectors of A0 and, finally, the Lyapunov coefficient d(0).
With our choices T = 3

2
, σ2(t) = 1

2
sin(2πt) and σ3(t) = −2, our approximation of the
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Figure 10.2: Plots of the function θ 7→ eig(H(t, θ)) for fixed arguments of t ∈ [−1, 0].
From top left counterclockwise, these times are t = 0, t = 0, 1, t = 0.5 and t = 0.6.
Notice the varying topological classification of the origin as θ and t are varied. For each
argument θ, the origin is a local minimum when both curves are above the dashed line, a
local maximum when both curves are below the dashed line, and a saddle point when the
dashed line separates the curves.
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Figure 10.3: Contour plots of (u1, u2) 7→ 1
2
h̃2(t, 0)[u1, u2] for various arguments of t ∈ [0, 1]

coloured with the Viridis colourmap (displayed right) relative to each frame. Yellow (top)
corresponds to more positive levels and purple (bottom) correspond to more negative levels.
From top left clockwise, the plot times are t = 0, t = 0.1, t = 0.5 and t = 0.6, corresponding
to the origin being a saddle point, local minimum, saddle point and local maximum,
respectively. The transition times between the different topological classifications in the
interval [0, 1] are t = 0.0781, t = 0.262, t = 0.576 and t = 0.759.
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Lyapunov coefficient is d(0) = −0.5604. Since γ(0) > 0 and d(0) < 0, Theorem 10.2.1
implies the existence of a locally attracting invariant cylinder when ε > 0 is small.

A standard way to visualize bifurcations to invariant tori in autonomous scalar delay
differential equations is to plot curves of the form (x(t), x(t−r1), x(t−r2)) for two delays r1

and r2 that can be chosen as desired. For periodically forced systems, the same thing can
be done, or one can plot (t mod T, x(t), x(t − r)) and identify the hyperplanes t = 0 and
t = 1− by “wrapping” the figure around a circle of fixed radius embedded in R3 to illustrate
the torus as being a subspace of S1 ×R2. For impulsive delay differential equations of the
form (10.1)–(10.2), one must choose the delays r1 and r2 to be positive integers, otherwise
the curves t 7→ (x(t), x(t− r1), x(t− r2)) will have discontinuities at times other than the
integers.

For our example, we provide both with the illustrative parameter ε = 1
2
. Figure 10.4

is a plot of the attractor in the delayed variables x(t), x(t− 1) and x(t− 2), while Figure
10.5 is a plot of the curve t 7→ (t mod 1, x(t), x(t−1)) wrapped around a cylinder of radius
7 (there is no deep significance to the choice of radius). That is, we plot the curve in the
cylindrical coordinates (r, θ, z) with

r = |7 + x(t)|, θ = 2πt, z = x(t− 1).

In rectangular coordinates, this corresponds to a plot of (xrad,1(t), xrad,2(t), x(t− 1)) with[
xrad,1(t)
xrad,2(t)

]
=

[
cos(2πt)(7 + x(t))
sin(2πt)(7 + x(t))

]
. (10.59)

The simulation is in agreement with Theorem 10.2.1, as the cylinder is indeed present and
attracting for ε > 0.

10.3 Calculations associated to Example 10.2.1

This section is broken up into several parts. We begin with the calculations concerning
the projection Pc(t). Next, we calculate π(t) and the matrices A(t) and B needed in
the nondegeneracy condition γ(0) 6= 0. Following this, we calculate h̃2. We conclude by
checking the nondegeneracy condition d(0) 6= 0.
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Figure 10.4: Left: trajectory through the constant initial condition x0 = 8 of the system
(10.52)–(10.52) from Example 10.2.1 for parameters T = 3

2
, σ2(t) = 1

2
sin(2πt), σ3(t) = −2,

ε = 1
2

in the coordinates x(t), x(t − 1) and x(t − 2), plotted for time t ∈ [0, 80]. Linear
interpolation between left-limits x(k−) and points x(k) for integer times k ∈ Z are shown.
Right: attractor to which the solution in the left pane converges. In both panes, trajectories
are coloured using the Viridis colourmap (displayed right) relative to the argument t mod 1,
so that purple corresponds to integer arguments of t = k ∈ Z, while yellow corresponds to
the left limits t→ k−.
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Figure 10.5: The same trajectories and attractors from Figure 10.4 in the cylindrical coor-
dinates defined in equation (10.59). The same colourmap is also used. In these coordinates
it is much easier to visualize the cylindrical topology of the attractor as well as the dis-
continuity along the half-plane {xrad,2(t) = 0, xrad,1(t) ≥ 0} corresponding to the times
t = k ∈ Z. If the impulse effect were replaced by a parameter-dependent continuous-time
periodic linear forcing in the vector field, the structure above would generically be replaced
by that of a torus, and the aforementioned half-plane discontinuity would not be present.
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The projection Pc(t) and matrix Ỹ (t)

Conveniently, since Pc(t) is calculated with respect to the linearization at ε = 0 and this
system is autonomous, we have V 0

t = V 0
0 for all t ∈ R, and the projection

Pc(t) =
1

2πi

∫
Γ

(zI − V 0
0 )−1dz

is constant. Precisely, V 0
0 is the monodromy operator associated to the autonomous system

ẋ = −Tπ
2
x(t− 1/T ). (10.60)

To compute the vector Y (t), we remark that because Pc(t) = Pc is constant and Φ0
t =

Q0e
Λωt for ω = Tπ

2
, we have the representation Y (t) = e−ΛωtY (0), so it suffices to compute

Y (0). Since Φ0 = Q0, Y (0) satisfies the equation Pcχ0 = Q0Y (0). Q0 is precisely the basis
matrix for the centre eigenspace of the infinitesimal generator associated to the semigroup
of (10.60), so we can formally calculate Pcχ0 using adjoint-based methods; see [37, 39]. A
basis matrix for the centre eigenspace of the infinitesimal generator of the formal adjoint
of (10.60) is Ψ(θ) = [cos(Tπ

2
θ) − sin(Tπ

2
θ) ]ᵀ, so applying the usual bilinear form,

〈Ψ,Φ0〉 = Ψ(0)Φ0(0)− Tπ

2

∫ 0

−1/T

Ψ(θ + 1/T )Φ0(θ)dθ

=

[
1 0
0 0

]
− π

2

∫ 0

−1

[
cos(π

2
(θ + 1)) cos(π

2
θ) cos(π

2
(θ + 1)) sin(π

2
θ)

− sin(π
2
(θ + 1)) cos(π

2
θ) − sin(π

2
(θ + 1)) sin(π

2
θ)

]
dθ

=

[
1/2 π/4
π/4 −1/2

]
.

Normalizing Ψ with respect to Φ0, it follows that the projection Pcχ0 is given by

Pcχ0 = Φ0〈Ψ,Φ0〉−1〈Ψ, χ0〉

=
[

cos(Tπ
2
θ) sin(Tπ

2
θ)
] [ 8

4+π2
4π

4+π2

4π
4+π2 − 8

4+π2

] [
1
0

]
= Φ0(θ)

4

4 + π2

[
2
π

]
.

Therefore, Ỹ (t) = e−Λωt 4
4+π2 [ 2 π ]ᵀ, as claimed.
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Figure 10.6: The periodic solution π(t) = y0(t) (solid black line) and the two shifts y1(t) and
y2(t) (black dashed line and dotted lines, respectively), plotted over one period t ∈ [0, 1).

10.3.1 Calculation of π(t) and the matrices A(t) and B

Now, we consider only the case T = 3
2
. To calculate π(t) we define the shifts y0(t) = y(t),

y1(t) = y(t− 2/3) and y2(t) = y(t− 4/3). Assuming y is periodic with period 1, it follows
that the shifts satisfy the impulsive differential equation

ẏj = −3π

4
yi+1, t 6= k +

2

3
j,

∆yj = 1, t = k +
2

3
j,

for j = 0, 1, 2 and we define y3 = y0. The sequence of impulses is periodic with period 1,
and the impulse times in the interval (0, 1] are 1

3
, 2

3
and 1. If u0 is a given initial condition

at time t = 0, it is easy to check that the solution at time t = 1 is given by

~y(1) = e1 + e
1
3
A(e2 + e

1
3
A(e3 + e

1
3
Au0)).

Imposing the periodicity constraint ~y(1) = u0 and solving for u0 yields the expression
(10.55), which is well-defined because 1 is not an eigenvalue of A. Since π(t) is the unique
periodic solution of (10.53), there is exactly one periodic solution of the above inhomo-
geneous impulsive system. Thus, its first component must coincide with π(t), thereby
proving our claim. Figure 10.6 is a plot of the periodic solution π(t) together with the
shifted components.
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To check the nondegeneracy condition G.2, we calculate each of B and A(t). Since
Gxx = 0, Gεxφ = φ(0) and Q0

0− = [ 1 0 ] we readily compute

B = Ỹ (0)(Gxx[π0− , Q
0
0− ] +GεxQ

0
0−)

=
4π

2

[
2
π

] [
1 0

]
=

4

4 + π2

[
2 0
π 0

]
.

On the other hand, we have Fxx(t)[φ, ψ] = 2σ2(t)φ(−1/T )ψ(−1/T ), Fxε = 0 andQ0
t (−1/T ) =

[ 0 −1 ]. Since Ω(t)Ỹ (t) = Ỹ (0) and we have chosen T = 3
2
, we have

A(t) = Ω(t)Ỹ (t)(Fxx(t)[πt, Q
0
t ] + FeεxQ

0
t )

=
4

4 + π2

[
2
π

] (
2σ2(t)π(t− 2/3)[ 0 −1 ]

)
= −8σ2(t)π(t− 2/3)

4 + π2

[
0 2
0 π

]
.

Taking into account that π(t−2/3) = y1(t) = e2·S(t), one obtains (10.56) after substituting
B and A(t) into (10.48).

10.3.2 Calculation of n0(t): a numerical routine

The routine we propose here could certainly be adapted to more general settings, and our
notation will at times suggest at a more general approach. Our first step is to compute a
periodic solution satisfying (10.58). To do this, we integrate the delay differential equation
from the constant initial condition 0 ∈ R3 until convergence is achieved to a superposition
of some periodic solution n0(t) of period one, together with a linear combination of periodic
solutions of period 8

3
determined by the eigenvalues ±3π

4
i of the homogeneous equation

ṅ+ 2Λ2n(t) = −3π

4
e−

2
3

Λ2n(t− 2/3). (10.61)

Symbolically, the solution s(t) satisfying s(0) = 0 is simulated until the numerical conver-
gence s(t)→ s̃(t) is achieved with

s̃t ∈ n0
t +RCR†c(t), (10.62)
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where RCR†c(t) is the centre fiber bundle associated to the homogeneous equation for
(10.61). That this decomposition can be realized in the limit is due to Lemma 10.2.4.

Next, we construct an approximate basis for RCR†c(t). This is done by integrating the
homogeneous equation associated to (10.58) from a collection {x1

0, . . . , x
K
0 } of arbitrary

linearly independent initial conditions xi0 ∈ RCR for i = 1, . . . , K, with the integration
performed until the associated solutions si(t) numerically converge to some s̃i(t) satisfying
s̃it ∈ RCR†c(t). That this convergence is attainable essentially follows be Lemma 10.2.4.

Having computed an approximate basis {s̃1
t , . . . , s̃

K
t } for RCR†c(t), our goal is to extract

n0
t from s̃t in the decomposition (10.62). To this end, we define the shifts

v = s̃t − s̃t−1, vi = s̃it − s̃it−1, i = 1, . . . , K.

In an idealized sense, we have v, vi ∈ RCR†c(t), so that v =
∑K

i=1 yivi for some real constants
yi. In practice this equality is not attainable, so instead we search for a best approximation
of v in the finite-dimensional subspace W = span{v1, . . . , vK}, where we now interpret v
and W as being in L2 = L2([−1, 0],R3). The best approximation is

∑K
i=1 yivi with the

vector ~y = (y1, . . . , yK) ∈ RK being the unique solution of

M~y = b, Mij = 〈vi, vj〉, bi = 〈v, vi〉, (10.63)

where 〈f, g〉 =
∫ 0

−1
f(t) · g(t)dt the standard inner product on L2. It follows that the

function

n0(t) = s̃(t)−
K∑
i=1

yis̃i(t) (10.64)

is the best approximation to a periodic solution of (10.58), relative to the basis W , in the
sense that the L2 periodicity error

e(n0
t ) = ||n0

t − n0
t−1||L2

is minimized.
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10.3.3 Calculation of h2

Using equation (8.34), we find that F(t, θ) and m(t) are, in terms of an arbitrary σ2(t),

F(t, θ) =
4

4 + π2

(
2 cos(

3π

4
θ) + π sin(

3π

4
θ)

)
2σ2(t)

 0
0
1

 (10.65)

m(t) = 2σ2(t)

 0
0
1

+
3π

4
e−

4
3

Λ2

∫
−2/3

e−
4
3

Λ2sF
(
t− s− 2

3
, s

)
ds, (10.66)

Λ2 =
3π

4

 0 −1
2

0
1 0 −1
0 1

2
0

 (10.67)

We implemented the numerical routine from Section 10.3.2 with K = 6 in MATLAB
R2018a. All numerical integration of the delay differential equations was done using dde23

with default error tolerances. The random initial history functions xi0 for i = 1, . . . , 6 were
produced using separate calls to randn(3,1) at each point t ∈ [−2/3, 0] requested by the
solver. With σ2(t) = 1

2
sin(2πt), the result was the periodic solution plotted in Figure 10.7

with L2 periodicity error e(n0
t ) < 3 · 10−3.
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Figure 10.7: The unique periodic solution n0 = (n0
1, n

0
2, n

0
3) ∈ R3 of the inhomogeneous

linear system (10.58) computed using the numerical routine from 10.3.2. The solid black
curve is the plot of n0

1(t), while the dashed and dotted curves are those of n0
2(t) and n0

3(t)
respectively.
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Chapter 11

Analysis of a SIR model with pulse
vaccination and temporary immunity

The content of this chapter appears in “Analysis of a SIR model with pulse vaccination
and temporary immunity: stability, bifurcation and a cylindrical attractor” by Church and
Liu [22].

11.1 Background and model formulation

Pulse vaccination is a disease control policy under which at certain times, a portion of the
population is vaccinated en-masse. The SIR model with pulse vaccination was first intro-
duced by d’Onofrio in 2002 [28]. It has been argued empirically and verified analytically
that pulse vaccination might be more effective than continuous vaccination in preventing
epidemics that exhibit seasonality, such as measles [1, 81]. Since then, the impact on pulse
vaccination has been studied in ever more complex models of disease transmission. For
instance, finite infectious periods [98], saturation incidence with latent period and immune
period [32], incubation period [66], force of infection by distributed delay [33], nonlinear
vaccination [106], quarantine measures [72] and stochastic effects [88] have been considered.

Dynamical analysis of these pulsed vaccination models often include stability criteria
for the disease-free equilibrium or periodic orbit, effectively providing a proxy for the basic
reproduction number. However, due to the presence of the impulse effect, establishing
the existence of an endemic periodic orbit is much more difficult. When there are no
delayed terms, methods of bifurcation theory for discrete time systems have been used to
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prove the existence of endemic periodic orbits from bifurcations at disease-free states; see
[70, 89, 102, 106, 104] for some recent examples. In contrast, when delays are present,
most analytical studies prove only permanence when R0 > 1, which means that the disease
persists. Numerical simulations are needed to obtain further detail, and this provides only
a heuristic description of the orbit structure at a possible bifurcation point. We refer the
reader to [32, 66, 72, 98] for examples.

Restricting to SIR models without pulse vaccination specifically, there are many papers
that consider various forms of population dynamics and their interplay with delayed effects.
Since endemic equilibrium points are often analytically available, Hopf bifurcations can
often be studied analytically without the aid of numerical methods. One may consult
[29, 49, 50, 62, 95] for some recent examples of this.

Our goal in this chapter is to demonstrate the power of the centre manifold theory
and bifurcation theory developed in the previous chapters as they apply to a concrete
infectious disease model (this is an Applied Mathematics thesis after all; there should be
an application). Our starting point is the model of Kyrychko and Blyuss [56]:

Ṡ = µ− µS − ηf(I(t))S(t) + γI(t− τ)e−µτ

İ = ηf(I(t))S(t)− (µ+ γ)I(t)

Ṙ = γI(t)− γI(t− τ)e−µτ − µR(t).

Here, f(I) is a general nonlinear incidence rate, infected individuals clear their infection
at rate γ and acquire temporary immunity of length τ , η is a recruitment rate and µ is a
natural death rate, with birth rate scaled accordingly so that N(t) = S(t) + I(t) + R(t)
approaches unity as t → ∞. The incidence rate is assumed to satisfy the properties:
f(0) = 0, f ′(0) > 0, f ′′(0) < 0 and limI→∞ f(I) = c < ∞. Kyrychko and Blyuss [56]
proved global stability of the disease-free equilibrium when R0 < 1 for arbitrary nonlinear
incidence satisfying the previous conditions, and considered the existence and stability of
an endemic equilibrium for the particular incidence f(I) = I/(1 + I). They numerically
observed Hopf bifurcations at this equilibrium upon varying the immunity period τ . Soon
after, Jiang and Wei [50] proved that the endemic equilibrium may indeed undergo a Hopf
bifurcation, by taking η as a bifurcation parameter.

We here extend the model of Kyrychko and Blyuss to include pulse vaccination. To do
this, we make the following assumptions.

1) At specific instants of time tk for k ∈ Z, any individuals that received their vaccine at
time tk− τ and are still alive lose their immunity and re-enter the susceptible cohort,
at which point a fraction v ∈ [0, 1) of the the total susceptible cohort is vaccinated.
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2) Vaccinated individuals are immune to infection for a period τ (the same immunity
period as having recovered from infection) and are subject to the same natural death
rate µ.

3) The sequence of vaccination times is periodic with shift of τ : there exists q > 0 such
that tk+q = tk + τ for all k ∈ Z.

The interpretation of 3) is that the period of the pulse vaccination schedule is synchronized
with the immunity period. This seems reasonable for seasonal flu epidemics, for example,
provided most of the pulse vaccination times are clustered around the beginning of flu
season.

Proposition 11.1.1. With assumptions 1) through 3) in place, the pulse vaccination model
takes the following form,

Ṡ = µ− µS − ηf(I(t))S(t) + γI(t− τ)e−µτ , t 6= tk (11.1)

İ = ηf(I(t))S(t)− (µ+ γ)I(t), t 6= tk (11.2)

∆S = −vS(t−) + vS(t− τ)e−µτ , t = tk, (11.3)

where the recovered (R) component is decoupled and has been neglected.

Proof (Derivation). Suppose Vk is the number of individuals that received a vaccine at
time tk − τ . By assumption 3), Vke

−µτ of them are still alive at time tk. Thus, upon
transferring into the susceptible cohort by assumption 1), the total number of susceptible
individuals becomes Sk := S(t−k ) +Vke

−µτ . A fraction v of these individuals are vaccinated
at time tk, so there are (1− v)Sk remaining. We can write the latter as

S(tk) = (1− v)Sk = S(t−k )− vS(t−k ) + (1− v)Vke
−µτ . (11.4)

Now, if the total number of susceptible individuals (including those that lost their immu-
nity) at time tk−τ is denoted S−k , then by 3) we have S(tk−τ) = (1−v)S−k and Vk = vS−k ,
which together imply Vk = v

1−vS(tk − τ). Substituting into (11.4), we have that at time
t = tk,

∆S = S(tk)− S(t−k )

= −vS(t−k ) + (1− v)Vke
−µτ

= −vS(t−k ) + vS(tk − τ)e−µτ ,
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which is precisely equation (11.3). Similarly, the number of vaccinated individuals V
satisfies

V̇ = −µV, t 6= tk

∆V = vS(t−k )− vS(tk − τ)e−µτ , t = tk.
(11.5)

Note that this count of the number of vaccinated individuals is different than the one
appearing in Section 11.1.1. In the latter, the component Vj is introduced to circumvent
the overlap condition and it does not explicitly track deaths.

It is known [50] that the model of Kyrychko and Blyuss can exhibit Hopf bifurcation.
Numerically, it appears as though the bifurcating periodic orbit may be globally (exclud-
ing the other two equilibria) asymptotically stable. From Section 10.2, we know that Hopf
points generically result in cylinder bifurcations when impulses are present. The ramifica-
tions of this result to the present model are that, in the presence of pulse vaccination, we
expect a bifurcation from an endemic periodic solution to an invariant cylinder. Verifying
this hypothesis is our primary goal.

11.1.1 Vaccinated component formalism

We have indicated that it is our goal to complete a bifurcation analysis on the system
(11.1)–(11.3). However, there are some technical difficulties associated with this endeavor
because the overlap condition is not satisfied, since each of tk − τ is an impulse time and
equation (11.3) contains delayed terms. While the failure of the overlap condition does not
complicate stability analysis, it does complicate the bifurcation analysis. To remedy this,
we will at times instead consider the following modification of model (11.1)–(11.3):

ẋ = µ− µx− ηf(y(t))x(t) + γy(t− τ)e−µτ , t 6= tk (11.6)

ẏ = ηf(y(t))x(t)− (µ+ γ)y(t), t 6= tk (11.7)

V̇j = 0, t 6= tk, (11.8)

∆x = −vx(t−) + (1− v)Vj(t
−)e−µτ , t = tj+qk (11.9)

∆Vj = vx(t−)− (1− ve−µτ )Vj(t−), t = tj+qk. (11.10)

In the above impulsive delay differential equation, j ranges from 0 to q − 1 where q is the
period of the sequence of impulse times as defined in assumption 3). Taking note that
tj+qk = tj+q(k−1) + τ and V is constant except at impulse times where it is continuous from
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the right, we see that for t = tj+qk,

(1− v)Vj(t
−)e−µτ = (1− v)Vj(t− τ)e−µτ

= (1− v)[vx((t− τ)−) + ve−µτVj((t− τ)−)]

= v[(1− v)x((t− τ)−) + (1− v)Vj((t− τ)−)e−µτ ]

= vx(t− τ).

Substituting the above into the jump condition for x, the result is

∆x = −vx(t−) + (1− v)Vj(t
−)e−µτ = −vx(t−) + vx(t− τ)e−µτ .

This is precisely the same functional form as the jump condition (11.3) for the original
model. Since the continuous-time dynamics are identical for both models, we can analyze
bifurcations in (11.1)–(11.3) by equivalently studying bifurcations in the model (11.6)–
(11.10) with explicit vaccinated components.

11.2 Disease-free periodic solution

In this section we will complete a thorough investigation of the local properties of disease-
free states, namely their stability and bifurcations. For part of this section, the number
of vaccination moments q per period will remain an arbitrary natural number. However,
we will eventually specialize to the case where q = 1. Without loss of generality, we will
assume t0 = 0.

11.2.1 Existence and stability

When there is no disease – that is, on the invariant subspace {(S, I) : I = 0} – the nontrivial
dynamics are determined solely by the linear, nonhomogeneous impulsive system

ż = −µz + µ, t 6= tk (11.11)

∆z = −vz(t−) + vz(t− τ)e−µτ , t = tk. (11.12)

By the variation of constants formula (Theorem 3.3.1), every solution z(t) passing through
an initial condition φ ∈ RCR at time t = 0 can be written

zt = U(t, 0)φ+

∫ t

0

U(t, s)χ0µds,
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where the integral is a weak integral and U(t, s) is the evolution family associated to the
homogeneous equation

ẇ = −µw, t 6= tk (11.13)

∆w = −vw(t−) + vw(t− τ)e−µτ , t = tk. (11.14)

Lemma 11.2.1. Suppose the trivial solution of the homogeneous equation (11.13)–(11.14)
is exponentially stable. Then, the system (11.1)–(11.3) has a unique disease-free periodic
solution (S̃, 0), with period τ .

Proof. From the variation of constants formula, define the linear operator

V : φ 7→ U(τ, 0)φ+

∫ τ

0

U(τ, s)χ0µds

on RCR. If the trivial solution of (11.13)–(11.14) is exponentially stable, then ||U(t, s)|| ≤
Ke−α(t−s) for some α > 0 and K ≥ 1, for all t ≥ s. The periodicity U(t+τ, s+τ) = U(t, s)
of the evolution family, continuity and the cocycle property U(t, s) = U(t, v)U(v, s) for
s ≤ v ≤ t implies that the nth iterate of V satisfies the inequality

||V nφ− V nψ|| ≤ Ke−ατn||φ− ψ||.

Consequently, V : RCR → RCR is an eventual contraction and has a unique fixed point,
which we denote φv. From the variation of constants formula, it follows that with

t 7→ S̃(t, v) = [U(t, 0)φv](0) +

∫ t

0

[U(t, s)χ0µ](0)ds,

(S̃, 0) is the claimed disease-free periodic solution.

Lemma 11.2.2. The trivial solution of the homogeneous equation (11.13)–(11.14) is ex-
ponentially stable.

Proof. To verify the exponential stability of the trivial solution, it is enough by Corollary
4.5.1.1 for us to show that all Floquet exponents have negative real part. Let w(t) = φ(t)eλt

be a solution of (11.13)–(11.14) with φ periodic. Substituting this ansatz into the dynamical
system, using the periodicity condition φ(t) = φ(t − τ) and cancelling exponentials, we
arrive at the following impulsive differential equation for φ:

φ̇+ λφ = −µφ, t 6= tk (11.15)

∆φ = −vφ(t−) + vφ(t)e−(µ+λ)τ , t = tk. (11.16)
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The second equation is an implicit jump condition, but we can easily rearrange it to obtain
the explicit condition

φ(tk) =
1− v

1− ve−(µ+λ)τ
φ(t−k ).

Calculating the solution of the above impulsive differential equation at time τ given an
initial condition at time t = 0, one obtains

φ(τ) = e−(µ+λ)τ

(
1− v

1− ve−(µ+λ)τ

)q
φ(0) := D(λ)φ(0).

φ is periodic provided φ(τ) = φ(0), so we are left with describing the location of the
solutions of the transcendental equation D(λ) = 1. Defining z = e−λτ , it follows that λ is
a solution of D(λ) = 1 if and only if z is a solution of

0 = f(z) + g(z),

f(z) = 1,

g(z) = −ze−µτ
(

1− v
1− ve−µτz

)q
.

We will show that |g(z)| < |f(z)| on the unit circle |z| = 1. We have

|g(z)| = e−µτ
(

1− v
|1− ve−µτz|

)q
≤ e−µτ

(
1− v

|1− |ve−µτz||

)q
= e−µτ

(
1− v

1− ve−µτ

)q
≤ e−µτ < 1 = |f(z)|,

as claimed. By Rouché’s theorem, the equation f(z) + g(z) = 0 has no solutions satis-
fying |z| ≤ 1. Consequently, there are no Floquet exponents λ satisfying the inequality
|e−λτ | ≤ 1. We conclude that all Floquet exponents have negative real part and the proof
is complete.

As a consequence of Lemma 11.2.1 and Lemma 11.2.2, we are guaranteed a unique
disease-free periodic solution that, in the absence of infection, is globally exponentially
stable.

Corollary 11.2.0.1. The model (11.1)–(11.3) has a unique disease-free periodic solution
t 7→ (S̃(t, v), 0) of period τ . Restricted to the disease-free subspace D0 = {(S, I) : I = 0},
this periodic solution is globally exponentially stable.
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Next, we will determine the stability of this periodic solution in the nonlinear system
(11.1)–(11.3). Introduce the basic reproduction number

R0 =
ηf ′(0)

τ(γ + µ)

∫ τ

0

S̃(t, v)dt. (11.17)

Note that if one denotes the average of S̃ over the interval [0, τ ] by [S̃], then one can
equivalently write the basic reproduction number in the more suggestive form

R0 =
ηf ′(0)[S̃]

γ + µ
.

Then, the interpretation is that R0 is the product of the average number of susceptibles,
multiplied by the small-infection (i.e. near I = 0) incidence rate, divided by the aggregate
rate of leaving the infected class through death or clearance of the infection.

Lemma 11.2.3. R0 = 1 is an epidemiological threshold: if R0 < 1, the disease-free periodic
solution is locally asymptotically stable, while if R0 > 1 it is unstable.

Proof. The linearization at (S̃, 0) produces the linear homogeneous impulsive system

u̇1 = −µu1(t)− ηf ′(0)S̃(t, v)u2(t) + γe−µτu2(t− τ), t 6= tk

u̇2 = ηf ′(0)S̃(t, v)u2(t)− (γ + µ)u2(t), t 6= tk

∆u1 = −vu1(t−) + vu1(t− τ)e−µτ , t = tk.

Notice that the second equation is decoupled from the first. Taking an ansatz Floquet
eigensolution u(t) = φ(t)eλt, we can examine the second component independently. Indeed,
φ = [ φ1 φ2 ]ᵀ satisfies

φ̇2 + λφ2 = ηf ′(0)S̃(t, v)φ2 − (γ + µ)φ2.

If φ2 6= 0, then as φ is assumed to be periodic with period τ , the only possible Floquet
exponent in this case is

λ0 = −(γ + µ) +
ηf ′(0)

τ

∫ τ

0

S̃(t, v)dt. (11.18)

Conversely, if φ2 = 0, then φ1 and λ must satisfy (11.15)–(11.16). But it is already known
that all Floquet exponents λ associated to this equation have negative real part; see Lemma
11.2.2. Consequently, the Floquet spectrum includes the special Floquet exponent λ0 and
the remainder with strictly negative real part. The equilibrium is locally asymptotically
stable provided all Floquet exponents have negative real part, and is unstable if at least
one has positive real part; see Theorem 9.4.1. Since λ0 is real and the others are guaranteed
to have negative real part, we obtain the conclusion of the lemma by noticing that λ0 < 0
is equivalent to R0 < 1 and that λ0 > 0 is equivalent to R0 > 1.
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11.2.2 Transcritical bifurcation to endemic periodic solution

Before we can study bifurcations, we must establish the existence of a bifurcation point.

Lemma 11.2.4. Consider the critical Floquet exponent λ0 = λ0(v) as defined in equation
(11.18). λ0 is strictly decreasing. As consequence, if λ0(0)λ0(1) ≤ 0, there is a unique
v∗ ∈ [0, 1] such that λ0(v∗) = 0; that is, a critical vaccination coverage v∗ at which R0 = 1.

Proof. Note that, given the explicit form of λ0, it is enough to prove that v 7→ S̃(t, v) is
decreasing for all t ∈ [0, τ ]. To accomplish this, we recall that S̃ is the unique periodic
solution of (11.11)–(11.12). By a similar argument to the proof of Lemma 11.2.2, we can
show that the jump condition can be simplified, and that S̃ is in fact the unique periodic
solution of the impulsive differential equation without delay

ż = µ− µz, t 6= tk

∆z = (ρ(v)− 1)z(t−), t = tk,

where ρ(v) = (1 − v)/(1 − ve−µτ ). If one denotes t 7→ z(t; z0, v) the unique solution of
the above impulsive differential equation for vaccination coverage v and initial condition
z(0; z0, v) = z0, it is not difficult to show that dρ

dv
< 0 and, subsequently, that ∂z

∂v
≤ 0 for

all t ≥ 0. Also, one has ∂z
∂z0

> 0 for all t ≥ 0. Using the variation of constants formula for
impulsive differential equations, routine calculations yield

z(τ ; z0, v) = e−µτρ(v)q

[
z0 +

q∑
i=1

ρ(v)1−i(eµti − eµti−1)

]
,

from which we can compute the initial condition S̃(0, v) of the disease-free periodic orbit,
by solving the equation z(τ ; S̃(0, v), v) = S̃(0, v). The result is

S̃(0, v) =
e−µτ

1− ρ(v)qe−µτ

q∑
k=1

ρ(v)q+1−i(eµτi − eµτi−1),

which indeed satisfies d
dv
S̃(0, v) < 0. Since S̃(t, v) = z(t; S̃(0, v), v), one may conclude

from the chain rule that d
dv
S̃(t, v) < 0 for all t ∈ [0, τ ], so v 7→ λ0(v) is decreasing. The

conclusions about the critical vaccination coverage v∗ follow by the intermediate value
theorem.

196



There are several choices we can make for the bifurcation parameter. Mathematically
the easiest ones to deal with are the model parameters γ, µ and η, as these appear linearly
in the model and in the expression for the important Floquet exponent λ0 in equation
(11.18). Biologically, a natural choice is the vaccine coverage, v, since this is a parameter
that can in principle be controlled. It is more difficult to state closed-form results for
bifurcations in terms of the vaccine coverage, so for this reason we will simplify matters
and assume that q = 1, so there is one vaccination pulse per period. That is, the sequence
of impulse times is precisely tk = kτ for k ∈ Z. Then, from the previous section, we can
explicitly calculate

S̃(t, v) = 1− ve−µ[t]τ , (11.19)

which implies that S̃(τ−, v) = 1 − ve−µτ and S̃(0, v) = 1 − v. We can also explicitly
calculate the critical vaccination coverage where R0 = 1. We find

v∗ =
µτ

1− e−µτ

(
1− γ + µ

ηf ′(0)

)
. (11.20)

As a consequence, we have the following preliminary stability result.

Lemma 11.2.5. If there is q = 1 vaccination pulse per period, the disease-free periodic
solution is locally asymptotically stable provided v > v∗, and unstable if v < v∗.

We will now pass to the equivalent system with vaccinated component (11.6)–(11.10).
Define the changes of variables and parameters

X + S̃(·, v) = x, V +
vS̃(τ−, v)

1− ve−µτ
= V0, Y = y, ε+ v∗ = v.

The result is the following system of impulsive delay differential equations:

Ẋ = −µX(t) + ηf(Y )
[
S̃(t, v∗ + ε) +X

]
+ γY (t− τ)e−µτ , t 6= kτ

Ẏ = ηf(Y )
[
S̃(t, v∗ + ε) +X

]
− (µ+ γ)Y (t), t 6= kτ

V̇ = 0, t 6= kτ

ε̇ = 0, t 6= kτ

∆X = −(v∗ + ε)X(t−) + (1− (v∗ + ε))e−µτV (t−), t = kτ

∆Y = 0, t = kτ

∆V = (v∗ + ε)X(t−)− (1− (v∗ + ε)e−µτ )V (t−), t = kτ

∆ε = 0, t = kτ.

(11.21)
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Notice that (X, Y, V, ε) = (0, 0, 0, ε) is an equilibrium whenever v∗ + ε ∈ [0, 1]. The change
of variables has had the effect of translating the disease-free periodic solution to the origin.

The next step is to linearize the above system at a candidate nonhyperbolic equilibrium.
The origin is expected to be nonhyperbolic with a pair of Floquet exponents with zero
real part, with the first zero exponent resulting from the nonhyperbolicity of S̃ at the
critical vaccination coverage v = v∗, and the second zero exponent coming from the trivial
dynamics equation for the parameter ε. The result is

u̇1 = −µu1(t)− ηf ′(0)S̃(t, v∗)u2(t) + γu2(t− τ)e−µτ , t 6= kτ

u̇2 = ηf ′(0)S̃(t, v∗)u2(t)− (γ + µ)u2(t), t 6= kτ

u̇3 = 0, t 6= kτ

u̇4 = 0, t 6= kτ

∆u1 = −v∗u1(t−) + (1− v∗)e−µτu3(t−), t = kτ

∆u2 = 0, t = kτ

∆u3 = v∗u1(t−)− (1− v∗e−µτ )u3(t−), t = kτ

∆u4 = 0, t = kτ.

(11.22)

Before we characterize the centre fiber bundle, we introduce a few convenience functions
that will be useful both in this and subsequent sections. Define

β(t, s;α) = exp

(∫ t

s

(−γ − µ+ ηf ′(0)S̃(u+ α, v∗))du

)
.

Then define the matrix Z1(t, s; z, α) ∈ C2×2 for t ≥ s and z ∈ C \ {0} by

Z1(t, s; z, α) =

[
e−µ(t−s) ∫ t

s
e−µ(t−u)(−ηf ′(0)S̃(u+ α, v∗) + 1

z
γe−µτ )β(u, s;α)du

0 β(t, s;α)

]
.

Then, set Z(t, s; z, α) = diag(Z1(t, s; z, α), I2×2). Also define the matrix B ∈ R4×4:

B =


1− v∗ 0 (1− v∗)e−µτ 0

0 1 0 0
v∗ 0 v∗e−µτ 0
0 0 0 1

 .
Finally, the function β satisfies a few useful identities. They are clear from its definition:

β(t, s;α) = β(t, s, [α]τ ),

β(t, s;α) = β(t+ τ, s+ τ ;α),

β(t, s;α) = β(t+ α, s+ α; 0).
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For convenience, we abuse notation and write β(t) = β(t, 0; 0).

Since we have already determined that the dominant Floquet exponent of (11.1)–(11.3)
at the disease-free periodic solution must be real – see Lemma 11.2.3 – we take the ansatz
that u(t) is periodic with period τ . As a consequence, u2(t − τ) = u2(t), and (11.22)
reduces to an ordinary impulsive differential equation. If we denote X(t, s) the Cauchy
matrix of the resulting system, then M = X(τ, 0) is a monodromy matrix. Specifically,
M = BZ(τ, 0; 1, 0);

M =


(1− v∗)e−µτ (1− v∗)κ (1− v∗)e−µτ 0

0 1 0 0
v∗e−µτ v∗κ v∗e−µτ 0

0 0 0 1

 , κ = eᵀ1Z1(τ, 0; 1, 0)e2.

The eigenvalues are 1, 0 and e−µτ . The periodic solutions are generated by the two-
dimensional generalized eigenspace associated to the eigenvalue 1. The eigenvectors are
m1 =

[
(1− v∗)κ 1− e−µτ v∗κ 0

]ᵀ
and m2 = e4. As consequence, we can completely

describe the centre fiber bundle.

Lemma 11.2.6. The centre fiber bundle, RCRc, associated to the nonhyperbolic equilib-
rium 0 ∈ R4 of the system (11.21), is two-dimensional. A basis matrix Φt, whose columns
form a basis for the t-fiber RCRc(t), is periodic with period τ and is given explicitly by

Φt(θ) = Z([t+ θ]τ , 0; 1, 0)


(1− v∗)κ 0
1− e−µτ 0
v∗κ 0
0 1

 :=

[
Φt,1(θ) 03×1

0 1

]
,

where Φt,1(θ) ∈ R3.

Another ingredient necessary in the centre manifold reduction concerns the projection
of χ0 onto the centre fiber bundle. Specifically, if Pc(t) : RCR → RCRc(t) denotes the
spectral projection, then there exists a unique Y (t) ∈ R2×4 such that Pc(t)χ0 = ΦtY (t). It
is characterized as the solution of the equation

ΦtY (t) =
1

2πi

∫
Γ1

(zI − Vt)−1χ0dz (11.23)

where Vt denotes the monodromy operator associated to the linear delay impulsive system
(11.22), and Γ1 is a simple counterclockwise-oriented closed contour in C such that 1 is
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the only eigenvalue of Vt contained in the closure of its interior. We must compute Y (t).
Therefore, to proceed we solve the equation

zy − Vty = χ0ξ (11.24)

for y ∈ RCR, with ξ ∈ {e1, e2, e3, e4}. Our first task will be to obtain a representation of
Vty. We start by repartitioning the dynamics of (11.22) in terms of matrices. This system
can equivalently written

u̇ = A(t)u(t) + f(t), t 6= kτ

∆u = (B − I)u(t−), t = kτ,

A(t) = −µ(E11 + E22) + ηf ′(0)S̃(t, v∗)(−E21 + E12)− γE22,

with standard basis matrices Eij = eie
ᵀ
j ∈ R4×4 and f(t) = γe−µτE12u(t − τ). Note that

we have treated the delayed term as a nonhomogeneous forcing. If U0(t, s) denotes the
Cauchy matrix associated to the (formally) homogeneous equation (without delays), we
can use the variation of constants formula to write

u(t) = U0(t, s)u(s) +

∫ t

s

U0(t, r)γe−µτE12u(r − τ)dr.

Since Vty(θ) = u(t + τ + θ; t, y) where u(·; t, y) denote the solution with initial condition
(t, y) ∈ R×RCR, we obtain the representation

Vty(θ) = U0(t+ τ + θ, t)y(0) +

∫ τ+θ

0

U0(t+ τ + θ, t+ r)γe−µτE12y(r − τ)dr (11.25)

for θ ∈ [−τ, 0], after a few changes of variables.

Returning to equation (11.24), we notice that zy(θ) = Vty(θ) for θ < 0. From the above
representation, it follows that θ 7→ Vty(θ) is differentiable except at times θ ∈ (−τ, 0] where
t+ τ + θ = kτ for some k ∈ Z, where it is continuous from the right. At θ = 0, there is an
external discontinuity because of the χ0ξ term in (11.24). Taking this into account, we can
take derivatives in θ on both sides of zy(θ) = Vty(θ), and compute jumps at those times
where θ = −[t]τ . We find that y(θ) is a solution of

y′ = [A(t+ θ) +
1

z
γe−µτE12]y, θ 6= −[t]τ (11.26)

∆y = (B − I)y(θ−), θ = −[t]τ . (11.27)
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for θ ∈ [−τ, 0). Using the convenience function Z from earlier, we can explicitly write

y(θ) =

{
Z(θ,−τ ; z, t)y(−τ), θ < −[t]τ
Z(θ,−[t]τ ; z, t)BZ(−[t]τ ,−τ ; z, t)y(−τ), θ ≥ −[t]τ

(11.28)

Since y(−τ) appears linearly on the right-hand side of the above, we will write it as a
matrix product

y(θ) = H(θ; z, t)y(−τ) (11.29)

Next, from (11.24) we have zy(0)− Vty(0) = ξ. It is our goal to compute y(0), and to
facilitate this we consider two separate cases. If [t]τ = 0, then we have Vty(0) = BVty(0−),
as can be verified via equation (11.25). Since Vt(θ) = zy(θ) for θ < 0, it then follows that
Vty(0) = Bzy(0−). The equation zy(0)−Vty(0) = ξ is then equivalent to zy(0)−Bzy(0−) =
ξ. A similar argument in the case where [t]τ 6= 0 then implies that, in both cases, the end
result is

y(0) =
1

z
ξ + H(0−; z, t)y(−τ) (11.30)

Our final task is to solve for y(−τ). To do this, substitute (11.30) into (11.25) and set
θ = −τ . Since Vt(−τ) = zy(−τ), the result is

zy(−τ) =
1

z
ξ + H(0−; z, t)y(−τ). (11.31)

Lemma 11.2.7. z 7→ (zI − H(0−; z, t))−1 has a pole at z = 1. In particular, 1 is an
eigenvalue of multiplicity two for H(0−; z, t).

Proof. The spectrum (as a multiset) is found to be

σ
(
H(0−; z, t)

)
= {e−µτ , β(0,−τ ; t), 0, 1}.

The second eigenvalue in the list is, explicitly,

β(0,−τ ; t) = exp

(∫ 0

−τ
(−γ − µ+ ηf ′(0)S̃(u+ t, v∗))du

)
,

which is equal to 1 because the integrand is periodic with period τ , integrates to zero on
[0, τ ], and t acts as a translation parameter. The result follows.
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We can now calculate y = (zI−Vt)−1χ0. Solving equation (11.31) and substituting the
result into (11.29), the following lemma is proven.

Lemma 11.2.8. (zI − Vt)−1χ0 has the explicit form

(zI − Vt)−1χ0(θ) =
1

z
H(θ; z, t)(zI −H(0−; z, t))−1. (11.32)

The next step is to explicitly calculate the contour integral in (11.23). The following
lemma provides just enough detail for later calculations.

Lemma 11.2.9. There exist real constants a, b such that

1

2πi

∫
Γ1

(zI − Vt)−1χ0 = H(θ; 1, t)


0 ab 0 0
0 1 0 0
0 a 0 0
0 0 0 1

 . (11.33)

Proof. We provide only an outline of the proof of this lemma. To begin, perform the
diagonalization

(zI −H(0−; z, t)) = P (z)(zI −D)P (z)−1

where D = diag(0, e−µτ , 1, 1) has the eigenvalues of H(0−; z, t) on the diagonal. With this
representation, both P and P−1 are holomorphic in a neighbourhood of z = 1. After
lengthy calculations, one can show that

P =


1 1 P13(z) 0
0 0 P23(z) 0

−eµ[t]τ v∗

1−v∗ e
µ[t]τ 1 0

0 0 0 1

 ,
for some P13 and P23, with P23 6= 0 in a neighbourhood of z = 1. Taking into account
(11.32), we have

1

2πi

∫
Γ1

(zI − Vt)−1χ0 =
1

2πi

∫
Γ1

1

z
H(θ; z, t)P (z)(zI −D)−1P (z)−1dz

= H(θ; 1, t)P (1)diag(0, 0, 1, 1)P (1)−1,

with the second line being a consequence of Cauchy’s integral formula. Explicitly calculat-
ing the product P (1)diag(0, 0, 1, 1)P (1)−1, the result is the matrix on the right-hand side
of (11.33) with a = 1/P23(1) and b = P13(1).
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Lemma 11.2.10. The matrix Y (t) appearing in the decomposition (11.23) is

Y (t) =

[
0 (1− e−µτ )−1β(−[t]τ ,−τ ; t) 0 0
0 0 0 1

]
. (11.34)

Proof. Since the matrix Y (t) appearing in (11.23) is unique and therefore independent of
the argument θ ∈ [−τ, 0], we can evaluate both sides of the equation at θ = −[t]τ to simplify
the computation. Using Lemma 11.2.9 and Lemma 11.2.10, the result is the equation

(1− v∗)κ 0
1− e−µτ 0
v∗κ 0
0 1

[ Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

]
= H(−[t]τ ; 1, t)


0 ab 0 0
0 1 0 0
0 a 0 0
0 0 0 1

 .
Explicitly calculating H(−[t]τ ; 1, t), one immediately finds that the only nonzero entries of
Y are Y12 and Y24, the latter of which is Y24 = 1. The Y12 entry satisfies the equation

Y12


(1− v∗)κ
1− e−µτ
v∗κ
0

 = H(−[t]τ ; 1, t)


ab
1
a
0

 .
Comparing the entries in the second row, we find Y12 · (1− e−µτ ) = β(−[t]τ ,−τ ; t), and the
result follows.

Next, we can determine the quadratic-order dynamics on the centre manifold. The
following is a direct consequence of Theorem 8.1.2.

Lemma 11.2.11. The coordinate dynamics on the two-dimensional parameter-dependent
centre manifold of the nonhyperbolic equilibrium 0 ∈ R4 of the impulsive delay differential
equation (11.21) are, for ||(w, ε)|| sufficiently small,

ẇ = η(1− e−µτ )β(−[t]τ ,−τ ; t)
(
g(t)w2 + f ′(0)∂vS̃(t, v∗)εw

)
+R(t, w, ε),

ε̇ = 0,

g(t) = S̃(t, v∗)(1− e−µτ )β(t)

(
1

2
f ′′(0)(1− e−µτ )β(t)

+ f ′(0)

∫ [t]τ

0

e−µ([t]τ−s)(γe−µτ − ηf ′(0)S̃(s, v∗))β(s)ds

)
,

(11.35)
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where R(t, w, ε) satisfies R(t, 0, ε) = 0, is periodic and right-differentiable in its first argu-
ment, and is C∞ in (w, ε) for fixed t.

With this lemma in place, we can state and prove our bifurcation theorem. It mostly
follows from Theorem 10.1.1, although we will elaborate on some details.

Theorem 11.2.1. For a generic set of parameters, a transcritical bifurcation occurs in the
model (11.1)–(11.3) along the disease-free periodic solution as v crosses through the critical
vaccination coverage level v∗. Specifically

` =

∫ τ

0

β(−[t]τ ,−τ ; t)S̃(t, v∗)β(t)g(t)dt,

is nonzero on a generic subset of parameter space, and the following is satisfied for |v− v∗|
small enough and in a sufficiently small neighbourhood of (S, I) = (S̃(t, v∗), 0).

• There are at most two periodic solutions: the disease-free solution and a second
solution t 7→ ξ(t, v) that is exponentially stable when v < v∗, unstable when v > v∗,
and satisfies ξ(t, v∗) = (S̃(t, v∗), 0).

• The unique periodic solution is conditionally stable when v = v∗ in some half-space.

• ξ(·, v) is positive (in both components) if and only if (v − v∗)` > 0.

Proof. The time τ (Poincaré) map associated to the ordinary differential equation (11.35)
is readily found to satisfy

w 7→ w + η(1− e−µτ )[`w2 +mεw] + h(w, ε)

ε 7→ ε,

where ` is as in the statement of the theorem, m is given by

m =

∫ τ

0

β(−[t]τ ,−τ ; t)f ′(0)∂vS̃(t, v∗)dt,

and h(w, ε) =
∫ τ

0
R(t, w, ε)dt is a C∞ remainder satisfying h(0, ε) = 0 and containing all

terms of order 3 and above in (w, ε). Note that the mixed εw term, m, is strictly negative
because f ′(0) > 0, β > 0, and ∂vS̃(t, v∗) < 0. As for the quadratic term, the equation ` = 0
is unstable with respect to perturbations in f ′′(0), as can be verified by the functional form
of g(t) appearing in (11.35). Consequently, on a generic set of parameters we have ` 6= 0
and m < 0. The first two conclusions now follow from Theorem 10.1.1.
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To see that ξ(·, v) is positive only when (v−v∗)` = ε` > 0, we first remark that the fixed
point satisfies the estimate w(ε) = −εm

`
+O(ε2). This follows because of the properties of

the remainder term h. Also, since ξ(t, v) → (S̃(t, v∗), 0) as v → v∗, it suffices to consider
only the sign of the second component. This is precisely

sign(ξ2(t, v∗ + ε)) = sign
(
−εm

`
eᵀ2Φt,1(0)

)
= sign

(
ε`(1− e−µτ )β(t)

)
= sign(ε`),

which is what was claimed.

Remark 11.2.1. We would typically expect ` < 0 for biological reasons. Namely, ` < 0
would imply that increasing the vaccination coverage to the critical level v∗ drives a stable
endemic (ie. positive) periodic solution toward the disease-free state. However, proving that
` is indeed negative on the entire parameter space for which v∗ ∈ [0, 1] seems to be rather
difficult.

11.3 Numerical bifurcation analysis

In the previous section we proved that in the event there is only one vaccination pulse per
period, the disease-free periodic orbit generically undergoes a transcritical bifurcation when
the vaccination coverage crosses a critical threshold. In the absence of pulse vaccination,
the model (11.1)–(11.3) reduces to the SIR model of Kyrychko and Blyuss, and it is known
that the endemic equilibrium can undergo Hopf bifurcation [50]. We expect that with
pulse vaccination, such a Hopf bifurcation should be replaced with a cylinder bifurcation.
It is therefore natural for us to track the bifurcating endemic periodic orbit and search
for Hopf points. In this section, we will use the illustrative parameter choices provided in
Table 11.1, and to keep results consistent with the analysis appearing in [50, 56] we will
use the indence rate f(x) = x

1+x
. For these parameters and incidence rates, the model of

Kyrychko and Blyuss (i.e. the model without vaccination) has a disease-free equilibrium
that is unstable, as well as a periodic solution that is locally asymptotically stable. It
appears as though this periodic solution is the global attractor (in the positive quadrant),
although this is merely conjecture.
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Parameter Numerical value/range
µ 0.5
η 50
γ 25
τ 1
v∗ 0.6227
v [0, v∗]

Table 11.1: Parameters used for the numerical bifurcation analysis.

11.3.1 Continuation of endemic periodic solution

As it is not possible to express the endemic periodic solution analytically, we will need to
resort to numerical methods. The first step is to continue the bifurcating endemic periodic
solution. To simplify matters, we will take advantage of the convenient fact that since
we seek periodic solutions of period τ , it is not necessary to treat the impulsive delay
differential equation (11.1)–(11.3) directly. Specifically, every instance of S(t − τ) and
I(t− τ) can be replaced by S(t) and I(t), since we search explicitly for periodic solutions.
Doing this and adjusting the jump condition accordingly, the branch (S∗(t, v), I∗(t, v)) of
endemic periodic solutions must satisfy the following boundary-value problem:

d

dt
S∗ = µ− µS∗ − ηf(I∗)S∗ + γe−µτI∗,

d

dt
I∗ = ηf(I∗)S∗ − (µ+ γ)I∗,

S∗(0) = ρ(v)S∗(τ−),

I∗(0) = I∗(τ−),

ρ(v) = (1− v)(1− ve−µτ )−1.

Following Theorem 11.2.1, we could use

S∗(t, v∗ + ε) = S̃(t, v∗)− εm
`
eᵀ1Φt,1(0)

I∗(t, v∗ + ε) = −εm
`
eᵀ2Φt,1(0)

(11.36)

as a linear-order guess for the first point on the branch, for some |ε| sufficiently small. Under
the assumption that ` < 0 – the more biologically expected case – we will do continuation
for ε < 0.

For the illustrative system parameters of Table 11.1, we solve this boundary value prob-
lem using the bvp4c function in MATLAB R2018a. We take the solution for perturbation
parameter εn as the initial guess for perturbation parameter εn+1 < εn, except for the
first step ε0 where we use the linear guess (11.36). That is, we keep things simple and
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Figure 11.1: Plots of the periodic solution obtained by the continuation scheme described
in Section 11.3.1 for vaccine coverage v ∈ [0, v∗]. Dots indicate the “initial” points
(S∗(0, v), I∗(0, v)) on each periodic solution, followed by evolution along the corresponding
curve at each level v with time left implicit. The periodic solution is constant in the I
variable at v = v∗, and collapses to a fixed point at v = 0. To improve visibility, only
fourteen vaccination coverages in the interval [0, v∗] are displayed.

implement natural continuation. We do not expect any turning points along the branch
(note, we expect a Hopf point, which will generically lead to an invariant cylinder on which
there are no additional periodic solutions), so no difficulties are anticipated. Figure 11.1
provides a sample of the periodic solutions generated by the continuation scheme.

11.3.2 Dominant Floquet exponent and cylinder point identifi-
cation

To test for additional bifurcation points, we will need to compute the dominant Floquet
exponents along the periodic solution continuation. While this can in principle be done by
solving an appropriate boundary-value problem, our attempts to accomplish this in MAT-
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Figure 11.2: A plot of the real part of the dominant Floquet exponent of the branch
v 7→ (S∗(·, v), I∗(·, v)) of periodic solutions. The real part crosses the line <(λmax) = 0
in the window v ∈ [0.4063, 0.4068]. All computations were done using the discretization
scheme from Section 4.6.3 with N = 200 mesh points.

LAB using built-in boundary-value problem solvers had serious issues with convergence.
Instead, we discretize the monodromy operator using the method outlined in Section 4.6.3.

The real part dominant Floquet exponent is plotted versus the vaccination coverage in
Figure 11.2. Numerically windowing the crossing of the imaginary axis, we see that the
real part crosses through zero for some v ∈ [0.4063, 0.4068]. The approximate Floquet
spectrum (i.e. the set of Floquet exponents) for v = 0.4068 is plotted in Figure 11.3, where
we see that, as expected, there is a pair of (approximately) imaginary Floquet exponents.
To the order of discretization used (200 mesh points), the pair of Floquet exponents is
simple, so we should expect (from Theorem 10.2.1) a cylinder bifurcation to at some
v∗c ∈ [0.4063, 0.4068].

We can easily check – at least to the level of numerical accuracy achieved – two of
the nondegeneracy conditions associated to the cylinder bifurcation theorem. The first
condition G.1 states that we must have ekiω 6= 1 for k = 1, 2, 3, 4, where ω is the imaginary
part of the dominant Floquet exponent. Our numerical estimate (see Figure 11.3) is

ω = 1.9886. (11.37)
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Figure 11.3: The approximate Floquet spectrum associated to the periodic solution t 7→
(S∗(t, v), I∗(t, v)) for v = 0.4063 restricted to the strip {z ∈ C : <(z) ∈ [−5,∞)}. All
computations were done using the discretization scheme from Section 4.6.3 with N = 200
mesh points.
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One can then verify that |ekiω−1| ≥ 0.316, and the first nondegeneracy condition is passed.

The second nondegeneracy condition G.2 pertains to the transversal crossing of the
Floquet exponents across the imaginary axis. Examining the plot of real part of the
dominant Floquet exponent in Figure 11.2, we see that the real part is strictly decreasing
and appears smooth in the critical interval [0.4063, 0.4068], from which we conclude that
the second nondegeneracy condition is satisfied.

The third nondegeneracy condition requires one to calculate the quadratic term of the
centre manifold at the critical parameter and, following this, compute the first Lyapunov
coefficient. The benefits are somewhat limited and do not greatly aid in the exposition.
We will therefore content ourselves with the first two nondegeneracy conditions, knowing
that in a generic sense (i.e. up to perturbation in quadratic terms), a cylinder bifurcation
does indeed occur at some v∗c ∈ [0.4063, 0.4068]. Moreover, because the real part of the
dominant Floquet exponent is decreasing at v∗c , we obtain by Theorem 10.2.1 that the
periodic solution (S∗(t, v), I∗(t, v)) is unstable for v < v∗c and locally asymptotically stable
for v > v∗c .

Remark 11.3.1. We briefly comment that the theorem should be applied not to (11.1)–
(11.3), but rather to the system with vaccinated component introduced in Section 11.1.1,
since the latter satisfies the overlap condition. All statements concerning the Floquet expo-
nents carry over, however, so our conclusions remain correct.

11.3.3 Tracking the evolving cylinder

Provided the invariant cylinder is attracting in the parameter regime where it exists, we
should expect based on Theorem 10.2.1 that the cylinder is attracting for 0 � v < v∗c ≈
0.4063. In a time series, we would expect to see convergence to an oscillatory but non-
periodic solution. Figure 11.4 provides such a time series for a selection of six vaccination
thresholds v ∈ [0, v∗]. The solution converges to a clearly defined periodic solution for
v = 0.6 and v = 0.45, while in the intermediate regime of v ∈ (0, v∗c ] demonstrated by
the second row of plots and the first plot on the final row, the dynamics are eventually
oscillatory with no discernible period. A clear periodic solution is seen at v = 0.

The geometry of the cylindrical attractor is more clearly seen if one plots S(t) and I(t)
together with t 7→ f(xt) for some functional f , with t 7→ xt the solution in the phase space
RCR. One might think the sum of vaccinated and recovered components as in Figure 11.4
to be a natural choice, but there is some transient linear dependence between these and
S(t) and I(t) that hides some of the geometry. Instead, we plot t 7→ (S(t), I(t), S(t− 1)).

210



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11.4: Time series from the constant initial condition (S(0), I(0), R(0), V (0)) =
(0.5, 0.5, 0, 0) for various vaccination coverages. Susceptible, infected and sum of recov-
ered and vaccinated populations are plotted, with a legend inset in the first frame. The
vaccinated population is governed by (11.5). (Top row: v = 0.6, v = 0.45. Middle row:
v = 0.395, v = 0.3. Bottom row: v = 0.15, v = 0.)
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To illustrate the birth of the cylindrical attractor as the parameter v is varied close to the
bifurcation point v∗c , we plot both the continuation periodic solution t 7→ (S∗(t, v), I∗(t, v))
and the forward time integration from the constant initial condition (S(0), I(0)) = (0.5, 0.5).
The delayed state S(t− 1) is used as a third spatial variable to aid in visualization as de-
scribed above. We integrate the solution for t ∈ [0, 1300] and plot only for t ∈ [300, 1000].
The result is provided in Figure 11.5, where we clearly see the cylindrical topology appear-
ing at v = 0.395.

At v = 0.385 there appears to be phase locking, although the phase-locked regions
still appear to lie on a cylindrical structure. To compare, as v decreases to 0.375, then to
0.35 and 0.315 – see Figure 11.6 – the radius of the cylinder becomes more variable along
its length, the latter of which is contracted. The structure of the attractor bears little
resemblance to the periodic solution t 7→ (S∗(t, v), I∗(t, v), S∗(t− 1, v)) it bifurcated from.

Further decreasing the vaccination coverage from v = 0.25 through to v = 0 shows
convergence of the attractor to the periodic orbit of the Kyrychko and Blyuss model.
Topologically, the cylinder contracts to a circle. This can be visualized in Figure 11.6.
The complete transition of the disease-free periodic solution through the transcritical bi-
furcation and the cylinder bifurcation can be visualized with the help of the bifurcation
diagram, Figure 11.8.
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Figure 11.5: Plot of t 7→ (S(t), I(t), S(t − 1)) for t ∈ [300, 1300] from a constant initial
condition of (S(0), I(0)) = (0.5, 0.5), for v = 0.45 (top) and v = 0.395 (bottom). Purple
corresponds to arguments t = k ∈ Z and yellow to arguments t→ k−. Inset: Plots of the
image of t 7→ (S∗(t, v), I∗(t, v), S∗(t− 1, v)).
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Figure 11.6: Plot of t 7→ (S(t), I(t), S(t − 1)) for t ∈ [300, 1300] from a constant initial
condition of (S(0), I(0)) = (0.5, 0.5), for v = 0.385, v = 0.375 (top row), v = 0.35 and
v = 0.315 (bottom row). Colours and insets have the same interpretation as in Figure 11.5.
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Figure 11.7: Plot of t 7→ (S(t), I(t), S(t − 1)) for t ∈ [300, 1300] from a constant initial
condition of (S(0), I(0)) = (0.5, 0.5), for v = 0.25, v = 0.15 (top row), v = 0.05 and v = 0
(bottom row). Colours have the same interpretation as in Figure 11.5.
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Figure 11.8: The bifurcation diagram for the SIR model with pulse vaccination and tem-
porary immunity with the parameters from Table 11.1. TB denotes a transcritical bi-
furcation, while NSB denotes a Neimark-Sacker bifurcation. The latter is qualitatively a
cylinder bifurcation. Dashed lines denote an unstable object, while solid lines denote an
asymptotically stable object. The arcs corresponding to the endemic cylinder parameterize
the minimum value (bottom arc) and maximum value (top arc) of the norm of the infected
component in the phase space.
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Chapter 12

Application to impulsive stabilization
and bifurcation suppression

The content of this chapter appears in “Cost-effective robust stabilization and bifurcation
suppression” by Kevin Church and Xinzhi Liu [23], currently in press at SIAM Journal on
Control and Optimization.

12.1 Overview of impulsive stabilization methodology

and current methods

Stabilization of complex networks and dynamical systems both large-scale and small play
an important role in science and industry. Since the introduction of Lyapunov’s direct
method and its various generalizations, the technique has seen much application in the
development of sufficient conditions for the stability of steady states, which can themselves
be used to derive controllers guaranteeing robust stability and synchronization. The recent
survey paper [82] catalogues recent developments in the stability analysis of linear time-
delay systems by Lyapunov-based methods, and one may consult the references therein for
background. For a short list of specifically nonlinear results, one may consult [55, 99, 100,
107].

Suppose one has an autonomous n-dimensional retarded functional differential equation
depending on a parameter ε ∈ Rp,

ẋ = f(xt, ε), (12.1)
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and it is known that x∗ = 0 is an equilibrium point for all ε ∈ N ⊂ Rp, a neighbourhood
of the origin. The linearization at x∗ = 0 is the linear system

ẏ = Df(0, ε)yt, (12.2)

and its dynamics determine the local behaviour near x = 0 for the nonlinear system (12.1).
The characteristic matrix is

∆(λ; ε) = λI −Df(0, ε)[eλ(·)I] (12.3)

where I the n × n identity matrix. The eigenvalues are the solutions of the generally
transcendental characteristic equation

det(∆(λ; ε)) = 0, (12.4)

and x∗ will be (locally) exponentially stable if and only if all eigenvalues have strictly
negative real part; see [39, 80] for background. A transition from stability to instability
occurs when one or more eigenvalues cross the imaginary axis. In practical applications,
it may be that due to some external influence or component failure, a system parameter
enters a regime where stability is lost and a bifurcation occurs. The goal then shifts to
stabilization.

One stabilization methodology that has seen a fair bit of attention in recent years is
impulsive stabilization [42, 59, 60, 63, 65, 90, 93, 108]. These results are derived and their
validity verified by means of Lyapunov functional and Lyapunov-Razumikhin methods.
They are stated in terms of the existence of matrices satisfying matrix inequalities, and
they typically provide global stability. However, the assumptions can be somewhat strong:
global Lipschitz conditions are typically needed to guarantee convergence and finding ma-
trices satisfying the necessary inequalities can difficult especially for large interconnected
systems.

A related problem in terms of the implementation of impulsive stabilization is that,
naturally, some controls may be more difficult to implement than others. In other words,
there may be an explicit cost in implementing an impulsive controller. Guaranteed cost
impulsive control has been considered in [61, 94, 109] among others, where the goal is
to design the impulsive controller so that a running cost is minimized. To contrast, we
are interested in average costs associated to impulsive controllers, where the cost may be
dictated by such factors as the control gain or its structure. The latter encompasses such
factors as the amount of coupling induced by the controller, the amount of diffusivity or
lack thereof, or a penalty for accessing or modifying certain system states.
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Simultaneously, there may be hard constraints to the types of impulsive controllers that
are permitted. In pinning control, for example, the jump functionals do not induce any
additional coupling between nodes – see the aforementioned references. In an input-output
setting, if one only has access to system outputs, then one might want the controller to
depend only on the measurements. See later an example in Section 12.2.1. We would like
to incorporate such hard constraints into our stabilization methodology.

It is our goal to provide an alternative impulsive stabilization approach based on centre
manifold theory. Our novel method does not require global Lipschitzian constraints and
provides an algorithmic way to find an impulsive controller that achieves stabilization
while simultaneously guaranteeing a prescribed local convergence rate and minimizing a
cost functional. The jump functionals that leads to stabilization can be chosen from a set of
admissible functionals that can be set by the control designer, thereby incorporating a wide
class of hard constraints as described in the previous paragraph. Moreover, bifurcations
are suppressed in the sense that any nonlinear structures such as periodic orbits that could
result from parameter variation will be unstable. In other words, the dynamics near the
equilibrium will be robust under parameter variation.

The idea is, at its heart, a simple geometrical construction. To linear order, each
candidate jump functional will have some impact on the dynamics on the centre manifold.
The goal is then to choose a jump functional in such a way that the dynamics restricted
to the centre manifold become linearly stable. If the jump functional that is chosen is
sufficiently small, then its inclusion will not push other eigenvalues across the imaginary
axis and lead to further instabilities. In some sense, we try to choose a jump functional
that stabilizes the weak instabilities due to eigenvalues on the imaginary axis, while having
minimal effect on the stable modes.

With this in mind, our setup is as follows. We assume that at ε = 0, the characteristic
equation (12.4) has some number c > 0 of eigenvalues on the imaginary axis, while all
others have strictly negative real part. This situation corresponds to one where stability of
x∗ = 0 could potentially be either gained or lost by perturbing the parameter ε away from
zero, and a bifurcation could therefore occur. For each ε ∈ N , we consider the problem
of finding a linear jump functional Bε such that, for the impulsive retarded functional
differential equation

ẋ = f(xt, ε), t /∈ 1

h
Z (12.5)

∆x = Bε(t)xt− , t ∈ 1

h
Z, (12.6)

the following conditions are satisfied for |ε| ≤ δ, for some positive δ.
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U.1 The equilibrium x∗ = 0 is locally asymptotically stable with local convergence rate
O(e−γt).

U.2 Bε(t) is optimal in the sense that it minimizes an admissible cost function.

We will make these ideas more precise in forthcoming sections of this chapter. The fre-
quency of impulse effect, h, is chosen beforehand. The constant γ > 0 is a chosen rate
parameter. The functional Bε is typically the action of a matrix on a vector of state ob-
servations (possibly delayed) or a sum thereof. The notion of a local convergence rate
and admissible cost functions will be defined later when we formalize the problem more
precisely. Condition U.1 guarantees that the equilibrium is stabilized and any bifurcations
that could lead to a loss of stability of the equilibrium are suppressed in the parameter
regime |ε| ≤ δ, while specifying a worst-case convergence rate. The second condition U.2
ensures that the impulsive control (12.6) is one that minimizes an associated cost.

One might also be interested in conditions under which one can find a jump functional
Bε that satisfies conditions U.1 and U.2, but is independent of ε. This situation corresponds
to a uniform robust cost-effective stabilization, and may be desirable when the dimension
of the parameter space is very high. We will consider this problem as well.

The structure of this chapter is as follows. In Section 12.2, we precisely formulate our
cost-effective impulsive stabilization and bifurcation suppression problem. The existence
of solutions of the problem are considered in Section 12.3, while Section 12.4 and Section
12.4.5 are devoted to the computation of optimal solutions. The effectiveness of our sta-
bilization method is demonstrated in Section 12.5 by way of a numerical simulation. All
proofs are deferred to Section 12.7.

12.1.1 Notation

For A ∈ Ra×b, the notation Aij denotes the entry in row i and column j.

If X is a real vector space, Y ⊂ X is a linear subspace and x ∈ X, we denote

x+ Y = {x+ y : y ∈ Y } ⊂ X

the affine subspace spanned by Y with translation x. If W and Z are two such affine
subspaces, we define for t ∈ [0, 1] the convex combination

tW + (1− t)Z = {tw + (1− t)z : w ∈ W, z ∈ Z}.
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For a vector space X, we will denote Xk = X × X × · · · × X the k-fold Cartesian
product of X with itself, with k factors in the product. We will sometimes abuse notation
and identify elements of Xk with 1× k arrays with elements in X.

For square matrix A ∈ Rb×b, the symbols ρ(A), det(A) and tr(A) will respectively de-
note the spectral radius, determinant and trace. We will at times suppress the parentheses
and write simply ρA for the spectral radius of A.

For a linear map L : X → Y between finite-dimensional vector spaces, we denote L+

its Moore-Penrose pseudoinverse. If L is a matrix, then L+ is its pseudoinverse.

If j ∈ Z and k ∈ N+, we denote [j]k the remainder of j modulo k. Specifically, if we
uniquely write j = pk + r for some r ∈ {0, . . . , k − 1} and p ∈ Z, then we define [j]k = r.

For a finite sequence of matrices A0, . . . , Ak−1 for k ≥ 1, we define the product
∏k−1

j=0 Aj
by iterative composition – that is, multiplication on the left,

k−1∏
j=0

Aj = Ak−1 · · ·A0.

For a function f : X → Y , we will use the symbol f(X) for the image of f . For an
element y ∈ f(X), we denote f−1(y) its preimage:

f−1(y) = {x ∈ X : f(x) = y}.

When f is one-to-one, the singleton f−1(y) will be identified with the unique solution x of
the equation f(x) = y.

For a complex vector v ∈ Cn, we denote Re(v) and Im(v) its real and imaginary
parts, respectively. That is, Re(v) and Im(v) are the unique elements of Rn such that
v = Re(v) + iIm(v).

12.2 Optimal impulsive stabilization with performance

target

In this section we formulate the problem outlined in Section 12.1 more precisely. We
introduce the linear jump functionals and frequencies that will be considered in Section
12.2.1. The allowable cost functionals are introduced in Section 12.2.2.
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12.2.1 The space B of discrete-delay jump functionals

We consider classes of linear jump functionals B defined by a collection of distinct discrete
delays δ1, . . . , δ` ∈ [−d, 0] for some d > 0:

Bφ = Aφ(0) +
∑̀
i=1

Aiφ(δi), (12.7)

Note that given the frequency h of impulse effect, it will need to be assumed that the any
nonzero delay δi 6= 0 satisfies δi /∈ 1

h
Z. This constraint is needed because of a technical

assumption (the overlap condition) of the centre manifold theory and reduction principle
for impulsive delay differential equations, of which our main results are based. From the
right-hand side of (12.7), we can identify a jump functional with an element of the finite-
dimensional vector space

B = (Rn×n)`+1. (12.8)

With this identification, we will abuse notation and write Bφ for B = (A,A1, . . . , A`) ∈ B
and φ ∈ RCR as the right-hand side of (12.7). Similarly, if Φ = [ φ1 · · · φc ] ∈ RCRc,
then we denote BΦ = [ Bφ1 · · · Bφc ].

Pinning stabilization and diagonal jump functionals

In some situations, it may not be appropriate to work with the entire space B of jump
functionals. For example, suppose the system (12.1) has the structure of a network of N
identical linearly-coupled nodes

ẋ(i) = f(x
(i)
t ) + c

N∑
j=1

aijΓH(x(j)(t)), i = 1, . . . , N, x(i) ∈ Rn (12.9)

with coupling strength c > 0, Γ = diag(γ1, . . . , γn) > 0 an inner coupling matrix, H :
Rn → Rn a nonlinear coupling with H(0) = 0, and A = (aij) ∈ RN×N a diffusive Laplacian
matrix representing the coupling configuration of the network, where any of these coupling
terms may depend on parameters. In impulsive pinning stabilization and synchronization,
one would choose jump functionals that act only on individual nodes – see the references
[42, 65, 93] – and are functionally driven by an error system.

For simplicity, assume we wish to stabilize the trivial equilibrium x∗ = 0, so that
one does not need to consider a separate error system. An appropriate subspace of B in

222



which one could consider pinning stabilization is the set of block diagonal operators. To
define these, we note that for system (12.9), we have B = (RnN×nN)`+1. Each element of
RnN×nN can be interpreted as an N × N block matrix with n × n blocks, so that we can
write an arbitrary element of B in the form B = (A,A1, . . . , A`) with Am(i, j) ∈ Rn×n for
m = ∅, 1, . . . , ` and i, j = 1, . . . , N . Then, the diagonal subspace Bdiag ⊂ B is defined by

Bdiag = {B = (A,A1, . . . , A`) ∈ B : Am(i, j) = 0 ∀i 6= j, m = ∅, 1, . . . , `}. (12.10)

This is indeed a subspace of B and it contains only the linear jump functionals that induce
no further coupling between different nodes.

Proportional control

Suppose one wishes to stabilize the system ẋ = f(xt, ε) using a proportional impulsive
control, with a system output y. That is, we seek jump functionals Bε(t) such that 0 ∈ Rn

of the system

ẋ = f(xt, ε), t /∈ 1

h
Z

y(t) = Hx(t),

∆x = NBε(t)yt− , t ∈ 1

h
Z,

becomes stable, where N ∈ Rn×m is an input matrix, H ∈ Rp×n is an output matrix and
y ∈ Rp is the output. Starting with the space B = (R(n+p)×(n+p))`+1 as introduced at the
beginning of this section, our proportional control constraint on the jump functionals can
be imposed by abusing notation and identifying Bε(t) with an element of B defined in block
form as

Bε(t) =

[
0 NBε(t)
0 HNBε(t)

]
. (12.11)

We need to verify that z =
[
x y

]ᵀ
satisfies the equation ∆z = Bε(t)zt− at times t ∈ 1

h
Z.

∆z =

[
∆x
H∆x

]
=

[
NBε(t)yt−
HNBε(t)yt−

]
=

[
0 NBε(t)
0 HNBε(t)

] [
xt−
yt−

]
= Bε(t)zt− ,

as desired. The set of elements of B of the form (12.11) is indeed a proper subspace of
B, which we denote Bprop. One can complete the transformation to a system of form
(12.5)–(12.6) by taking the derivative of y. PID controls can be introduced in a similar
way.
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Cycles of jump functionals

In our impulsive functional differential equation (12.5)–(12.6), we have left the possibility
for the jump function to depend on time t. That is, Bε(t) ∈ U for each t and some subspace
U ⊆ B, while being generally nonconstant. As our method is based on centre manifold
theory, working with infinite time horizons is difficult so we will typically take t 7→ Bε(t)
to be periodic. As such, a cycle of jump functionals is an element of the product Uk, for
natural number k ≥ 1 called the period. We can then associate a jump functional in the
style of (12.7) by way of the following equivalence. If B = (B0, . . . , Bk−1) ∈ Uk, we define

B

(
j

h

)
φ = B[j]kφ. (12.12)

This definition is sufficient to give meaning to (12.6) since we need only define B(t) at the
times t = j

h
for j ∈ Z.

Cycles of jump functionals in nonidentical subspaces

In some applications, it might be that certain controls (quantified by jump functionals)
can only be applied intermittently due to resource limitations. As such, it is worthwhile
considering the case where more generally, we have Bε(t) ∈ U(t), for t ∈ 1

h
Z and each

subspace U(t) is generally distinct. As in Section 12.2.1 we will assume the periodicity
condition

Uj+k := U
(
j + k

h

)
= U

(
j

h

)
=: Uj

for all j ∈ Z, and associate t 7→ Bε(t) to a jump functional B = (B0, . . . , Bk−1) in the
product space

U (k) := U0 × · · · × Uk−1.

The construction in the previous Section 12.2.1 corresponds to the special case where
Ui = U0 for all indices i. Regardless, it remains true that U (k) is a linear subspace of Bk.

12.2.2 Allowable cost functionals

An allowable cost functional will be a functional C : U → R+ satisfying the following
properties.

C.1 C is continuous, convex and positive-definite.
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C.2 C is radially unbounded : if Bn ∈ B is a sequence with unbounded norm ||Bn|| → ∞,
then C(Bn)→∞.

These properties will eventually be used to show that a formalized version of the problem
from Section 12.1 admits a solution satisfying the conditions U.1 and U.2. One can similarly
define allowable cost functions on any linear subspace U ⊆ B using the same definition.

Given an allowable cost functional C, we define the cost of a cycle of jump functionals
of period k in a linear subspace of Bk as follows. For B = (B0, . . . , Bk−1) ∈ Bk we set

C(B) =
k−1∑
j=0

C(Bj). (12.13)

We will sometimes abuse notation and write C : Bk → R+ for the associated cost functional
on the cycles of jump functionals of period k. Bk can be replaced with any linear subspace
thereof, so this definition extends naturally to encompass cycles of jump functionals in
nonidentical subspaces as in Section 12.2.1. Finally, the following definition will be useful
later.

Definition 12.2.1. An allowable cost function C : U → R+ is projective if there exists an
inner product 〈·, ·〉 such that C(B) = 〈B,B〉.

Weighted matrix norms

A typical allowable cost functional can be constructed through the introduction of a
weighted matrix norm ||X||W = ||W 1

2XW− 1
2 ||2 for a symmetric positive-definite matrix

W and its principal real square root W
1
2 , and || · ||2 the spectral norm. Indeed, let W0,

W1, . . . ,W` be positive-definite matrices, let w0, w1, . . . , w` ∈ R+ be weight constants, and
define a cost function

C((A,A1, . . . , A`)) = w0||A||W0 +
∑̀
i=1

wi||Ai||Wi
(12.14)

The weight matrices Wi take into account limitations and costs associated to accessing
and/or modifying the states of the system by impulses. The weights w0, w1, . . . , w` allow
for a weighting of the individual factors that define the control (12.6) relative to each other.
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12.2.3 Problem statement: parameterized and uniform

Having introduced the allowable cost functionals and the space B of linear jump functionals,
we can more precisely formulate our problem. First, we define local convergence rates.

Definition 12.2.2. Let g : R+ → R+ be a function satisfying limt→∞ g(t) = 0. The
asymptotic O(g(t)) is a local convergence rate of an equilibrium point x∗ if there exists
a neighbourhood U of x∗ and a constant K > 0 such for all (s, φ) ∈ R × U , the solution
t 7→ x(t; s, φ) of (12.5)–(12.6) satisfying the initial condition xs(·; s, φ) = φ satisfies the
inequality ||x(t; s, φ)− x∗|| ≤ Kg(t− s) for all t ≥ s.

Next, we formalize the standing hypothesis that at parameter ε = 0, our system is at a
bifurcation point where stability could be either gained or lost by parameter variation.

Assumption (Spectral gap condition). At parameter ε = 0, the characteristic equation
(12.4) has c > 0 eigenvalues with zero real part, and all other eigenvalues have real part
less than some σ < 0. The real number σ is the spectral gap.

Remark 12.2.1. If the characteristic equation has a candidate bifurcation point at a pa-
rameter ε∗ 6= 0, one can perform a change of variables to shift the bifurcation point to the
origin, ε = 0. As such, no generality is lost by assuming a bifurcation point at ε = 0.

From this point onward, we assume the spectral gap condition. Note that because we
are working with a periodic system, there is always a finite spectral gap; see part 6 of
Theorem 4.2.1. With these definition at hand, the problem whose feasibility we will study
and subsequently solve is the following.

Problem A. Let U be a linear subspace of Bk for k ≥ 1. For a given rate parameter γ > 0
and frequency h, determine whether one can, for ε sufficiently small, find an allowable cost
functional Bε ∈ U such that the optimality condition

arg min
Y ∈Y(ε,h;γ)

C(Y ) = Bε (12.15)

is satisfied, where Y(ε, h; γ) ⊂ U is the set of all linear jump functionals for which O(e−γt)
is a local convergence rate of the equilibrium point x∗ = 0 of (12.5)–(12.6) for parameter ε
and frequency h.

In the formulation of Problem A, we allow the optimal jump functional to depend on the
parameter ε. However, in some settings it may be desirable to have a single jump functional
provide stabilization robustly for all ε sufficiently small, or it may be computationally too
expensive to generate optimal jump functionals for a large sample of parameters. Therefore,
the following problem is of interest.
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Problem B. Let U be a linear subspace of Bk for some k ≥ 1. For a given rate parameter
γ > 0 and frequency h, find η > 0 and single allowable cost functional B ∈ U such that the
optimality condition

arg min
Y ∈Yη(h;γ)

C(Y ) = B (12.16)

is satisfied, where Yη(h; γ) ⊂ U is the set of all linear jump functionals for which O(e−γt)
is a local convergence rate of the equilibrium point x∗ = 0 of (12.5)–(12.6) for parameters
|ε| ≤ η and frequency h.

12.3 Existence of an optimal solution

In this section we state our solutions to Problems A and B. The main results are provided in
Section 12.3.1 and Section 12.3.2. Illustrative applications of our main results of this section
as they apply to stabilization and bifurcation suppression are postponed until Section 12.5.

12.3.1 Main existence results: Problem A

A first step toward the solution of Problem A is provided by the following proposition.

Proposition 12.3.1. Write f(φ, ε) as a Taylor expansion near 0, so that

f(φ, ε) = A0φ(0) +
m∑
k=1

Ckφ(−rk) +

∫ 0

−r
C(s)φ(s)ds︸ ︷︷ ︸

L0

+L(ε)φ+O(||φ||2),

for L : Rp → L(C([−r, 0],Rn),Rn) continuous and satisfying L(0) = 0 for some discrete
delays rk ∈ (0, r] and a matrix A0 ∈ Rn×n. Let Φ(t) be a real n× c matrix whose columns
form a basis of the set of centre generalized eigenfunctions

E0 =
⋃
n∈N

{
z(t) =

n∑
i=1

ti−1eλtvi, : Re(λ) = 0, ż = L0zt

}
, (12.17)

and compute the c × c matrix Λ satisfying the identity d
dt

Φ(t) = Φ(t)Λ. Introduce the
transposed operator Lᵀ0,

Lᵀ0ψ = A0ψ(0) +

j∑
k=1

ψ(rk)Ck +

∫ 0

−r
ψ(−s)C(s)ds, (12.18)
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acting on C([0, r],Rn∗). Let Ψ(t) be a real c × n matrix whose rows form a basis for the
set of adjoint centre generalized eigenfunctions

Eᵀ0 =
⋃
n∈N

{
w(t) =

n∑
i=1

ti−1e−λtvi, : Re(λ) = 0, ẇ = −Lᵀ0wt
}
, (12.19)

and define the invertible matrix Γ ∈ Rc×c by the equation

Γ−1 = Ψ(0)Φ(0)−
j∑

k=1

∫ rk

0

Ψ(s)CkΦ(s− rk)ds · · ·

−
∫ 0

−r

∫ 0

−θ
Ψ(s)C(s)Φ(s+ θ)dsdθ.

(12.20)

Introduce the centre monodromy map Mε,h : Bk → Rc×c,

Mε,h(B) =
k−1∏
j=0

(Ic×c + ΓΨ(0)BjΦ0) exp

(
1

h
(Λ + ΓΨ(0)L(ε)Φ0)

)
, (12.21)

and define the set

Ỹ(ε, h; γ) = {B ∈ U ⊆ Bk : eγ/hρ(Mε(B)) ≤ 1}. (12.22)

Let an allowable cost functional C be given. Let h be fixed. The following are true.

1. Ỹ(ε, h; γ) is closed and if the spectral gap satisfies γ < σ, there exists δ = δ(γ) > 0
such that for |ε| ≤ δ,

Bδ(0) ∩ Ỹ(ε, h; γ) = Bδ(0) ∩ Y(ε; γ). (12.23)

2. For each each ε ∈ N , there exists Bε such that C : Ỹ(ε; γ)→ R attains its minimum
at Bε, assuming the domain is nonempty.

Remark 12.3.1. To compute a basis for E0, it is sufficient to compute a canonical system
of Jordan chains for ∆(λ; 0) for all eigenvalues λ with zero real part. See Theorem 4.2
from Chapter 7 of [39] for the relevant result. To compute a basis for Eᵀ0 , one can use the
connection between the transpose system ẇ = −Lᵀ0wt and the adjoint, with the result being
that a basis can be computed using a canonical system of Jordan chains for the transpose
∆(λ; 0)ᵀ – see Theorem 5.1 from Chapter 7 of [39] for the relevant theorem. Alternatively,
one could exploit the characterization Ψ(t) = e−ΛtΨ(0) for Ψ(0) ∈ Rc×n and solve for
the unknown coefficients of Ψ(0) by imposing the equality Γ = I in equation (12.20), as
suggested in [13].
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Remark 12.3.2. In the case of a Hopf bifurcation, the basis calculation is much simpler.
To obtain the basis matrix for E0, one calculates a nontrivial v ∈ Cn satisfying ∆(iω; 0)v =
0 for the critical eigenvalue λ = iω. Then, the basis matrix is

Φ(t) =
[

Re(veiωt) Im(veiωt)
]
.

For the transpose basis Eᵀ0 , one computes a nontrivial w ∈ Cn satisfying wᵀ∆(iω; 0) = 0,
and obtains the basis matrix

Ψ(t) =

[
Re(wᵀe−iωt)
Im(wᵀe−iωt)

]
.

One must then compute Γ explicitly after.

Thus, the existence of a small solution to Problem A is equivalent to the set Ỹ(ε, h; γ)
being nonempty. It is therefore important that we determine conditions under which that
set is nonempty. Also, it would be prudent to ensure that as γ → 0, the cost of ensuring
the convergence rate O(e−γt) for a fixed pair (ε, Bγ

ε ) should become arbitrarily small and
that the intersections (12.23) are nonempty. Our sufficient condition is the following.

Theorem 12.3.1. Let U = Bk. Ỹ(ε, h; γ) is nonempty provided Φ(0) and Ψ(0) are of rank
c. If this is the case, for any selection γ 7→ Bγ

ε of minimizing jump functionals for rate
parameter γ, one has limγ→0+ Bγ

ε = 0. In particular, if γ > 0 is sufficiently small, the sets
in (12.23) are nonempty.

The subspace and rank condition of Theorem 12.3.1 allows us to quickly exclude mem-
oryless systems and systems at fold bifurcation points. We have the following corollary.

Corollary 12.3.1.1. If c = 1 or L0φ = Cφ(0) for an n × n matrix C, then Ỹ(ε; γ) is
nonempty.

We can derive a more general sufficient condition that is implied by the subspace and
rank condition of Theorem 12.3.1. It is captured by the following corollary whose proof is
omitted since it is similar to that of the previous theorem.

Corollary 12.3.1.2. The subspace condition U = Bk and the rank condition on Φ(0)
and Ψ(0) in Theorem 12.3.1 can be replaced with the condition Mε(U) = Rc×c, and the
conclusions of the theorem hold.
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12.3.2 Main existence results: Problem B

As it turns out, the proofs of Proposition 12.3.1 and Theorem 12.3.1 work with minimal
modifications to solve Problem B. We have the following analogues and the appropriate
variant of Corollary 12.3.1.1.

Proposition 12.3.2. With the same notation as in Proposition 12.3.1, define the set

Ỹη(h; γ) = {B ∈ U ⊆ Bk : ∀|ε| ≤ η, eγ/hρ(Mε,h(B)) ≤ 1}. (12.24)

Let h be fixed. The following are true.

1. Ỹη(h; γ) is closed and if the spectral gap satisfies γ < σ, there exists δ > 0 such that
for η ≤ δ,

Bδ(0) ∩ Ỹη(h; γ) = Bδ(0) ∩ Yη(h; γ). (12.25)

2. Ỹη(h; γ) can be written as the intersection

Ỹη(h; γ) =
⋂
|ε|≤η

Ỹ(ε; γ). (12.26)

3. There exists B such that C : Ỹη(h; γ) → R attains its minimum at B, assuming the
domain is nonempty.

Theorem 12.3.2. Let U = Bk. Ỹη(h; γ) is nonempty provided Φ(0) and Ψ(0) are of rank
c. If this is the case, then for any selection γ 7→ Bγ of minimizing jump functionals for
rate parameter γ, one has limγ→0+ Bγ = 0. In particular, if γ > 0 is sufficiently small, the
sets in (12.25) are nonempty.

Corollary 12.3.2.1. If c = 1 or L0φ = Cφ(0) for an n × n matrix C, then Ỹη(h; γ) is
nonempty.

Corollary 12.3.2.2. The subspace condition U = Bk and the rank condition on Φ(0) and
Ψ(0) in Theorem 12.3.2 can be replaced with the condition Mε(U) = Rc×c for |ε| ≤ η, and
the conclusions of the theorem hold.

Remark 12.3.3. Since ε 7→ Mε is continuous, the conclusion of the above corollary is
guaranteed to hold for some η > 0, provided M0,h(U) = Rc×c. This can be seen by vector-
izing the monodromy map and recalling that rank function X 7→ rank(X) is lower semi-
continuous.
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12.4 Practical computation: centre probe method

Solving the optimization problem

minimize Ch(Y ),

subject to Y ∈ Ỹ(ε; γ),
(Y )

directly appears to be very difficult. The feasible set, introduced in Proposition 12.3.1, is
characterized as a sublevel set of B 7→ ρ(Mε,h(B)). While B 7→ Mε,h(B) is smooth, the
spectral radius is is notably irregular and nonconvex. If one wishes to guarantee feasibility
it is generally necessary to optimize in the space Bk, whose dimension is kn2(`+1) and can
be quite large even for small networks. It is therefore critical that we reduce the dimension
of the problem before even considering performing an optimization task.

From this point onward, we will assume that a rate parameter γ, system parameter
ε and frequency h have been chosen. We will suppress all dependence on these variables
unless necessary. Also, we make the following simplifying assumption on our chosen space
of cycles of jump functionals of period k ≥ 1.

Assumption. The subspace U (k) ⊆ Bk of cycles of jump functionals is given by k copies
of a single subspace U ⊆ B. That is, U (k) = Uk.

This assumption is not strictly needed. All constructions (eg. probe space) can be
appropriately generalized to allow the individual subspaces making up the product U (k) to
be distinct, and the major theorems (Theorem 12.4.1 and Theorem 12.4.2) have appropriate
and similarly strong analogues. However, the notation can make the presentation difficult
to follow. For this reason, we will specialize to this particular case.

To avoid ambiguity later, we define M1 : U → Rc×c by

M1(B) = (Ic×c + ΓΨ(0)BΦ0) exp

(
1

h
(Λ + ΓΨ(0)L(ε)Φ0)

)
,

and reserve the symbolM for the centre monodromy operatorM : Uk → Rc×c. Note that
this implies the factorization M(B) =

∏k−1
j=0M1(Bj).

12.4.1 The probe space P

The map M1 : U → Rc×c is affine, and we can decompose it as

M1 = M0 + Z, Z = exp

(
1

h
(Λ + ΓΨ(0)L(ε)Φ0)

)
, M0(B) = ΓΨ(0)BΦ0Z,
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where M0 : U → Rc×c is linear.

Definition 12.4.1. The probe space P ⊂ Rc×c is the image ofM1. That is, P = im(M1).
Elements P ∈ P are called probe elements. The k-probe space is the kth Cartesian power
Pk, and its elements are k-probe elements.

The following lemmas describe the geometry of the probe space, k-probe space and
preimages of probe elements under the centre monodromy operator. The proofs are omit-
ted.

Lemma 12.4.1. The probe space is an affine space of dimension at most c2. It can written
in the form P = Z + im(M0).

Remark 12.4.1. If the subspace/rank condition of Theorem 12.3.1 / Theorem 12.3.2 is
satisfied, then P is a vector subspace of Rc×c and it is precisely P = im(M0).

Lemma 12.4.2. The k-probe space Pk is convex.

Lemma 12.4.3. Let P ∈ P. The preimage of P under the centre monodromy map M1 is
an affine space, and can be written

M−1
1 (P ) = M+

0 (P − Z) + ker(M0). (12.27)

The correspondence M−1
1 : P ⇒ U exhibits a concavity-like property that will be

essential in the next section. It is summarized by the following lemma.

Lemma 12.4.4. Let X, Y ∈ P. For all t ∈ [0, 1],

tM−1
1 (X) + (1− t)M−1

1 (Y ) ⊆M−1
1 (tX + (1− t)Y ). (12.28)

At this stage we should define the precise link between the k-probe space and the image
of M : Uk → Rc×c. Define the product function G : (Rc×c)k → Rc×c by

G(X0, . . . , Xk−1) = Xk−1 · · ·X0.

In terms of the product function, the image ofM : Uk → Rc×c can be written equivalently
as the image of G : Pk → Rc×c. From this equivalence, we obtain the following lemma.

Lemma 12.4.5. Let P ∈ Pk. For all B ∈M−1(G(P )), we have ρ(M(B)) = ρ(G(P )).
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The above lemma provides one way to pull k-probe elements back to cycles of jump
functionals of period k. Namely, compute the ordered product and take the preimage under
M : Uk → Rc×c. However, the preimage underM : Uk → Rc×c of a given c×c matrix is not
necessarily convex. To remedy this, we can alternatively define a mapMk : Uk → (Rc×c)k

by
Mk(B0, . . . , Bk−1) = (M1(B0), . . . ,M1(Bk−1)).

Then, an analogue of Lemma 12.4.5 is as follows, strengthened by the convexity ofM−1
k (P )

for any P ∈ Pk due to the componentwise convexity afforded by Lemma 12.4.3.

Lemma 12.4.6. Let P ∈ Pk. For all B ∈ M−1
k (P ), we have ρ(M(B)) = ρ(G(P )). Also,

M−1
k (P ) is convex and given P = (P0, . . . , Pk−1), it can be written

M−1
k (P ) = {(B0, . . . , Bk−1) : Bi ∈M−1

1 (Pi), i = 0, . . . , k − 1}.

12.4.2 Compatible probe cost

Broadly speaking, our idea for solving the nonlinear program (Y ) is to first solve a re-
lated optimization problem in the probe space and obtain an optimal solution P ∗, pull
this optimal solution into the convex spaceM−1

k (P ∗) and find a minimizer YP ∗ of the cost
functional. Since every element of M−1(P ∗) will be feasible provided ρ(P ∗) ≤ e−γ/h –
see Lemma 12.4.5 – the spectral constraint does not need to be checked at this final opti-
mization stage. The following definition allows us to define the appropriate optimization
problem in Pk.

Definition 12.4.2. A continuous, radially unbounded convex function C̃ : Pk → R+ is a:

• local probe-compatible cost (LPCC) for the nonlinear program (Y ) if one of the
following conditions hold:

1. C̃ ◦Mk(B) ≤ Ch(B) for all B ∈ U , with equality if

B ∈ arg min
X∈M−1(M(B))

Ch(X). (12.29)

In this case we say C̃ is a type 1 LPCC.

2. C̃ ◦Mk(X) ≤ C̃ ◦Mk(Y ) implies Ch(X) ≤ Ch(Y ). In this case we say C̃ is a
type 2 LPCC.
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• global probe-compatible cost (GPCC) if for any global optimum B∗ of the nonlinear
program (Y ) and any other feasible solution B, one has C̃ ◦Mk(B

∗) ≤ C̃ ◦Mk(B),
with equality holding if and only if B is also a global optimum.

• uniform probe-compatible cost (UPCC) if it is both a LPCC and a GPCC.

The existence of GPCC/LPCCs will be addressed in Theorem 12.4.2. Given a continu-
ous, radially unbounded convex function C̃ : Pk → R+, we define a new nonlinear program
in the probe space, which we call the probe program:

minimize C̃(X),

subject to X ∈ Pk,
ρ ◦G(X) ≤ e−γ/h.

(PC̃)

The program (PC̃) possesses a global optimum so long as Ỹ is nonempty. We also define
a family of convex programs indexed by P ∈ Pk with feasible set given by the preimage
M−1

k (P ). We call this the inverse probe program:

minimize C(B),

subject to B ∈M−1
k (P ).

(YP )

Remark 12.4.2. As M−1
k (P ) is an external direct sum of k affine subspaces of B – see

Lemma 12.4.3 and Lemma 12.4.6 – the inverse probe program is actually unconstrained
after an appropriate affine linear change of variables.

Our first theorem of this section relates the programs (PC̃) and (YP ) to solutions of
(Y ) under the assumption that C̃ is a LPCC or a GPCC. The second theorem establishes
the existence of at least one UPCC.

Theorem 12.4.1 (centre probe method). Assume Ỹ is nonempty. Let C̃ : Pk → R+ be
a global (resp. local) PCC for the nonlinear program (Y ). Let P ∈ Pk be a global (resp.
local) optimum for the program (PC̃). Let B∗ ∈M−1

k (P ) be a local optimum for the convex
program (YP ). Then, B∗ is a global (resp. local) optimum for the program (Y ).

We will refer to the procedure of determining a solution of the program (Y ) using the
probe program in conjunction with the inverse probe program collectively as the centre
probe method (CPM). A cartoon drawing of the method is provided in Figure 12.1.
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Jump functionals U
(High-dimensional)

M

Probe space P
(Low-dimensional)

•

M−1

M−1({p∗})

U

p∗

P

Figure 12.1: A cartoon drawing of the centre probe method. After finding an optimal
probe element p∗ in the probe space, the inverse probe program is run in the preimage
under M if necessary.

Theorem 12.4.2. Define C̃ : Pk → R+ by

C̃(P ) = min
X∈M−1

k (P )
Ch(X). (12.30)

This function is continuous, radially unbounded, convex, and a UPCC. We will refer to it
as the trivializing UPCC.

The trivializing UPCC is so named because it makes the final step of running the
nonlinear program (YP ) unnecessary. Indeed, once one has computed an optimal solution
P for (PC̃), the optimal cost for the program (Y ) is precisely C̃(P ). In other words,
running the program (YP ) is equivalent to computing C̃(P ).

12.4.3 Explicit formula for trivializing UPCC

Suppose the cost functional C : U → R+ is projective. Recall this means that C(B) =
〈B,B〉 for an inner product 〈·, ·〉 on U (note, on Uk one defines the cost additively according
to (12.13)). See Section 12.4.3 for examples. Because of Lemma 12.4.3, we can calculate
C̃(P ) for the trivializing UPCC according to

C̃(P ) = kCh(0) +
k−1∑
i=0

min
{
〈X,X〉 : X ∈M+

0 (Z − Pi) + ker(M0)
}
. (12.31)
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C̃(P ) and the associated minimizer in M−1(P ) in fact has an explicit solution, due the
computation of C̃(P ) being equivalent to squared distance minimization to an affine sub-
space of a Hilbert space. The proof is elementary and is omitted.

Proposition 12.4.1. Let {m1, . . . ,mb} be an orthonormal basis for ker(M0). For a given
P ∈ P, define X(P ) ∈ U by

X(P ) = M+
0 (P − Z)−

b∑
j=1

〈M+
0 (P − Z),mj〉mj. (12.32)

If C̃ is the trivializing UPCC and the cost functional is projective, then for any P =
(P0, . . . , Pk−1) ∈ Pk, if we define X(P ) = (X(P0), . . . , X(Pk−1)), then

C̃(P ) = C(X(P )).

Moreover, M+
0 (P − Z) in equation (12.32) can be replaced by any solution Y of the linear

equation M0Y + Z = P , and these are

Y = M+
0 (P − Z) + (I −M+

0 M0)w

for any w ∈ U .

Example of projective cost functionals

A projective cost functional modeled on (12.14) and suitable for implementation (ie. vec-
torized) is

C((A,A1, . . . , A`)) = w0
~AᵀW0

~A+
∑̀
i=1

wi ~A
ᵀ
iWi

~Ai, (12.33)

where w0, w1, . . . , w` > 0, W0,W1, . . . ,W` ∈ Rn2×n2
are symmetric positive-definite matri-

ces and for X ∈ Rn×n, we define ~X ∈ Rn2
to be its standard vectorization, obtained by

stacking the columns of X on top of one another from left to right. The cost (12.33) is
projective with the inner product

〈(A,A1, . . . , A`), (B,B1, . . . , B`)〉 = w0
~AᵀW0

~B +
∑̀
i=1

wi ~A
ᵀ
i
~Bi.
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12.4.4 Implementation and complexity of the CPM

Here we discuss the complexity of the CPM and implementation strategies. Given a global
(respectively, local) PCC, the centre probe method can be split into three stages. Note
that in any implementation, the operator M0 : B → Rc×c will need to be vectorized, with
the result being a c2 × n2(`+ 1) matrix.

1. Initialization step: computation of Z, a pseudoinverse M+
0 , a basis for M0(B) and a

basis for ker(M0)

2. Probe program: compute a global (respectively, local) optimum P ∈ P = Z+M0(B)
of the program (PC̃).

3. Inverse probe program: compute a local optimum B∗ ∈ B of the program (YP ) in the
space M−1(P ) = M+

0 (Z − P ) + ker(M0).

The initialization step requires a c× c matrix exponentiation and several matrix multi-
plications, as well a pseudoinverse calculation and row reductions for the basis calculations
for M0(B) and ker(M0). To obtain Z and M0 we must first compute the basis matrix Φ0

associated to the centre eigenspace E0 and the evaluation Ψ(0) of the basis matrix for Eᵀ0 .
This task is very much related to the calculation of the zeroes of the characteristic equation
(12.4); see Remark 12.3.1. One may consult [12, 30, 47, 87, 97] for relevant methods. As
the initialization step needs only to be run once, however, its computational burden is
minimal.

The inverse probe program is a convex program in the convex setM−1
k (P ) ⊂ Bk. Using

Lemma 12.4.6 together with Lemma 12.4.3, this can be written as the Cartesian product

M−1
k (P ) =

k−1∏
j=0

(M+
0 (Pj − Z) + ker(M0)).

By a change of variables, it is equivalent to an unconstrained problem in Rkd for d =
dim(ker(M0)), which in the worst case is d = n2(` + 1) − 1. As this can be quite large,
gradient descent variants are likely to perform best. In the special case where we choose
the trivializing UPCC and the cost functional is projective, the inverse probe program is
not necessary.

Thanks to the reduction principle inherent to the probe method, the optimization for
the probe program is done in the convex set Pk ⊆ (Rc×c)k, which after vectorization is
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equivalent by a change of coordinates to Rc′ for c′ ≤ kc2. For a one-dimensional parameter
ε ∈ R, the generic bifurcations have c ≤ 2, while for two-dimensional parameters ε ∈ R2

the generic bifurcations have c ≤ 4. Moreover, arguably the most common “naturally
occurring” bifurcation in delay differential equations – the Hopf bifurcation – has c = 2.
Thus, it is typical for the ambient space of the probe program to be (relatively) low-
dimensional.

Formulas for C̃ and any gradients can be explicitly derived for the trivializing UPCC,
assuming a projective cost functional. Specifically, Proposition 12.4.1 together with equa-
tion (12.31) yields

C̃(P ) = kCh(0) +
k−1∑
i=0

〈X(Pi), X(Pi)〉,

with X : P → B being linear. We can then explicitly calculate the gradient:

∇C̃(P ) = 2
k−1∑
i=0

〈
X(Pi),M

+
0 −

b∑
j=1

mj〈mj,M
+
0 〉

〉
, (12.34)

with {m1, . . . ,mb} the orthonormal basis for ker(M0) computed in the initialization step.
The term on the right inside the inner product can be computed once and stored in mem-
ory, with the result being that each gradient is equal in computational requirements to an
evaluation of X(P ) and the inner product calculation. A crude worst-case complexity (as-
suming the worst case for d as well) of this calculation is O(kc2n4) floating point operations
assuming naive matrix multiplications.

The nonconvexity of the probe program does pose certain difficulties insofar as imple-
mentation is concerned. These all centre around the characterization of the feasible set as
being the intersection of Pk with the sublevel set {X ∈ (Rc×c)k : ρ ◦ G(X) ≤ e−γ/h}. As
we recalled previously at the beginning of Section 12.4, the spectral radius ρ : Rc×c → R
is non-convex and non-smooth. However, on the set

V = {X ∈ Rc×c : every eigenvalue of X is simple},

the spectral radius is continuously differentiable and locally Lipschitz continuous. V is
also open and dense in Rc×c. As a consequence, except in exceptional circumstances where
P ∩V is not dense in P , methods based on gradient sampling [25, 67] can be used to solve
the program (PC̃) with guaranteed convergence results.
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12.4.5 Extension to the uniform problem

The centre probe method of Section 12.4 can be adapted to find solutions of Problem
B. Recall that the our proposed solution to Problem B derived from Proposition 12.3.2
requires us to find a constant η > 0 such that there exists a solution of the nonlinear
program

minimize C(Y ),

subject to Y ∈ Ỹη(h; γ).
(Y η)

It is important to remark that a solution of Problem B includes the robustness parameter
η. That is to say, η is not chosen at the outset. This is crucial, and in general one cannot
take η as arbitrary.

Suppose for the sake of argument that one could choose η > 0 at the outset. One
may recall from Proposition 12.3.2 that a solution Bη of (Y η) can only be guaranteed to
solve the nonlinear program (12.16) if ||Bη|| < δ(η), otherwise there may be secondary
bifurcations involving eigenvalues crossing the imaginary axis from the left. As δ(η) is
generally decreasing with respect to η – see the proof of the aforementioned proposition
– one can only guarantee stabilization with an increasingly trivial linear jump functional.
However, unless the equilibrium x∗ = 0 is already exponentially stable with rate O(e−γt), a
trivial jump functional should not be able to provide stabilization. Therefore, generally, it is
not possible to choose the robustness parameter; a controller that stabilizes the equilibrium
at the parameter ε = 0 will generally fail to stabilize the equilibrium if the parameter is
taken too large.

12.4.6 Uniform CPM

Because of the smoothness of the vector field (12.1), any linear jump functional that guar-
antees the local convergence rate O(e−(γ+s)t) at parameter ε = 0 for some s > 0 will
automatically guarantee the local convergence rate O(e−γt) for |ε| ≤ η, for some η > 0 that
generally depends on s. This follows from hemicontinuity arguments; see the related proof
of Proposition 12.3.1.

Theorem 12.4.3 (Uniform CPM). Let B ∈ Uk be a linear jump functional produced by the
CPM (local or global) at parameter ε = 0 and convergence rate γ′ satisfying σ > γ′ = γ+s,
for s > 0 a small safety parameter. There exists η = η(s) > 0 such that B is a feasible
solution of the program (Y η).
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The above theorem does not guarantee optimality of the candidate solution. However,
for typical problems where the performance (linear-order convergence rate) of the candidate
B deteriorates when |ε| becomes large, we are guaranteed that the solution is optimal for
some robustness parameter.

Corollary 12.4.3.1 (Optimality). With the notation from the previous theorem, suppose
for some ε 6= 0, ρ(Mε(B)) > e−γ/h. Then, there exists η ∈ (0, |ε|) such that B is an
optimum (local or global) of the program (Y η).

12.5 Stabilization of a complex network near a Hopf

point

In this section we consider primarily by way of example how our uniform CPM can be
use to stabilize a complex network near a Hopf point. We incorporate an inhomogeneous
weighting on the cost of controlling each node and address how one can minimize the
number of controlled nodes while still taking advantage of the performance improvements
inherent to .

The neural network we will consider in this section is a slight modification of an example
considered in [65]. For xi ∈ R2 for i = 1, . . . , 100, consider the nonlinear network model

ẋi = −xi(t) + ε
[
B tanh(xi(t)) +D tanh(xi(t− 1))

]
+

N∑
j=1

aijxj(t) (12.35)

with connection weight matrices

B =

[
2 −0.11
−5 3.2

]
, D =

[
−1.6 −0.1
−0.18 −2.4

]
and linear coupling determined by the matrix A = (aij)N×N , which is the negative of
a graph Laplacian associated to a small world network graph on 100 nodes. We define
tanh(y) = [ tanh(y1) tanh(y2) ]ᵀ for y = (y1, y2) ∈ R2, and ε ≥ 0 is a neural activation
strength parameter. It is known [65] that when decoupled, the individual nodes determined
by the dynamical system

ẏ = −y + C tanh(y(t)) +D tanh(y(t− 1))

exhibit chaotic dynamics with a double-scroll-like attractor, and that the origin is unstable.
Thus, when ε = 1, the diffusivity condition implies that the nonlinear network model
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(12.35) is chaotic and the origin is unstable. However, when ε = 0, the origin is globally
asymptotically stable. There is therefore a bifurcation at some critical activation strength
ε∗ ∈ (0, 1).

Our goal is to robustly stabilize the network (12.35) in a parameter neighbourhood
of ε∗ with frequency h = 1 and period k = 1 using our uniform CPM. We will assume
decoupled controls, so that we take our candidate jump functionals from the diagonal
subspace Bdiag. To introduce some heterogeneity, we will assume that some nodes are
more difficult to control than others, and we will incorporate this into the associated cost
functional. Specifically, nodes with a higher degree of connectivity will be assigned a higher
cost. We will also attempt to minimize the number of controlled nodes.

Our methodology is as follows. First, we recall the small-world network topology and
introduce the cost functional we will be using in Section 12.5.1. Then, we encode the
parameter-dependent system (12.35) as the user input to DDE-BIFTOOL and use the
included GetStability routine to determine the critical parameter ε∗ where the bifurcation
occurs, and determine its type. We also use this routine to compute the critical eigenvalues
λ = ±iω on the imaginary axis. We then implement the uniform CPM at the critical
parameter ε∗ and determine a locally cost-minimizing controller B0 and a generating probe
element P ∗ for a target local convergence rate O(e−

t
5 ) – that is, we take the target rate

parameter to be γ = 1
5
. These steps are carried out in Section 12.5.2.

The feasible jump functional B0 is cost-minimizing in the affine space M−1(P ∗) but
might not minimize the number of controlled nodes. We provide a solution to this secondary
minimization problem in Section 12.5.3.

In Section 12.5.4 we assess the performance of the jump functional derived using the
uniform CPM in conjunction with the node-minimizing process of Section 12.5.3. Specif-
ically, we compare the output of the neural network model with and without our pinning
control at a range of parameters ε ∈ [ε∗, ε∗2). The bifurcation is suppressed in this regime,
but a secondary bifurcation point is identified at the parameter value ε = ε∗2 < 1. The
implications of this bifurcation are discussed.

12.5.1 Network topology, cost functional and the trivializing UPCC

Small-world networks [91] capture a network topology involving both a high degree of
clustering and short average path-lengths. They can be constructed by starting with a
ring lattice on N vertices with k edges per vertex (specifically, k nearest neighbours) and
“rewiring” each edge randomly with a specified probability, p.
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Figure 12.2: The small-world graph used in the example of Section 12.5. Nodes are coloured
with intensity varying based on their degree, while the sizes indicate relative degree. Pa-
rameters were N = 100 nodes with initial connections to k = 8 nearest neighbours and
rewiring probability p = 0.3.

We wrote a script in MATLAB R2018a to generate a Watts-Strogatz small-world graph
G on N = 100 vertices with parameters k = 8 and p = 0.3. The matrix A defining
the linear coupling in (12.35) is then obtained by taking the negative graph Laplacian:
A = −laplacian(G). The computed graph that was used in this example is displayed in
Figure 12.2.

The degree of node i is precisely |aii| ≥ 1. Based on this, if we uniquely write B ∈ Bdiag
as a tupleB = (B1, . . . , B100) forBi ∈ R2×2, we can define the cost functional C : Bdiag → R,

C(B) =
1

∆(G)

100∑
i=1

|aii|〈Bi, Bi〉F ,

where 〈·, ·〉F is the Frobenius inner product on R2×2. Thus, the cost of controlling node i
is linearly scaled relative to its degree, normalized with respect to the maximum degree.
This cost functional is projective with inner product

〈X, Y 〉 =
1

∆(G)

100∑
i=1

|aii|〈Xi, Yi〉F .
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As such, the trivializing UPCC has an explicit formula from Proposition 12.4.1:

C̃(P ) =

∣∣∣∣∣
∣∣∣∣∣M+

0 (Z − P )−
b∑

j=1

〈M+
0 (Z − P ),mj〉mj

∣∣∣∣∣
∣∣∣∣∣
2

(12.36)

and || · || =
√
〈·, ·〉 is the norm induced by 〈·, ·〉.

12.5.2 Precomputation and uniform CPM

DDE-BIFTOOL [30] was used to identify parameters where bifurcations in the neural
network model (12.35) occur. The tool detected a Hopf bifurcation (centre subspace of
dimension c = 2) at parameter ε = 0.5621. Further numerical examination revealed that
the trivial equilibrium is locally stable at parameter ε ≤ 0.5620, and unstable at parameter
ε ≥ 0.5621. For our purposes, we chose ε∗ = 0.5621 to be the approximate bifurcation point.
The critical eigenvalues were also computed by DDE-BIFTOOL, and it was found that they
are λ∗ = 0.0001± 0.375i. Note that the real part is positive, which is a consequence of our
choosing the parameter on the unstable side of the bifurcation point. We allow ourselves
to be content with this approximation.

To calculate the matrices Φ(t) and Ψ(t), we numerically computed the right and left
eigenvectors associated to the eigenvalue of the characteristic matrix ∆(λ∗; ε∗) with the
smallest absolute value. If ε∗ were the true bifurcation parameter rather than a numerical
approximation and λ∗ was the true critical eigenvalue, we would merely compute the kernel.
Then, we calculate the matrices Φ(t) and Ψ(t) following Remark 12.3.2. The rank of Φ(0)
and Ψ(0) were both verified to be equal to 2. Following this we defined a three-dimensional
cell array U = cell(100, 2, 2) and populated it with basis elements for Bdiag according to
the assignment

U{i, j, k} = (0, . . . , 0, Ejk, 0, . . . , 0),

with the nonzero entry is in the ith position. An ordered basis {V1, . . . , V400} was then
defined according to the rule

V4(i−1)+2(j−1)+k = U{i, j, k}, i = 1, . . . , 100, j, k ∈ {1, 2}.

Then, relative to the aforementioned ordered basis for Bdiag and the standard ordered
basis {E11, E21, E12, E22} for R2×2, the map M0 : Bdiag → R2×2 was vectorized as a 4× 400
matrix. The result was rank 4, and it follows that our example satisfies Corollary 12.3.2.2
with η = 0 (after a change of coordinates, treating ε∗ as zero). Following Remark 12.3.3,
we are guaranteed that the uniform CPM possesses at least one feasible solution.
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The probe program (PC̃) was solved in MATLAB R2018a using the smooth constrained
solver fmincon from the optimization toolbox. The explicit formula for the trivializing
UPCC from (12.36) was used, and we supplied the solver with an explicit gradient. The
solver was initialized at the infeasible matrix (vectorized)

P 0 =

[
100 100
100 100

]
and converged quickly to the feasible matrix (vectorized)

P ∗ =

[
0.7317 0.2672
−1.4729 0.3783

]
satisfying first-order optimality. As the objective is not actually smooth, the optimality
is not guaranteed (internally, MATLAB checks stationarity conditions using finite dif-
ferences, and since the spectral radius map is generally non-differentiable these are not
typically informative). We attempted to refine the solution using the non-smooth solver
patternsearch, but to standard tolerances no improvement could be made. Proposition
12.4.1 provides a feasible jump functional B0 = X(P ∗), but as we mentioned earlier, this
candidate does not minimize the number of controlled nodes.

12.5.3 Minimizing the number of controlled nodes

As discussed in the outline, the jump functional B0 minimizes the cost functional, but it
does not necessarily control a minimal number of nodes. To address this, we recall that
because of Lemma 12.4.3 and Proposition 12.4.1, the cost functional is in fact constant on
an affine hyperplane. Specifically, this hyperplane is

H(P ∗) =

{
M+

0 (P ∗ − Z) +Qy −
b∑

j=1

〈M+
0 (P ∗ − Z) +Qy,mj〉mj : y ∈ U

}
,

=

{
B0 +Qy −

b∑
j=1

〈Qy,mj〉mj : y ∈ U

}
,

where Q = I−M+
0 M0. Thus, if we wish to minimize the number of controlled nodes while

maintaining the minimal cost, it suffices to solve the following sequence of unconstrained
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nonlinear programs:

minimize
100∑
i=1

tanh
(
µ||B0

i + πi(Qy
)
||2),

subject to y ∈ U ,
(Nµ)

where we define the linear operator Q : U → U by

Qy = Qy −
b∑

j=1

〈Qy,mj〉mj,

and πi(B1, . . . , B100) = Bi is the projection onto the ith factor. The objective function of
(Nµ) precisely counts the number of nodes controlled by the candidate B0 +Qy ∈ H(P ∗)
in the limit µ→∞. Consequently, if yµ is a solution for parameter µ and yµ → y∗, then

B∗ = B0 +Qy∗ (12.37)

is a feasible jump functional having optimal cost that controls a minimal number of nodes.

After appropriate vectorization consistent with Section 12.5.2, the nonlinear program
(Nµ) was solved using the unconstrained solver fminunc from MATLAB R2018a initially
with parameter µ = 1 and initialized at y = 0. Subsequently, the program was solved with
increments µ 7→ µ + 1

2
and initialized at the previous solution. Upon reaching µ = 3, the

solver made step sizes smaller than 10−7 and we manually halted the process.

The resulting jump functional B∗ = (B∗1 , . . . , B
∗
100) was cleaned by setting B∗i 7→ 0 if

||B∗i ||F < 10−4, where || · ||F is the Frobenius norm. The result was a jump functional
that pinned fourteen nodes. Defining ||B∗i || to be the absolute gain of node i, a plot of
the absolute gain relative to the degree is provided in Figure 12.3. From this figure, it is
clear that our algorithm prioritized the pinning of nodes that have a low degree. Indeed,
all nodes with degree 5 and 6 are pinned, and the only other node to be pinned was the
degree 9 node at index 61.

12.5.4 Performance of the controller and a secondary bifurcation

Plots of sample trajectories of the system without the pinning controller are given in Figure
12.4, while those with pinning are provided in Figure 12.5. Several illustrative parameters
ε are used.
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Figure 12.3: Plot of the degree (curve, solid blue) of nodes i = 1, . . . , 100 versus the absolute
gain (stems, dashed dot orange) of node i by the cleaned jump functional obtained by the
uniform CPM for the example in Section 12.5. Fourteen nodes are controlled – the small
gain applied to node 61 is not visible under the scale of the present graph, as the associated
absolute gain was ||B∗61|| = 0.01. Note that more expensive nodes were assigned a lower
gain control, and vice versa.
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(a) ε = 0.5621 (b) ε = 0.59

(c) ε = 0.61 (d) ε = 0.63

Figure 12.4: Sample time series (time on horizontal axis) from random constant initial
conditions drawn from the standard normal distribution, rescaled to the interval [−1, 1], for
the example from Section 12.5. The neural activation parameter ε for the given simulation
is listed below its frame. Notice the transition from a stable periodic orbit to a stable
equilibrium in the parameter interval [0.61, 0.63], indicative of another bifurcation point.
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(a) ε = 0.5621 (b) ε = 0.59

(c) ε = 0.61 (d) ε = 0.63

Figure 12.5: Sample time series (time on horizontal axis) from random constant initial
conditions drawn from the standard normal distribution, rescaled to the interval [−1, 1],
with different neural activation parameters. (a) Activation parameter ε = 0.5621; the
trivial equilibrium is quickly stabilized. (b) Activation parameter ε = 0.59; the trivial
equilibrium is exponentially stabilized but with a slightly smaller rate parameter. (c)
Activation parameter ε = 0.61; the trivial equilibrium is stabilized, but the rate parameter
is low. (d) Activation parameter ε = 0.63; the control no longer stabilizes the trivial
equilibrium. A secondary bifurcation has occurred.
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By comparing the two figures, it should be clear that our pinning control B∗ derived
from the uniform CPM with subsequent node minimization succeeds in exponentially sta-
bilizing the trivial equilibrium in the activation parameter interval [ε∗, 0.61], while when
our controller is not present, the equilibrium is unstable. Increased volatility and decreased
convergence rates follow as the parameter increases, and a secondary bifurcation occurs
somewhere in the parameter interval [0.61, 0.63]. This is consistent with our observation
that the system without the pinning control appears to undergo a bifurcation in the inter-
val [0.61, 0.63]; see Figure 12.4. We suggested in the preamble to Section 12.4.5 that such
secondary bifurcations of the model without impulses may be responsible for poor perfor-
mance or complete failure of the impulsive controller if the parameter too far away from
the bifurcation point. The presence of a secondary bifurcation in the interval [0.61, 0.63]
in both cases – with and without the controller – is consistent with this claim.

12.6 Strengths and weaknesses of the CPM

We have proposed a method of stabilizing a candidate equilibrium point of an autonomous
delay dynamical system at or near a bifurcation point using a novel impulsive stabilization
approach based on invariant manifold theory. We have also introduced cost structure;
our method identifies a jump functional (impulsive controller) that minimizes a given cost
functional, should certain controllers have cost associated to their implementation. The
method, which we call the centre probe method (CPM), takes advantage of the dimension
reduction inherent to the dynamics on the centre manifold. If the cost is projective, the
CPM can be implemented with great efficiency.

Our method differs from the majority of impulsive stabilization methods in that one
does not design the controller to satisfy a system of linear matrix inequalities, but rather
solves a pair of optimization problems. The most computationally expensive of the two –
the probe program (PC̃) – is done in a low-dimensional space determined by the number
of eigenvalues crossing the imaginary axis at the bifurcation point. The second one – the
inverse probe program (YP ) – is convex, smooth and unconstrained (in an appropriate
coordinate system), and can be solved efficiently using out-of-the-box nonlinear solvers.
This is the greatest strength of our method compared to those derived from Lyapunov
functionals based on matrix inequalities: constraint satisfaction for the CPM is done in a
low-dimensional space, whereas the matrix inequalities of the other methods are checked
in the original (potentially) high-dimensional space and must also be synthesized therein.

Being an inherently local method, the CPM does not rely on Lipschitzian conditions
on the vector field or any boundedness constraints. This is one of its strengths compared
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to Lyapunov functional-based sufficient conditions for impulsive stabilization. The latter
universally require Lipschitzian or Lipschitz-like conditions on the vector field in order to
rigorously ensure stability. This being said, the locality of the method is also a weakness:
it does not guarantee global stabilization.

A weakness of our method in its current state is that such secondary bifurcations are
barriers to further impulsive stabilization. Suppose for example that the uniform CPM is
implemented at scalar parameter ε = 0 and a controller B(t) is found, but that a secondary
bifurcation occurs at the parameter ε∗ 6= 0. That is, the system

ẋ = f(xt, ε), t /∈ 1

h
Z

∆x = B(t)xt− , t ∈ 1

h
Z

undergoes a bifurcation at the parameter ε = ε∗. Technically, the CPM cannot be applied at
this parameter because the system is no longer an autonomous delay differential equation.
In principle, the CPM could be extended to this case, but the computation of basis functions
in the centre fiber bundle becomes more difficult, and these are absolutely essential to the
CPM. A discretization scheme such as the one described in Section 4.6.3 could be helpful
in this endeavor.

Another limitation of our method is that it cannot in general be used to stabilize an
unstable equilibrium point in a delay differential equation. The method only has a chance
of success if there is a sufficiently nearby perturbation of the system such that the equi-
librium satisfies the spectral gap condition. In the absence of such a nearby perturbation,
traditional impulsive stabilization approaches based on matrix inequalities derived from
Lyapunov functional-based sufficient conditions for stability are more appropriate. One
possible way to extend the centre probe method to this more general setting would be to
use data from the centre-unstable manifold to design the controller and iterate the process
if necessary.

12.7 Proofs

This section contains proofs of most results of the chapter. Some have been omitted since
they are similar to others.
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Proof of Proposition 12.3.1

1. That the set Ỹ(ε, h; γ) is closed follows by the continuity of the spectral radius function
ρ : Rc×c → R+. To prove the equality (12.23), consider the dynamics on the c-dimensional
slice of the parameter-dependent centre manifold at the point x = 0, for small parameter
(ε, B) ∈ Rp × U of the impulsive functional differential equation

ẋ = L0xt + L(ε)xt +O(||xt||2), t /∈ 1

h
Z (12.38)

∆x = B(t)xt− , t ∈ 1

h
Z, (12.39)

where we have overloaded the notation and identify B with the functional on the right-hand
side of (12.7) and, if k > 1, using (12.12). At the parameter (ε, B) = 0, the centre fiber
bundle (equivalently, centre subspace) is determined by the homogeneous linear equation
without impulses

ẏ = L0yt,

so the claim concerning Φ(t) and Ψ(t) as being basis matrices associated to the eigenspaces
E0 and Eᵀ0 is true – see [39]. Moreover, we trivially have the Floquet decomposition

Φt(θ) = Φ(0)eΛθeΛt := Q(θ)eΛt

due to the characterization d
dt

Φ(t) = Φ(t)Λ. This implies that Qt = Φ0 is constant in t.
The projection operator Pc(t) is constant and we therefore have

Pc(t)χ0 = Φ0〈Ψ0,Φ0〉−1〈Ψ0, χ0〉 = QΓΨ(0) = Φte
−ΛtΓΨ(0)

Applying Theorem 8.1.2, the dynamics on the c-dimensional slice of the parameter-dependent
centre manifold are given to linear order in z ∈ Rc by

ż = Λz + ΓΨ(0)L(ε)Φ0z +O(||z||2), t /∈ 1

h
Z (12.40)

∆z = ΓΨ(0)B(t)Φ0z(t−), t ∈ 1

h
Z, (12.41)

for (ε, B) sufficiently small. The monodromy matrix associated to the equilibrium z = 0
is precisely Mε,h(B), and the dynamics restricted to the centre manifold therefore has
O(e−γt) as a convergence rate if and only if ρMε,h(B) ≤ e−γ/h. Since all other Floquet
exponents of the linearization of (12.38)–(12.39) have strictly negative real parts and the
spectrum of the monodromy operator is upper hemicontinuous with respect to perturba-
tions in (ε, B) – see the perturbation theory of compact operators in the reference [51] –
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the same convergence rate is achieved locally near x = 0 in the original nonlinear system
provided γ < σ and |(ε, B)| is sufficiently small, hence the intersection in equation (12.23).
The converse follows by the same argument.

2. Since the cost C : U → R is nonnegative, the set X = Ch(Ỹ(ε, h; γ)) ⊂ R is bounded

below, so there exists a sequence Bn ∈ Ỹ(ε, h; γ) such that C(Bn)→ infX as n→∞. The
sequence Bn cannot be unbounded because C is radially unbounded, from which we con-
clude by the Bolzano-Weierstrass theorem that Bn admits a convergent subsequence having
a limit Bε ∈ Ỹ(ε, h; γ), with the latter inclusion justified by part 1. As C is continuous, we
conclude that C(Bε) = infX.

Proof of Theorem 12.3.1

To begin, we assume k = 1. If there exists a linear jump functional B∗ such that
Mε,h(B

∗) = e−γ/hI, then the nonemptiness of Ỹ(ε, h; γ) will follow. Thus, it suffices
to solve the equation

(I + ΓΨ(0)B∗Φ0) exp

(
1

h
(Λ + Ψ(0)L(ε)Φ0)

)
= e−γ/hI. (12.42)

If Φ(0) and Ψ(0) are rank c, there exists a left-inverse Φ+(0) and right-inverse Ψ+(0) such
that Φ+(0)Φ(0) = In×n and Ψ(0)Ψ+(0) = Ic×c. Then, the jump functional B∗ε;γ defined by

B∗ε;γξ = Ψ+(0)Γ−1(e−γ/h − 1) exp

(
−1

h
(Λ + Ψ(0)L(ε)Φ0)

)
Φ+(0)ξ(0)

satisfies (12.42). Since B∗ε;γ → 0 as γ → 0+, it follows by minimality that also Ch(B∗ε;γ)→
0 as γ → 0+ for any selection γ 7→ B∗ε;γ of cost-minimizing jump functionals for rate
parameter γ. As C is continuous and positive-definite, we conclude that B∗ε;γ → 0.

If k > 1, consider the period k cycle of jump functionals B = (B∗ε;γ/k, . . . , B
∗
ε;γ/k). Then

Mε,h(B) = e−γ/hI and the argument proceeds as before. The intersections in (12.23)
are nonempty because we have just shown that by taking γ → 0, we can construct an
arbitrarily small element of Ỹ(ε, h; γ).

Proof of Corollary 12.3.1.1

If c = 1, then Φ(t) is a n× 1 column vector and, as it constitutes a basis for E0, it cannot
be identically zero. Moreover, as Φ(t) = Φ(0)eΛt, we cannot have Φ(0) = 0. Consequently,
Φ(0) has rank one. The same argument applies to Ψ(0).
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If L0φ = Cφ(0) for an n× n matrix C, then Φ(t) = Z(t)M for some n× c with matrix
M and Z(t) is the fundamental matrix solution of the finite-dimensional linear equation
ż = Cz satisfying Z(0) = I. As each column of Φ(t) is a linear combination of the columns
of Z(t), this set of columns is linearly independent if and only if M has maximal rank. As
c ≤ n, it follows that M has rank c, so that the same is true of Φ(0). The same argument
applies to Ψ(0).

Proof of Lemma 12.4.4

Let x ∈M−1
1 (X) and y ∈M−1

1 (Y ). Then, we have

M1(tx+ (1− t)y) = M0(tx+ (1− t)y) + Z

= t(M0(x) + Z) + (1− t)(M0(y) + Z)

= tM1(x) + (1− t)M1(y)

= tX + (1− t)Y.

Consequently, tx + (1 − t)y ∈ M−1
1 (tX + (1 − t)Y ) for all t ∈ [0, 1], x ∈ M−1

1 (X) and
y ∈M−1

1 (Y ), from which the inclusion (12.28) follows.

Proof of Theorem 12.4.1

Before we begin, we remark that by virtue of convexity, any local optimum of the program
(YP ) is automatically a global optimum. As such, we will refer to these as global optimums.

Let C̃ be a GPCC, let P be a global optimum for (Y ) and B be a global optimum for
the problem (YP ). Suppose by way of contradiction that B is not a global optimum for
(Y ). By Proposition 12.3.1, there must exist a global optimum B∗, and as C̃ is a GPCC
we have C̃ ◦Mk(B

∗) < C̃ ◦Mk(B). But P =Mk(B), and the latter inequality implies P
is not optimal for the program (PC̃), a contradiction. Therefore, B is a global optimum
for (Y ).

Now, let C̃ be a LPCC, let P be a local optimum for (Y ) and B be a global optimum
for the problem (YP ). Suppose by way of contradiction that B is not a local optimum for
(Y ). Then, there exists a sequence Bn → B such that C(Bn) < C(B). By continuity of
Mk : Uk → (Rc×c)k, we have Pn := Mk(Bn) → Mk(B) = P , but local optimality of P
implies that for n sufficiently large, C̃(P ) ≤ C̃(Pn). Using the LPCC property (type 1 or
type 2) of C̃, it follows that C(B) ≤ C(Bn) for n sufficiently large, which is a contradiction.
The result follows.
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Proof of Theorem 12.4.2

Radial unboundedness follows from radial unboundedness of C : U → R+. For continuity,
we remark that C̃ is the optimal value function associated to the family of convex programs
(YP ) indexed by the parameter P ∈ Pk. We haveM−1

k : Pk ⇒ Uk is closed-valued, convex-
valued, and can be shown to be continuous (see the characterization provided by Lemma
12.4.3). The cost C is convex and continuous, and the solution set is bounded for each P
due to the radial unboundedness of C. Using Theorem 1 of [84], we obtain continuity of
C̃. Using Lemma 12.4.4, Lemma 12.4.6 and the convexity of C, if we use the subscript
notation P = (P0, . . . , Pk−1) for arbitrary k-probe elements, then

C̃(tX + (1− t)Y ) = min{C(V ) : V ∈M−1
k (tX + (1− t)Y )}

= min{C(V0, . . . , Vk−1) : Vi ∈M−1
1 (tXi + (1− t)Yi)}

≤ min{C(V0, . . . , Vk−1) : Vi ∈ tM−1
1 (Xi) + (1− t)M−1

1 (Yi)}

=
k−1∑
i=0

min{C(txi + (1− t)yi) : xi ∈M−1
1 (Xi), yi ∈M−1

1 (Yi)}

≤
k−1∑
i=0

min{tC(xi) + (1− t)Ch(yi) : xi ∈M−1
1 (Xi), yi ∈M−1

1 (Yi)}

≤ tC̃(X) + (1− t)C̃(Y ),

and we conclude that C̃ is convex.

Next we prove that C̃ is a GPCC. If B∗ is a global optimum and B is feasible, then

C̃ ◦Mk(B
∗) = min

x∈M−1
k (Mk(B∗))

C(X) = C(B∗)

≤ min
x∈M−1

k (Mk(B))
C(X) = C̃ ◦Mk(B).

B is also a global minimum if and only if C(B∗) = C(B), and in this case the calculation
above is simplified. We have

C̃ ◦Mk(B
∗) = C(B∗) = C(B) = C̃ ◦Mk(B).

Our final task is to prove that C̃ is a LPCC. We have

C̃ ◦Mk(B) = min
X∈M−1

k (Mk(B))
C(X) ≤ C(B)

because B ∈M−1
k (Mk(B)). Equality holds precisely when B satisfies (12.29).
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Proof of Corollary 12.4.3.1

Under the assumption of the corollary, the set {x ≥ 0 : ∀|ε| ≤ x, ρ(Mε,h(B)) ≤ e−γ/h} is
bounded above, and therefore has a supremum, η. By continuity of the spectral radius, it
follows that B is a feasible solution for the program (Y η). To see that it is optimal, we

recall that due to part 2 of Proposition 12.3.2, we have the inclusion Ỹη(h; γ) ⊆ Ỹ(0, h; γ).

Since B minimizes (locally or globally) C : Ỹ(0, h; γ)→ R and is feasible for (Y η), it must

also minimize (locally or globally) C : Ỹη(h; γ)→ R.
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Chapter 13

Conclusion

Establishing a dynamical systems framework for impulsive RFDE from linear systems to
nonlinear systems, we have demonstrated the existence and smoothness of centre mani-
folds at nonhyperbolic equilibrium points. In contrast to autonomous systems of ordinary
differential equations or functional differential equations, these manifolds are time-varying
objects – they would more accurately be referred to as invariant fibre bundles. We proved
that the centre manifold is locally attracting in the absence of an unstable fibre bundle
and, in particular, every small solution converges exponentially to a particular solution on
the centre manifold. We obtained two abstract equations – one an integral equation, and
the other an impulsive differential equation – that essentially determine the dynamics on
the centre manifold. By introducing a coordinate system, we made this differential equa-
tion concrete and were able to prove that the centre manifold is sufficiently regular with
respect to deviation in time that it satisfies a boundary-value problem. By taking Taylor
expansions, one can compute the centre manifold to any desired level of truncation.

Using our centre manifold theory, we established analogues of the fold bifurcation and
Hopf bifurcation for impulsive delay differential equations. The fold bifurcation condition
generically results in a fold of periodic solutions, while the Hopf condition involves the
birth of an invariant cylinder. We studied (by way of numerical methods) a particular
instance of the latter bifurcation in a model of infectious disease transmission with a finite
incubation period and pulse vaccination. We detected a Hopf point along a branch of
nontrivial endemic periodic solutions and witnessed the birth of an attracting invariant
cylinder in the extended phase space.

We applied the centre manifold theory to the synthesis of impulsive stabilization schemes.
Starting from an autonomous functional differential equation at a nonhyperbolic equilib-
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rium with a trivial unstable subspace, we outlined conditions under which the equilibrium
can be impulsively stabilized while guaranteeing a specified convergence rate and minimiz-
ing a given user-specified cost. We then used the low-dimensional properties of the centre
manifold to reduce the complexity of the associated optimization problem. We refer to the
latter as the centre probe method.

Some additional results developed in this thesis include a variation-of-constants for-
mula for linear equations in the phase space RCR of right-continuous regulated functions,
a thorough investigation into the properties of homogeneous periodic systems including
Floquet theory, a heuristic monodromy operator discretization scheme, and a result on the
smoothness of solutions of impulsive RFDE with respect to initial conditions. On the topic
of invariant manifolds, we proved the existence and smoothness of unique, local unstable
and stable manifolds. We were also able to obtain a linearized stability/instability result.

There are several ways in which the contributions of this thesis could be extended. For
example, there are a few technical conditions that we have assumed to guarantee temporal
regularity (i.e. effective PC1,m regularity at zero) of the Euclidean space representation
of the centre manifold. One of these is the condition that the matrices t 7→ Yj(t) are
continuous from the right and have limits on the left. Establishing conditions under which
this assumption holds generally would improve the robustness of the centre manifold theory.

The overlap condition is needed to get a concrete Euclidean space impulsive differen-
tial equation for the coordinate dynamics on the centre manifold. This condition can be
circumvented by defining additional states in the same way we did in Section 11.1.1 for
the SIR model. We find this approach unsatisfying, however. We suspect that the appar-
ent difficult occurs because the one-point left limit is used to define the jump condition
in (1.2). If a regulated left-limit were used instead, we conjecture the invariant manifold
theory would be more transparent and would not rely on an overlap-type condition to en-
sure concrete dynamics on the invariant manifolds. This might, however, cause additional
complications, since the regulated left-limit operator is not a map from RCR into itself,
and to compute x−t one requires data on an interval [t− (r + ε), t] for some finite ε > 0.

We have established analogues of the fold and Hopf/Neimark-Sacker bifurcation for
impulsive delay differential equations with a single delay. As for other codimension-one
bifurcations, there is also the period-doubling bifurcation from maps that, given the dis-
crete properties we have exploited, should have a natural generalization to periodic im-
pulsive delay differential equations. In the same way, one could study how other generic
codimension-two bifurcations of maps manifest themselves in infinite-dimensional impul-
sive RFDE using the centre manifold reduction.

The monodromy operator discretization scheme we proposed in Section 4.6.3 is far from
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rigorous. It would be incredibly beneficial to have convergence guarantees for this scheme
with respect to the Floquet multipliers and Floquet eigensolutions after an appropriate
embedding into the phase space is established. The scheme could also be extended to allow
for more general functional dependence such as distributed delays, multiple delays and
multiple impulses per period. This would allow for the numerical analysis of bifurcations
involving more complicated linear terms.

The centre probe method is clearly effective at reducing the complexity of the impulsive
stabilization problem, but as it stands the applicability is limited because we require the
unstable subspace to be trivial. There is a natural way to extend the method so that
one designs the controller using data from the centre-unstable fibre bundle, treating the
controller as a perturbation in the centre-unstable manifold. For weak instabilities, such a
method could very well stabilize the equilibrium, and the same computational complexity
reduction should be expected. For stronger instabilities, successive iteration of the method
may be helpful, although guaranteeing convergence of such an iterative method would be
difficult. This would inevitably also require efficient numerical methods to approximate
the centre-unstable fibre bundle of an arbitrary homogeneous linear impulsive RFDE. This
could be accomplished by improvements to our monodromy operator discretization scheme.
More broadly speaking, one could envision other forms of invariance-based stabilization for
infinite-dimensional systems based on the same idea of designing a controller using centre-
unstable-manifold data. The methodology need not be restricted to impulsive controllers,
and there is no reason to apply the method solely to delay differential equations.
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[70] J. Páez Chávez, D. Jungmann, and S. Siegmund, Modeling and Analysis of
Integrated Pest Control Strategies via Impulsive Differential Equations, International
Journal of Differential Equations, 2017 (2017), pp. 1–18.

[71] K. J. Palmer, A generalization of Hartman’s linearization theorem, Journal of
Mathematical Analysis and Applications, 41 (1973), pp. 753–758.

[72] Y. Pei, S. Liu, S. Gao, S. Li, and C. Li, A delayed SEIQR epidemic model with
pulse vaccination and the quarantine measure, Computers and Mathematics with
Applications, 58 (2009), pp. 135–145.

[73] Y. Pei, S. Liu, C. Li, and L. Chen, The dynamics of an impulsive delay SI model
with variable coefficients, Applied Mathematical Modelling, 33 (2009), pp. 2766–2776.
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