36,744 research outputs found

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Future-based Static Analysis of Message Passing Programs

    Get PDF
    Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.Comment: In Proceedings PLACES 2016, arXiv:1606.0540

    CAN Fieldbus Communication in the CSP-based CT Library

    Get PDF
    In closed-loop control systems several realworld entities are simultaneously communicated to through a multitude of spatially distributed sensors and actuators. This intrinsic parallelism and complexity motivates implementing control software in the form of concurrent processes deployed on distributed hardware architectures. A CSP based occam-like architecture seems to be the most convenient for such a purpose. Many, often conflicting, requirements make design and implementation of distributed real-time control systems an extremely difficult task. The scope of this paper is limited to achieving safe and real-time communication over a CAN fieldbus for an\ud existing CSP-based framework

    Automatic Verification of Erlang-Style Concurrency

    Full text link
    This paper presents an approach to verify safety properties of Erlang-style, higher-order concurrent programs automatically. Inspired by Core Erlang, we introduce Lambda-Actor, a prototypical functional language with pattern-matching algebraic data types, augmented with process creation and asynchronous message-passing primitives. We formalise an abstract model of Lambda-Actor programs called Actor Communicating System (ACS) which has a natural interpretation as a vector addition system, for which some verification problems are decidable. We give a parametric abstract interpretation framework for Lambda-Actor and use it to build a polytime computable, flow-based, abstract semantics of Lambda-Actor programs, which we then use to bootstrap the ACS construction, thus deriving a more accurate abstract model of the input program. We have constructed Soter, a tool implementation of the verification method, thereby obtaining the first fully-automatic, infinite-state model checker for a core fragment of Erlang. We find that in practice our abstraction technique is accurate enough to verify an interesting range of safety properties. Though the ACS coverability problem is Expspace-complete, Soter can analyse these verification problems surprisingly efficiently.Comment: 12 pages plus appendix, 4 figures, 1 table. The tool is available at http://mjolnir.cs.ox.ac.uk/soter

    On the robustness of Herlihy's hierarchy

    Get PDF
    A wait-free hierarchy maps object types to levels in Z(+) U (infinity) and has the following property: if a type T is at level N, and T' is an arbitrary type, then there is a wait-free implementation of an object of type T', for N processes, using only registers and objects of type T. The infinite hierarchy defined by Herlihy is an example of a wait-free hierarchy. A wait-free hierarchy is robust if it has the following property: if T is at level N, and S is a finite set of types belonging to levels N - 1 or lower, then there is no wait-free implementation of an object of type T, for N processes, using any number and any combination of objects belonging to the types in S. Robustness implies that there are no clever ways of combining weak shared objects to obtain stronger ones. Contrary to what many researchers believe, we prove that Herlihy's hierarchy is not robust. We then define some natural variants of Herlihy's hierarchy, which are also infinite wait-free hierarchies. With the exception of one, which is still open, these are not robust either. We conclude with the open question of whether non-trivial robust wait-free hierarchies exist

    Symmetric and Synchronous Communication in Peer-to-Peer Networks

    Get PDF
    Motivated by distributed implementations of game-theoretical algorithms, we study symmetric process systems and the problem of attaining common knowledge between processes. We formalize our setting by defining a notion of peer-to-peer networks(*) and appropriate symmetry concepts in the context of Communicating Sequential Processes (CSP), due to the common knowledge creating effects of its synchronous communication primitives. We then prove that CSP with input and output guards makes common knowledge in symmetric peer-to-peer networks possible, but not the restricted version which disallows output statements in guards and is commonly implemented. (*) Please note that we are not dealing with fashionable incarnations such as file-sharing networks, but merely use this name for a mathematical notion of a network consisting of directly connected peers "treated on an equal footing", i.e. not having a client-server structure or otherwise pre-determined roles.)Comment: polished, modernized references; incorporated referee feedback from MPC'0
    • …
    corecore