6 research outputs found

    ZCS redux

    Get PDF
    Learning classifier systems traditionally use genetic algorithms to facilitate rule discovery, where rule fitness is payoff based. Current research has shifted to the use of accuracy-based fitness. This paper re-examines the use of a particular payoff-based learning classifier system - ZCS. By using simple difference equation models of ZCS, we show that this system is capable of optimal performance subject to appropriate parameter settings. This is demonstrated for both single- and multistep tasks. Optimal performance of ZCS in well-known, multistep maze tasks is then presented to support the findings from the models

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    Solving real-world routing problems using evolutionary algorithms and multi-agent-systems

    Get PDF
    This thesis investigates the solving of routing problems using Evolutionary Algorithms (EAs). Routing problems are known to be hard and may possess complex search spaces. Evolutionary algorithms are potentially powerful tools for finding solutions within complex search spaces. The problem investigated is the routing of deliveries to households within an urban environment; the most common instance of this problem is that of daily postal deliveries. A representation known as Street Based Routing (SBR) is presented. This is a problem representation that makes use of the real world groupings of streets and houses. This representation is an indirect problem representation designed specifically for use with EAs. The SBR representation is incorporated within an EA and used to construct delivery routes around a variety of problem instances. The EA based system is compared against a Travelling Salesman Problem (TSP) solver, and the results are presented. The EA based system produces routes that are on average slightly longer than those produced by the TSP solver. Real world problems may often involve the construction of a network of delivery routes that are subject to multiple hard and soft constraints. A Multi Agent System (MAS) based framework for building delivery networks is presented that makes use of the SBR based EA presented earlier. Each agent within the system uses an EA to construct a single route. Agents may exchange work (via auctions or by directly negotiated exchanges) allowing the optimisation of their route. It is demonstrated that this approach has much potential and is capable of constructing delivery networks meeting set constraints, over a range of problem instances and constraint values.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Solving Real-World Routing Problems using Evolutionary Algorithms and Multi-Agent-Systems.

    Get PDF
    This thesis investigates the solving of routing problems using Evolutionary Algorithms (EAs). Routing problems are known to be hard and may possess complex search spaces. Evolutionary algorithms are potentially powerful tools for finding solutions within complex search spaces.The problem investigated is the routing of deliveries to households within an urban environment; the most common instance of this problem is that of daily postal deliveries. A representation known as Street Based Routing (SBR) is presented. This is a problem representation that makes use of the real world groupings of streets and houses. This representation is an indirect problem representationdesigned specifically for use with EAs. The SBR representation is incorporated within an EA and used to construct delivery routes around a variety of probleminstances. The EA based system is compared against a Travelling Salesman Problem (TSP) solver, and the results are presented. The EA based system producesroutes that are on average slightly longer than those produced by the TSP solver.Real world problems may often involve the construction of a network of delivery routes that are subject to multiple hard and soft constraints. A Multi Agent System (MAS) based framework for building delivery networks is presented thatmakes use of the SBR based EA presented earlier. Each agent within the system uses an EA to construct a single route. Agents may exchange work (via auctionsor by directly negotiated exchanges) allowing the optimisation of their route. It is demonstrated that this approach has much potential and is capable of constructingdelivery networks meeting set constraints, over a range of problem instances and constraint values

    Distributed learning control of traffic signals

    No full text
    © Springer-Verlag Berlin Heidelberg 2000. This paper presents a distributed learning control strategy for traffic signals. The strategy uses a fully distributed architecture in which there is effectively only one (low) level of control. Such strategy is aimed at incorporating computational intelligence techniques into the control system to increase the response time of the controller. The idea is implemented by employing learning classifier systems and TCP/IP based communication server, which supports the communication service in the control system. Simulation results in a simplified traffic network show that the control strategy can determine useful control rules within the dynamic traffic environment, and thus improve the traffic conditions
    corecore