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Abstract
Learning classifier systems traditionally use genetic algorithms to facilitate rule dis-
covery, where rule fitness is payoff based. Current research has shifted to the use of
accuracy-based fitness. This paper re-examines the use of a particular payoff-based
learning classifier system – ZCS. By using simple difference equation models of ZCS,
we show that this system is capable of optimal performance subject to appropriate pa-
rameter settings. This is demonstrated for both single- and multistep tasks. Optimal
performance of ZCS in well-known, multistep maze tasks is then presented to support
the findings from the models.

Keywords
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ory.

1 Introduction

Learning classifier systems (LCS) (Holland, 1976) traditionally use genetic algorithms
(GAs) (Holland, 1975) to discover new rules/generalizations for a given problem space.
In the first implementation of LCS, rule fitness was viewed as a predictor of expected
future payoff (Holland and Reitman (1978), based on Samuel (1959)). Payoff was only
given to rules that predicted a reward no greater than the actual value received from
the environment “to reflect their accuracy in anticipating this reward” (Holland and
Reitman, 1978). Under Holland’s (1986) later formalism, rule fitness is purely payoff
based and serves as a measure of a given rule’s “usefulness” in receiving external pay-
off. Current research has again focused on the use of accuracy in rule predictions as
the fitness measure, after Wilson (1995) introduced the fundamentally accuracy-based
XCS. In particular, XCS aims to avoid problematic overgeneral rules that receive a high
optimal payoff for some inputs but are suboptimal for other, lower payoff inputs. Since
their average payoff is higher than that for the optimal rules, in the latter case, the
overgenerals tend to displace them, leaving the LCS suboptimal. However, the payoffs
received by overgeneral rules typically have high variance (they are inaccurate predic-
tors) and so have low fitness in XCS.

This paper revisits Wilson’s (1994) ZCS architecture (presented by Wilson immedi-
ately prior to XCS), which “keeps much of Holland’s original framework but simplifies
it to increase understandability and performance” (ibid.). Results from developing a
set of simple difference equation models of ZCS are presented here, which show its po-
tential to perform optimally, avoiding overgenerals through its use of fitness sharing.
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Using a single-step task, it is further shown that the learning rate plays an important
role and that the modeled ZCS can be robust to changes in the task. A multistep version
of the model is then presented, which again shows its potential to perform optimally.
Based on these findings, optimal performance is presented for the first time in tasks
previously used in the literature to examine ZCS: Woods1, Woods14, and Woods101.
ZCS’s original suboptimal performance in these environments, using the parameters in
Wilson (1994), forms the basis of much of its criticism and that of payoff-based fitness
in general.

The paper is arranged as follows. The next section briefly describes ZCS. Section 3
presents the development of a model of ZCS in single-step tasks and the results of its
use. Section 4 presents a multistep version of the model with results. In Section 5, new
experimental results with ZCS are presented. Finally, all results are discussed.

2 ZCS: A Zeroth Level Learning Classifier System

ZCS is a Michigan-style LCS without internal memory, which periodically receives a
binary encoded input from its environment. The system determines an appropriate re-
sponse based on this input and performs the indicated action, usually altering the state
of the environment. Desired behavior is rewarded by providing a scalar reinforcement.
Internally, the system cycles through a sequence of performance, reinforcement, and
discovery on each discrete time-step.

The ZCS rule base consists of a population of P condition-action rules or “clas-
sifiers.” The rule condition is a string of characters from the ternary alphabet 0,1,#,
where # acts as a wildcard allowing generalization. The action is represented by a bi-
nary string, and both conditions and actions are initialized randomly. Also associated
with each classifier is a fitness scalar initialized to a predetermined value S0.

On receipt of an input message, the rule base is scanned, and any rule whose con-
dition matches the message at each position is tagged as a member of the current match
set [M]. An action is selected from those advocated by the rules comprising [M]. In ZCS,
this is performed by a simple roulette-wheel selection policy based on fitness. Once an
action has been selected, all rules in [M] that advocate this action are tagged as mem-
bers of the action set [A], and the system executes the action.

Reinforcement in ZCS consists of redistributing payoff between subsequent action
sets. A fixed fraction β of the fitness of each member of [A] at each time-step is placed in
a “common bucket.” A record is kept of the previous action set [A]-1, and if this is not
empty, then the members of this action set each receive an equal share of the contents
of the current bucket once this has been reduced by a predetermined discount factor
γ. If a reward is received from the environment, then a fixed fraction β of this value
is distributed evenly among the members of [A] divided by their number. Finally, on
each time-step, a tax is imposed on the members of [M] that do not belong to [A] in
order to encourage exploitation of the fitter classifiers. That is, all matching rules not
in [A] have their fitnesses reduced by factor τ thereby reducing their chance of being
selected on future cycles.

Wilson notes that ZCS represents a change to the traditional LCS bucket brigade
algorithm (Holland, 1986), since there is no concept of a rule “bid,” specificity is not
considered explicitly, and bucket payments are reduced by 1− γ on each step. As will
be shown here, ZCS uses fitness sharing within the external payoff niche/matchset
which Holland’s algorithm included in an early description (Holland, 1985) but not in
the more well-known presentation (Holland, 1986) (being mentioned as a possibility in
Holland et al. (1986)). A loose similarity between the bucket brigade and Q-learning
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(Watkins, 1989) is also noted by Wilson (see Dorigo and Bersini (1994) for a general
comparison). However, as noted in Sutton and Barto (1998), the bucket brigade is more
akin to Sutton’s (1996) simple temporal difference learning algorithm called Sarsa (see
Singh et al. (2000) for a recent analysis of Sarsa).

ZCS employs two discovery mechanisms: a GA operating over the whole rule set
at each instance (panmictic) and a covering operator. On each time-step, there is a
probability p of GA invocation. When called, the GA uses roulette-wheel selection to
determine two parent rules based on fitness. Two offspring are produced via mutation
and crossover (single-point). The parents then donate half of their fitnesses to their
offspring who replace existing members of the population. The deleted rules are chosen
using roulette-wheel selection based on the reciprocal of fitness.

If on some time-step, [M] is empty or has a combined fitness of less than f times
the population average, then a covering operator is invoked. A new rule is created
with a condition that matches the environmental message and a randomly selected
action. The rule’s condition is then made less specific by the random inclusion of #’s
at a probability of 0.33 per bit. The new rule is given a fitness equal to the population
average and inserted into the population, overwriting a rule selected for deletion as
before.

Typical parameters used are: Rule base P = 400, initial rule fitness S0 = 20.0, learn-
ing rate β = 0.2, discount factor γ = 0.71, tax τ = 0.1, cover trigger φ = 0.5, GA rate per
time step ρ = 0.25, crossover rate χ = 0.5, and per bit mutation rate µ = 0.002.

Wilson (1994) showed ZCS could almost solve the maze tasks Woods1 and
Woods7, the latter being non-Markov and hence unsolvable without additional mem-
ory mechanisms. Cliff and Ross (1995) showed its inability to solve longer multistep
tasks, proposing forms of overgeneralization as being the cause, as well as implement-
ing the memory register suggested in Wilson (1994). Bull (1998, 1999) used it in a
multiagent context to represent the traders of a simplified market. Tomlinson and
Bull (1998, 1999a, 1999b) incorporated rule linkage for non-Markov domains. Cao et
al. (1999, 2000) used ZCS to control road traffic junctions. Ahluwalia and Bull (1999)
used numerical S-expressions for actions, allowing the action/output to be a function
of the input value. Bagnall (2000) modeled agents in a simulated electricity market
with ZCS. Bull (2001a) incorporated lookahead and latent learning mechanisms. The
self-adaptation of mutation (Bull and Hurst, 2000; Bull et al., 2000) and other parame-
ters (Hurst and Bull, 2001) have also been added.

The mechanisms of ZCS are now modeled, in keeping with the philosophy of ZCS
itself, in a simple way to gain a better understanding of its working.

3 A Simple Model of ZCS

There has been some prior work modeling the role of the GA within LCS explicitly.
Smith and Valenzuela-Rendon (1989) presented a difference equation model of an infi-
nite population, generational GA for an LCS in a single-step task, finding that niching
or fitness sharing was necessary to facilitate task coverage in difficult cases. Horn et al.
(1994) presented a simple Markov chain model of a generational GA for an LCS work-
ing in a single-step task, also examining the effects of fitness sharing and presenting
analysis of niche maintenance times. A steady-state GA version of their model was
presented by Bull (2001b) to highlight the benefits of accuracy-based over payoff-based
schemes, also noting their different sensitivities to mutation rates and behavior in mul-
tistep tasks.
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Table 1: Reward payoffs for the single-step task considered.

Input Action Payoff
1 1 1000
1 0 8
0 1 1000
0 0 3000
# 0 1504
# 1 1000

Bull (2001b) did not consider fitness sharing in his models. As noted above, the role
of fitness sharing was examined in the other models of payoff-based LCS and found to
have a significant effect. It is included in ZCS in a particularly elegant way, based on
Wilson’s (1987) Boole system. Wilson (1987) presented simple equations for the effects
of fitness sharing in Boole, which suggested that at equilibrium, all rules will tend have
the same fitness value and that the number of rules per action set is proportional to
the received payoff for that action. A simple model of ZCS is now developed that
highlights the role of fitness sharing in this payoff-based LCS, as was done in some
of the prior work noted above. The bucket brigade algorithm is then included, which
leads to new results.

3.1 A Steady-State GA with ZCS Fitness Sharing

A simple, steady-state GA without genetic operators can be expressed in the form:

n(k, t + 1) = n(k, t) + n(k, t)R(k, t)− n(k, t)D(k, t) (1)

where n(k, t) refers to the number of individuals of type k (typically, binary strings)
in the population at time t, R(k, t) refers to their probability of reproductive selection,
and D(k, t) to their probability of deletion. Roulette-wheel selection is used in ZCS, i.e.,
R(k, t) = f(k, t)/f(P, t), where f(k, t) is the fitness of individuals of type k and f(P, t)
is the total population fitness. Replacement is inversely proportional to fitness as noted
above.

Table 1 shows the payoffs for the single-step task with a single-bit condition and
single-bit action considered here. It is assumed that both inputs are presented with
equal frequency. The last two entries in Table 1 show the expected payoff for the
general rules of the task, following Kovacs (2000), i.e., the fitness of a general rule
is the average of the payoffs it receives (also used in Bull (2001b)). It can be seen
that under this scheme, for input 1, the general rule #:0 has a higher payoff than
the correct rule 1:1 and so is most likely to be selected; #:0 is an overgeneral rule
that would cause suboptimal performance. The progress of all six rules is examined
here. In the simplest case, f(k, t) = payoff(k, t), hence f(0 : 0, t) = 1000, etc., and
f(# : 0, t) = (f(0 : 0, t) + f(1 : 0, t))/2, etc. That is, fitness is not updated as a running
average as is usually the case in the bucket brigade. Therefore, with equations of the
general form shown in Equation (1), the expected proportions of each rule type in the
next generation can be determined; by specifying the initial proportions of each rule in
the population (P/6), it is possible to generate the trajectory of their proportions over
succeeding generations. Note, partial individuals are allowed, and hence it is, in effect,
an infinite population model.
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Figure 1: Behavior of model LCS on the task in Table 1 without and with fitness sharing.

Figure 1(a) shows the resulting behavior of the steady-state GA/LCS using the
same parameters as those in Wilson (1994), i.e., P = 400 and S0 = 20.0. Figure 1(b)
shows the behavior of the same system including the fitness sharing mechanism of
ZCS such that payoff is divided by the size of the corresponding [A]:

f(a, t) = payoff(a, t)/n(a, t) (2)

where payoff(a, t) is the payoff received for taking action a, f(a, t) is the fitness of rules
advocating action a, and n(a, t) is the number of matching rules that advocate the same
action at time step t. Hence, for example, f(0 : 0, t) = 3000/(n(0 : 0, t) + n(# : 0, t)),
etc. The general rules are handled as before.

It can be seen that in the first case, the rule base converges to a single type of high
payoff rule – 0:0. However, with the inclusion of fitness sharing, the rule base contains
four types of rule: 0:0, 0:1, 1:1, and the general rule #:1. In all cases, the rules have the
same fitness value (not shown), expected payoff being indicated by the relative number
of rules of a given type. The proportions of rules in Figure 1(b) means that, under
the roulette-wheel action selection scheme used in ZCS, the system will (on average)
give optimal performance, since for input 0, there will be more rules of type 0:0 in
[M] than any other and an equal number of rules 1:1 and #:1 for input 1. It is also
interesting to note that the simple ZCS-like system effectively contains a map of the
problem, including its generalization payoff(0 : 1, t) = payoff(1 : 1, t).

This result is contrary to many of the discussions on the problems of payoff-based
fitness, namely their inability to maintain rules for different payoff levels (e.g., Wilson
(1994)) and their tendency to promote overgenerals (Cliff and Ross, 1995; Wilson, 1995;
Kovacs, 2000). So, why has this simple model of ZCS not suffered from these problems?
As stated above, the basic premise for the persistence of overgenerals within an LCS is
that such rules receive a higher payoff in a niche for which they are correct than the
payoff possible in another niche for which they are incorrect, where their average pay-
off is higher than that of the second niche. But under fitness sharing, all rule fitnesses
tend to the same value (as discussed in Wilson (1987)). Hence, in the model, the pay-
off received by a potentially overgeneral rule in one niche is eventually insignificantly
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Figure 2: Behavior of model LCS on the slightly altered task from that in Table 1 (1:0 =
800).

different from that which it receives in any other, the degree of occupancy of any given
niche being altered by the actions of the GA. Therefore the seemingly overgeneral rule
#:0 did not have a significantly higher fitness than 1:0 or #:1, because it did not receive a
payoff of 3000 in the input 0 niche. Similarly, appropriate rules for each input, despite
the different payoff levels, are maintained by the same mechanism.

The situation is not as simple as this analysis implies. By increasing the small pay-
off entry in Table 1 to a value closer to the other for input 1 (e.g., 800), the overgeneral
rule #:0 is found to obtain a greater proportion of the ZCS rule base than any correct
rules under input 1 (Figure 2). This model, as with all previous LCS GA models men-
tioned above, assumes rule fitnesses converge instantaneously (akin to Pittsburgh-style
LCS (Smith, 1980)). However, ZCS uses a form of temporal difference learning to up-
date rule fitnesses at a speed/weight determined by the learning rate. It is well known
from temporal difference learning that suboptimal solutions can arise if the learning
rate and/or discount rate are incorrect for the given task (e.g., Sutton and Barto (1998)).
A more detailed model of ZCS is needed to examine this aspect of its behavior.

3.2 The (Implicit) Bucket Brigade

Under the bucket brigade of ZCS, rules chosen as the action pay β of their fitness into
the bucket or pay a tax if they are not, i.e.,

f(a, t + 1) = S(a, t)(f(a, t)− βf(a, t)) + (1− S(a, t))(f(a, t)− τf(a, t)) (3)

where S(a, t) refers to the probability of selecting action a:

S(a, t) =
∑α

i=0 f(i, t)n(i, t)∑ϕ
j=0 f(j, t)n(j, t)

(4)

where there are α classes of rule with action a and j different actions in a given [M].
Any external reward is then shared equally among the action set, decreased by β:

f(a, t + 1) ← f(a, t + 1) + S(a, t)(βpayoff(a, t)/n(a, t)) (5)
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Figure 3: Behavior of model ZCS on the slightly altered task from Table 1 with different
learning rates.

Therefore, for example, the full fitness difference equation for rule 0:0 is:

f(0 : 0, t + 1) = [(n(0 : 0, t)f(0 : 0, t) + n(# : 0, t)f(# : 0, t))/F0)((f(0 : 0, t)− βf(0 : 0, t))]

+[(1− ((n(0 : 0, t)f(0 : 0, t) + n(# : 0, t)f(# : 0, t))/F0))((f(0 : 0, t)− τf(0 : 0, t))]

+[(n(0 : 0, t)f(0 : 0, t) + n(# : 0, t)f(# : 0, t))/F0)(βpayoff(0, t)/((n(0 : 0, t) + n(# : 0, t))]

where F0 refers to the total fitness of the matchset for input 0, i.e.,

F0 = f(0 : 0, t)n(0 : 0, t) + f(0 : 1, t)n(0 : 1, t) + f(# : 0, t)n(# : 0, t) + f(# : 1, t)n(# : 1, t)

Figure 3(a) shows the behavior of the ZCS model using the above equations to update
rule fitnesses on the task in Table 1 with the payoff for input 1 and action 0 altered to
800. All relevant parameters are as in Section 2, and two presentations of input 0 and 1
are assumed before the GA fires (ρ = 0.25). The rules containing generalizations are, of
course, updated twice as often as the others, being members of each [M]. It can be seen
that this more complete ZCS model solves the task optimally (as defined in Section 3.1),
converging on the two specific rules for the task – 0:0 and 1:1. Initially, more rules of the
type #:0 appear, but these decrease as the GA begins to exert its load balancing effect.
Figure 3(b) shows the effect of increasing the learning rate from 0.2 to 0.8. Here the
overgeneral rule #:0 maintains a greater proportion of the rule base than any correct
rules for input 1. Thus with a greater consideration of the last payoff received, the
modeled ZCS converges on the suboptimal solution (as it did under Equation (1)). That
is, the modeled ZCS can avoid problematic overgeneral rules depending upon the rate
at which rule fitnesses are updated.

In the above experiments, the rule base was initialized with an equal number of
each rule type (P/6). Figure 4 shows results on the same task altering this balance
in favor of the rules containing generalizations: the initial rule base contained exactly
one copy of each specific rule and 398 rules equally divided between #:0 and #:1. Fig-
ure 4(a) shows how the modeled ZCS still avoids overgeneralization using the learning
rate identified as beneficial in Figure 3(a), although with some delay. Similarly, in Fig-
ure 4(b), the higher learning rate again results in a rule base that would give suboptimal
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Figure 4: Behavior of model ZCS with altered initialization and different learning rates.

Table 2: Reward payoffs for second part of the first dynamic single-step task consid-
ered.

Input Action Payoff
1 1 3000
1 0 8
0 1 1000
0 0 1000

performance under ZCS’s action selection scheme. Hence it would appear that, in the
simple model presented here at least, the speed at which rules update their fitnesses
is critical to the fitness sharing process. This is perhaps not unexpected given that the
number of rules within each [A] is (potentially) constantly altered under the actions of
the GA during the learning period.

Another aspect of fitness sharing and its consequences for ZCS are now examined.

3.3 Nonstationary Tasks

Many real-world problems, such as on-line process control, are dynamic and hence
machine learning techniques must be able to operate under changing conditions if they
are to be used effectively in such domains. Fitness sharing has been used within tra-
ditional evolutionary optimization for such nonstationary problems (e.g., Anderson
(1991)) since the maintained diversity gives the potential for individuals/solutions to
already exist near the newly located optimum. ZCS’s potential robustness to change
through its use of fitness sharing has also been examined using the model from Sec-
tion 3.2. Figure 5(a) shows the behavior of the modeled ZCS as the task was switched
from that in Table 1 to that in Table 2 after 40,000 GA generations, with all parameters
as in Section 2. It can be seen that after switching the payoffs for 0:0 and 1:1, the model
responds relatively quickly, around 500 GA generations (1000 system cycles), adjusting
the proportion of the two rules appropriately. The number of general rules #:1 also in-
creases after the change to match the number of 0:0 rules, as expected from Table 2, this
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Figure 5: Behavior of model ZCS in the nonstationary tasks.

Table 3: Reward payoffs for the second part of the second dynamic single-step task
considered.

Input Action Payoff
1 1 1000
1 0 3000
0 1 1000
0 0 8

rule representing a succinct optimal solution to the new task.
Figure 5(b) shows the behavior of the same system when the task is switched from

that in Table 1 to that in Table 3 after 40,000 generations. Here the payoffs for 0:0 and 1:0
are switched. It can be seen that the modeled ZCS takes much longer to respond to the
change, around 5000 GA generations, since an optimal solution is represented by rules
with very low presence in the rule base for the first task. It eventually converges on an
appropriate number of rules 1:0 and 0:1. Therefore the modeled ZCS can be robust to
nonstationary tasks, depending upon the type of change that occurs.

In summary, the modeled ZCS has been shown able to perform optimally in var-
ious simple, single-step environments with an appropriate learning rate. Its use in
multistep environments can also be considered through an extension to the model.

4 A Model of ZCS in Multistep Environments

In this paper, a two-step delayed reward task is considered, with input 0 on the first
step and input 1 on the second. Hence on the first step of every trial, all rules in [M] for
input 0 adjust their fitnesses according to Equation (3). Then all rules in [M] for input 1
adjust their fitnesses according to Equation (3), where the fitnesses used by the general
rules are those resulting from their change in the first matchset. Next the value B of the
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Figure 6: Behavior of model ZCS in a multistep task under different learning rates.

Table 4: Reward payoffs for the two-step task considered.

Action1 Action2 Payoff
1 1 1000
1 0 8
0 1 1000
0 0 8

bucket from the second step is calculated, i.e.,

B =
α∑

i=0

S(i, t)βf(i, t)n(i, t) (6)

Then the appropriate external payoff is calculated and paid to the rules of the second
matchset:

f(a, t + 1) ← f(a, t + 1) + S(a, t)βpayoff(a′, t)/n(a, t) (7)

where payoff(a′, t) in the two-step case considered here are:

payoff(0, t) = S(0, t− 1)payoff(0− 0, t) + S(1, t− 1)payoff(1− 0, t)
payoff(1, t) = S(0, t− 1)payoff(0− 1, t) + S(1, t− 1)payoff(1− 1, t) (8)

where S(0, t−1) is the probability an action 0 was taken on the first step (Equation (4)),
and payoff(0−1, t) is the payoff received for the system taking action 0 on the first step
and action 1 on the second step, etc.

The value in the bucket is then discounted and shared equally among the rules on
the first step:

f(a, t + 1) ← f(a, t + 1) + S(a, t)γβ/n(a, t) (9)

Again, care must be taken in the case of the general rules, and two passes through the
production system are assumed before the GA fires. All parameters are as in Section 2.

194 Evolutionary Computation Volume 10, Number 2



ZCS Redux

tt

t t t

t t t

F

(a)

t

t t t t

t

t t t t

t t t t t

t t t t t

tt t t t t t t t t t t t

t t t t t t t t

t t t t

t t

t F t t t t

t t t t t t t

(b)

Figure 7: Two multistep mazes used to test ZCS, (a) Woods1 and (b) Woods14.

Table 4 shows the payoff scheme used in Figure 6. Figure 6(a) shows that the
modeled ZCS converges on an optimal solution represented by the general rule #:1
with a slightly smaller number of the specific rule 0:0, which can be used as part of
an optimal solution (Table 4). Figure 4(b) shows the effect of increasing the learning
rate to 0.8. Here it can be seen that an optimal solution is again obtained but that
the higher learning rate has increased the proportion of the rule base occupied by the
succinct solution #:1. That is, in the simple multistep task, a higher learning rate has
produced a potentially less varying solution under the (probabilistic) action selection
scheme of ZCS. This is in contrast to the single-step task results in Section 3, where a
higher learning rate was found to be detrimental, implying that for sufficiently different
problems, different rates of rule fitness update are required for effective fitness sharing
and/or system behavior to occur.

The following section considers the performance of ZCS itself in a number of
mazes previously used to test its performance, in light of the findings from the sim-
ple models; it will be shown that ZCS, with appropriate parameters, can solve the tasks
optimally.

5 ZCS in Multistep Environments

5.1 Woods1

As noted in Section 2, Wilson (1994) introduced two multistep maze environments
with which to examine the performance of ZCS: Woods1 and Woods7. Woods1 is a
two-dimensional rectilinear 5x5 toroidal grid. Sixteen cells are blank, eight contain
trees, and one contains food. ZCS is used to develop the controller of a simulated
robot/animat that must traverse the map in search of food. It is positioned randomly
in one of the blank cells and can move into any one of the surrounding eight cells on
each discrete time step, unless occupied by a tree. If the animat moves into the food
cell, the system receives a reward from the environment (1000), and the task is reset,
i.e., food is replaced and the animat randomly relocated (Figure 7(a)).

On each time step, the animat receives a sensory message that describes the eight
surrounding cells. The message is encoded as a 16-bit binary string with two bits rep-
resenting each cardinal direction. A blank cell is represented by 00, food (F) by 11, and
trees (t) by 10 (01 has no meaning). The message is ordered with the cell directly above
the animat represented by the first bit pair and proceeds clockwise around the animat.
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Figure 8: Performance of ZCS in Woods1 under different parameters.
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Figure 9: Performance of ZCS in Woods14 under different parameters.
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Here, as in Wilson (1994), the trial is repeated 10,000 times and a record is kept
of a moving average (over the previous 50 trials) of how many steps it takes for the
animat to move into a food cell on each trial. If it moves randomly, Wilson calculates
performance at 27 steps per trial, while the optimum is 1.7 steps. All results presented
are the average of ten runs.

Figure 8(a) shows the performance of ZCS using the parameters given in Section 2
(i.e., those used in Wilson (1994)). It can be seen that ZCS reaches around 3 steps to
food. Figure 7(b) shows the performance of ZCS with the same parameters, except
β = 0.8 and γ = 0.02. Improved ZCS performance in different situations with different
parameters from those used by Wilson was shown experimentally in Bull (1998) (see
also Tomlinson and Bull (1999a)). In Figure 8(b), we see that ZCS is just about optimal,
its performance deviating around 1.9 steps in 10,000 trials.

It is important to note that the GA continues to function and that probabilistic ac-
tion selection is used, which may account for the deviations. Presentation of results
from ZCS’s on-line behavior shows near optimal performance. This is in contrast to
the usual way in which results are presented for XCS, where only deterministic action
selection steps are averaged, also without GA activity (Wilson, 1995). While such a
scheme clearly displays the knowledge of the rule base, it is perhaps unrealistic for the
practical application of LCS in many cases (e.g., real-time control). However, to indi-
cate the knowledge gained by ZCS, a similar scheme is used for an extra 2000 trials in
Figure 8(b). Here the GA is switched off, reinforcement occurs as usual, and an action
selection scheme is used that deterministically picks the action with the largest total
fitness in [M]. A drop to optimal performance can be seen (Wilson’s parameters give a
drop to 2.3 steps (not shown)). Indeed, Wilson (1995) proposed ZCS may be able to per-
form optimally in Woods1 if it used a similar action selection scheme to that of XCS, but
also suggested its “inability to suppress overgenerals, together with the distribution of
the prediction over multiple classifiers would still result in a performance and accu-
racy shortfall versus XCS.”. However, as suggested by the models above, the choice of
system parameters appears to be at least as important as the action selection scheme.
ZCS’s sensitivity to the action selection scheme remains open to future investigation.

5.2 Woods14

Cliff and Ross (1995) introduced the Woods14 environment (Figure 7(b)) to examine
the performance of ZCS in multistep tasks, where long chains of cooperative rules must
emerge. In the full version of Woods14, there are 18 blank cells that form a “tunnel” to
a food source, optimal behavior being 9.5 steps to food. All other experimental details
are the same as those for Woods1. Cliff and Ross used the parameters in Wilson (1994),
obtaining suboptimal performance (Figure 9(a) (not actually shown in Cliff and Ross
(1995)). Their main explanation for this was the effects of overgeneral rules.

Figure 9(b) shows the behavior of ZCS with the same parameters as those in Wil-
son (1994), except that P = 800 and β = 0.8. We see that ZCS’s performance deviates
much more than in Woods1, achieving around 20 steps to food. Again, an extra 2000
trials were done using the deterministic strategy described above with optimal per-
formance being obtained. Figure 10 shows the load balancing behavior of ZCS after
10,000 trials in Woods14, with Figure 10(a) showing how the number of rules per niche
decreases the further the niche is from the food source. Cliff and Ross (1995) showed
a similar graph. Figure 10(b) shows the fitness of the rules representing the optimal
action for each niche, where it can be seen that all fitnesses are roughly equal. That is,
ZCS appears to behave as modeled in Sections 3 and 4.
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Figure 10: Analysis of resulting rule bases in Woods14.
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Figure 11: Analysis of ZCS started with a greater degree of generalization.
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In Section 3.2, the modeled ZCS showed an ability to perform optimally with cer-
tain parameters, despite starting with a far greater number of incorrect general rules.
Similar experiments have been undertaken using ZCS in Woods14. Figure 11(a) shows
the performance of ZCS, where the probability of a wildcard under initialization, cover,
and mutation was 0.8, as opposed to 0.33. All other parameters remained the same as
those in Figure 9(b). It can be seen that there is little change in performance from that
seen in Figure 9(b). Figure 11(b) shows the fitness of the rules representing the optimal
action for each niche, where it can again be seen that all fitnesses are roughly equal.
That is, as seen in Section 3.2, ZCS can give optimal performance in the presence of
many overgenerals. Rather, suboptimal performance appears to be caused by a disrup-
tion to the fitness sharing process due to inappropriate parameter settings.

5.3 Woods101

Some environments are not completely observable by the learning entity. That is, with
respect to the learner’s sensory input, environments can be only partially observable,
leading to the same sensory input for different environmental states (termed non-
Markov). Without internal state, ZCS cannot perform optimally in such cases. Wilson
(1994) proposed a simplified version of Holland’s (1986) message list: an internal mem-
ory register whose state is considered and altered by the rules of the LCS. Cliff and Ross
(1994) implemented Wilson’s mechanism in ZCS called ZCSM. They found good, but
not optimal, performance in the non-Markov mazes Woods101 and Woods102.

The rules of ZCSM are extended to consider not only the external condition (c bits)
but also the state of the internal memory register (m bits). Similarly, rule actions are
extended to provide the external action (a bits) and an internal action (m bits). Wild-
cards are allowed for internal actions that leave the state of the corresponding bit in
the memory register unchanged, otherwise the register bits are updated to the value
defined in the internal action. Hence rules are of the length c + 2m + a bits, and an
action set consists of rules proposing the same external and internal actions.

Figure 12(a) shows the non-Markov maze Woods101, where optimal performance
is 2.9 steps to food. The two marked empty cells show the ambiguous states, i.e.,
the states under which ZCSM receives the same sensory input but needs to perform
a different action for optimal performance. Figure 12(b) shows the non-optimal perfor-
mance of ZCSM using the parameters given in Wilson (1994) and a memory register of
1 bit (2 states). It should be noted that these runs are done without the additional null
external action incorporated by Cliff and Ross. Figure 13(a) shows the performance of
ZCSM with β = 0.4, γ = 0.4, µ = 0.01, ρ = 0.45. We see that its on-line performance is
close to optimal and that under the exploit scheme described in Section 5.1, its perfor-
mance is near optimal (Lanzi and Wilson, 2001) (using Wilson’s parameters gives 3.5
steps to food (not shown)). Figure 13(b) shows the external and internal actions of an
example solution.

Tomlinson and Bull (1998) examined the performance of ZCSM in a number of
increasingly complex mazes. They found that for tasks containing numerous ambigu-
ous states, the memory register must be bigger than expected, i.e., redundancy was
required for it to work effectively. Lanzi and Wilson (2001) recently presented opti-
mal and near-optimal performance with XCS incorporating the memory register in a
number of non-Markov mazes, including Woods101. They also found that for more
complex mazes, seemingly superfluous internal memory states were needed. This as-
pect of its use remains open to further investigation.
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Figure 12: Woods101 and ZCSM performance.
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Figure 13: Typical strategy learned for Woods101 and optimal performance from al-
tered parameters.
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6 Discussion: ZCS and XCS

On presenting the accuracy-based XCS, Wilson (1995) briefly discussed the role of fit-
ness sharing stating that:

1. it was necessary in payoff-based LCS,

2. it made analysis difficult since rule fitnesses do not clearly relate to external re-
ward,

3. in multistep tasks, early stage setting rules will “due to discounting, appear inher-
ently less fit” and so will be lost,

4. the GA cannot identify overgenerals, and

5. there is no clear tendency to form accurate generalizations.

The last two points are general criticisms of payoff-based fitness and not simply fitness
sharing.

The results here would appear to be very much in agreement with the first point,
but with the caveat that if fitness sharing is used, suitable system parameters must be
identified for a given problem. How difficult it is to tune ZCS in general remains open
to further investigation.

Wilson’s second point is easily addressed in ZCS if rules maintain a separate “to-
tal niche payoff” parameter, updated accordingly, but not used by the system. Since
fitnesses generally converge to the same (or very similar) values under fitness sharing,
points three and four do not appear relevant to ZCS, although it is noted that the rate
of GA activity may be critical.

Regarding the last point: if optimal behavior is required, ZCS seems capable of
forming appropriate generalizations, where these will tend to be maximally general
with suitable GA activation (Wilson, 1987). XCS builds a full, non-overlapping, maxi-
mally general map of the problem space that does have advantages if a posteri explana-
tory power is required, such as in data mining (see Saxon and Barry (2000) for early use
of XCS as a data miner). It is unclear whether this gives XCS a general advantage in
nonstationary domains. Hartley (1999) suggested that “if the optimal covering map
of knowledge is complete the system has all the rules it needs to solve the problem –
it just needs to alter the reward each rule predicts for the performance to be optimal
again.” However, this is true only if the change does not disrupt any of the general-
izations formed by XCS, otherwise it must adjust its rule base. In the cases considered
in Section 3.3 with ZCS, switching from the task in Table 1 to that in Table 2 is such a
scenario. XCS, assuming that it builds a maximally general, non-overlapping solution,
will converge on rules 0:0, #:1, and 1:0 for Table 1. Switching to the task in Table 2, it will
need to lose #:1 and evolve the more specific rules 0:1 and 1:1. As was shown above,
because of its partial map, ZCS needed only to adjust the proportions from its solution
for Table 1 to solve Table 2 (i.e., XCS would have no significant advantage over ZCS).
Conversely, in the case of switching from Table 1 to Table 3, XCS would need only to
update the predictions for the rules 0:0 and 1:0, leaving the generalization #:1 intact.
Typically, this would be a quick process of change. Here the modeled ZCS had to learn
a new configuration, which as the dynamics in Figure 5(b) show, was nontrivial (see
Hurst and Bull (2001) for use of ZCS, and Hartley (1999) and Hurst and Bull (2002) for
use of XCS in nonstationary tasks).

In multistep tasks, the use of accuracy results in XCS being unable to generalize
over time steps due to discounting. It also appears to have difficulty with Woods14,
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although Wilson (2001) identified a number of changes to give optimal performance.
Lanzi (1997) has also examined the use of XCS in Woods14. He found that by altering
the usual 50/50 balance between random explore and deterministic exploit in favor of
more exploitation and varying other parameters from the maze task in Wilson (1995),
XCS took around 250 steps to reach the food. However, optimal performance was ob-
tained with the introduction of a “specify” operator, which decreased the amount of
generalization (number of #’s) of inaccurate rules, in effect pushing XCS towards being
a tabular Q-learner (Watkins, 1989). Lanzi suggested the reason why XCS has diffi-
culty in such cases is that, due to a low frequency of visitation for some environmental
states, its generalization processes cannot function effectively. A similar point is made
by Cliff and Ross (1995) in their discussions of ZCS in Woods14. Barry (2001) also ex-
amined the performance of XCS in long multistep tasks, showing that it struggles to
distinguish between accurate and inaccurate rules further down inductive chains due
to the discounting of payoff values. That is, early “stage setting” rules tend to be lost
in XCS because the difference in payoffs becomes very small, making the detection of
inaccurate rules more difficult. Point three becomes a criticism of XCS. However, Wil-
son (2000) suggested the evolution of S-expressions, which allow rules to dynamically
alter their prediction values depending on the input received. This is currently under
investigation by the authors.

Kovacs (2000) compared XCS with a payoff-based LCS. One of the conclusions of
his work is that payoff-based LCSs suffer from an “Achilles heel,” as they are suscepti-
ble to the production of overgeneral rules. However, the comparisons do not consider
the use of fitness sharing. The work presented here demonstrates how fitness sharing
has the potential to prevent the formation of overgeneral rules and therefore indicates
that work comparing the two schemes is far from complete. Indeed, failure in ZCS
does not seem to be due to overgeneralization, but to the incorrect setting of system
parameters, which prevents the fitness sharing mechanism from working effectively.
The debate about the use of payoff-based or accuracy-based LCS has focused almost
entirely on the overgeneralization issue. This has been to the detriment of ZCS, even
though it prevents overgeneralization through a particularly elegant implementation of
fitness sharing. In other areas of machine learning, it is accepted that some algorithms
are better suited to certain tasks than others (e.g., neural computation). LCS research
should now consider broadening the debate to consider which problem domains are
best suited to different forms of the LCS concept. It has already been noted that XCS
has an advantage in tasks such as data mining, which need to create and maintain a
complete state-action map. ZCS may have an advantage in situations where this map
is difficult or impossible to obtain. Hence a rich and multifaceted approach to utilizing
LCS in machine learning problems may be envisaged, with payoff-based, accuracy-
based, Pittsburgh-style, and heuristic-based (e.g., Stolzmann (1998)) systems all having
a role to play. Some systems may indeed have more advantages than others, but this
issue remains open to future investigations.

7 Conclusion

In this paper, ZCS has been re-examined. Using simple difference equation models, it
has been shown that through its use of fitness sharing ZCS does not necessarily suffer
from overgenerals and so has the potential to perform optimally. This general result
is important since, as noted in the introduction, most current LCS work has shifted
to the use of accuracy-based fitness and a closer alignment to work in reinforcement
learning (Wilson, 1995). Significantly, it would appear that the interaction between
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the rate of rule updates and the fitness sharing process is critical to whether ZCS can
perform optimally. A greater understanding of this aspect of such LCS is now needed
and currently under investigation by the authors. It has also been shown that ZCS can
be robust to nonstationary problems through its construction of a partial map of the
task, depending upon the nature of the change. Based on the results from the models,
ZCS has been shown to perform optimally in well-known maze tasks with different
parameters from those initially used.
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