134 research outputs found

    An analysis of fault partitioned parallel test generation

    Full text link

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    ProperCAD II: A Run-Time Library for Portable, Parallel, Object-Oriented Programming with Applications to VLSI CAD

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / grant 93-DP-10

    AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS

    Get PDF
    It seems to be a very hard task to enhance the properties of widespreadly used automatic test pattern generation algorithms. Experiences show that achievements are sometimes not worth the effort. In the authors' opinion this fact stems from the basically 'algorithm oriented' nature of research made in the past. A new experimental framework is presented for the problem, considering network representation and search control algorithms as equally important parts. The network is represented by object- oriented data-flow networks, the search control algorithm is based on constraint satisfaction, and a special kind of dependency directed backtracking which we call constraint slackening. Similar methods were proved to be very useful in automatic system diagnosis by DAVIS (1985) and others, although have not been introduced to testing yet. This paper summarises the basic notions of constraint satisfaction, the potential advantages of using it for building test generation systems, and shows implementational details of a test generation system, based on constraints. Experiences of the run-time tests show that constraint-based test generation can be highly efficient

    Use It or Lose It: Proactive, Deterministic Longevity in Future Chip Multiprocessors

    Get PDF
    Ever since the VLSI process technology crossed the sub-micron threshold, there is an increased interest in design of fault-tolerant systems to mitigate the wearout of transistors. Hot Carrier Injection (HCI) and Negative Bias Temperature Instability (NBTI) are two prominent usage based transistor degradation mechanisms in the deep sub-micron process technologies. This wearout of transistors can lead to timing violations along the critical paths which will eventually lead to permanent failures of the chip. While there have been many studies which concentrate on decreasing the wearout in a single core, the failure of an individual core need not be catastrophic in the context of Chip Multi-Processors (CMPs). However, a failure in the interconnect in these CMPs can lead to the failure of entire chip as it could lead to protocol-level deadlocks, or even partition away vital components such as the memory controller or other critical I/O. Analysis of HCI and NBTI stresses caused by real workloads on interconnect microachitecture shows that wearout in the CMP on-chip interconnect is correlated with lack of load observed in the network-on-chip routers. It is proven that exercising the wearout-sensitive components of routers under low load with random inputs can decelerate the NBTI wearout. In this work, we propose a novel deterministic approach for the generation of appropriate exercise mode data to maximize the life-time improvement, ensuring design parameter targets are met. The results from this new proposed design yields ~2300x decrease in the rate of CMP wear due to NBTI compared to that of ~28x decrease shown by previous work

    New Techniques for On-line Testing and Fault Mitigation in GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enhancement and validation of a test technique for integrated circuits

    Get PDF
    This thesis focuses on a scan-based delay testing technique that was recently developed at ETS. This new approach, called Captureless Delay Testing (CDT), has been proposed as a technique that complements traditional methods of test, ensuring the integrated circuits will function at their proposed clock speed, further improving the test coverage of the particular type of test. Furthermore, CDT incorporates the use of sensors enabling the detection of the presence of transitions at strategic locations. The purpose of this project is to improve on certain aspects of this novel technique. At first, we analyze the delay distribution of the non-covered nodes by traditional methods of test, in order to develop the best way possible of placement of the CDT sensors. We present, using Perl Language, the ensemble of tools developed for this purpose. The end results obtained confirm that the paths that pass through the non-covered nodes are longer than those that traverse the covered ones. The difference between the two types of paths exceeds 20%) of the clock period when considering the shorter path delay values. Secondly, we propose a fially automated algorithm that enables, at the earliest stages of the test vectors generation process: 1) the identification of the non-covered nodes, 2) the identification of the placements of the CDT sensors at the inputs of the flip-flops for further improvement of the test coverage, and 3) the minimization of the number of sensors with regards to requirements. Our results indicate that when we apply CDT on top of transitionbased fault model we can improve the test coverage by 5%. Moreover, the algorithm of CDT sensors minimization allows a reduction of more than 85% the number of those sensors with a minimal test coverage loss, on average of 1.6%
    • …
    corecore