325 research outputs found

    FASTA/Q data compressors for MapReduce-Hadoop genomics: space and time savings made easy

    Get PDF
    Background Storage of genomic data is a major cost for the Life Sciences, effectively addressed via specialized data compression methods. For the same reasons of abundance in data production, the use of Big Data technologies is seen as the future for genomic data storage and processing, with MapReduce-Hadoop as leaders. Somewhat surprisingly, none of the specialized FASTA/Q compressors is available within Hadoop. Indeed, their deployment there is not exactly immediate. Such a State of the Art is problematic. Results We provide major advances in two different directions. Methodologically, we propose two general methods, with the corresponding software, that make very easy to deploy a specialized FASTA/Q compressor within MapReduce-Hadoop for processing files stored on the distributed Hadoop File System, with very little knowledge of Hadoop. Practically, we provide evidence that the deployment of those specialized compressors within Hadoop, not available so far, results in better space savings, and even in better execution times over compressed data, with respect to the use of generic compressors available in Hadoop, in particular for FASTQ files. Finally, we observe that these results hold also for the Apache Spark framework, when used to process FASTA/Q files stored on the Hadoop File System. Conclusions Our Methods and the corresponding software substantially contribute to achieve space and time savings for the storage and processing of FASTA/Q files in Hadoop and Spark. Being our approach general, it is very likely that it can be applied also to FASTA/Q compression methods that will appear in the future

    Performance Improvement of Distributed Computing Framework and Scientific Big Data Analysis

    Get PDF
    Analysis of Big data to gain better insights has been the focus of researchers in the recent past. Traditional desktop computers or database management systems may not be suitable for efficient and timely analysis, due to the requirement of massive parallel processing. Distributed computing frameworks are being explored as a viable solution. For example, Google proposed MapReduce, which is becoming a de facto computing architecture for Big data solutions. However, scheduling in MapReduce is coarse grained and remains as a challenge for improvement. Related with MapReduce scheduler when configured over distributed clusters, we identify two issues: data locality disruption and random assignment of non-local map tasks. We propose a network aware scheduler to extend the existing rack awareness. The tasks are scheduled in the order of node, rack and any other rack within the same cluster to achieve cluster level data locality. The issue of random assignment non-local map tasks is handled by enhancing the scheduler to consider the network parameters, such as delay, bandwidth and packet loss between remote clusters. As part of Big data analysis at computational biology, we consider two major data intensive applications: indexing genome sequences and de Novo assembly. Both of these applications deal with the massive amount data generated from DNA sequencers. We developed a scalable algorithm to construct sub-trees of a suffix tree in parallel to address huge memory requirements needed for indexing the human genome. For the de Novo assembly, we propose Parallel Giraph based Assembler (PGA) to address the challenges associated with the assembly of large genomes over commodity hardware. PGA uses the de Bruijn graph to represent the data generated from sequencers. Huge memory demands and performance expectations are addressed by developing parallel algorithms based on the distributed graph-processing framework, Apache Giraph

    A Modular Parallel Pipeline Architecture for GWAS Applications in a Cluster Environment

    Get PDF
    A Genome Wide Association Study (GWAS) is an important bioinformatics method to associate variants with traits, identify causes of diseases and increase plant and crop production. There are several optimizations for improving GWAS performance, including running applications in parallel. However, it can be difficult for researchers to utilize different data types and workflows using existing approaches. A potential solution for this problem is to model GWAS algorithms as a set of modular tasks. In this thesis, a modular pipeline architecture for GWAS applications is proposed that can leverage a parallel computing environment as well as store and retrieve data using a shared data cache. To show that the proposed architecture increases performance of GWAS applications, two case studies are conducted in which the proposed architecture is implemented on a bioinformatics pipeline package called TASSEL and a GWAS application called FaST-LMM using both Apache Spark and Dask as the parallel processing framework and Redis as the shared data cache. The case studies implement parallel processing modules and shared data cache modules according to the specifications of the proposed architecture. Based on the case studies, a number of experiments are conducted that compare the performance of the implemented architecture on a cluster environment with the original programs. The experiments reveal that the modified applications indeed perform faster than the original sequential programs. However, the modified applications do not scale with cluster resources, as the sequential part of the operations prevent the parallelization from having linear scalability. Finally, an evaluation of the architecture was conducted based on feedback from software developers and bioinformaticians. The evaluation reveals that the domain experts find the architecture useful; the implementations have sufficient performance improvement and they are also easy to use, although a GUI based implementation would be preferable

    Framing Apache Spark in life sciences

    Get PDF
    Advances in high-throughput and digital technologies have required the adoption of big data for handling complex tasks in life sciences. However, the drift to big data led researchers to face technical and infrastructural challenges for storing, sharing, and analysing them. In fact, this kind of tasks requires distributed computing systems and algorithms able to ensure efficient processing. Cutting edge distributed programming frameworks allow to implement flexible algorithms able to adapt the computation to the data over on-premise HPC clusters or cloud architectures. In this context, Apache Spark is a very powerful HPC engine for large-scale data processing on clusters. Also thanks to specialised libraries for working with structured and relational data, it allows to support machine learning, graph-based computation, and stream processing. This review article is aimed at helping life sciences researchers to ascertain the features of Apache Spark and to assess whether it can be successfully used in their research activities

    Hadooping the genome: The impact of big data tools on biology

    Get PDF
    This essay examines the consequences of the so-called ‘big data’ technologies in biomedicine. Analyzing algorithms and data structures used by biologists can provide insight into how biologists perceive and understand their objects of study. As such, I examine some of the most widely used algorithms in genomics: those used for sequence comparison or sequence mapping. These algorithms are derived from the powerful tools for text searching and indexing that have been developed since the 1950s and now play an important role in online search. In biology, sequence comparison algorithms have been used to assemble genomes, process next-generation sequence data, and, most recently, for ‘precision medicine.’ I argue that the predominance of a specific set of text-matching and pattern-finding tools has influenced problem choice in genomics. It allowed genomics to continue to think of genomes as textual objects and to increasingly lock genomics into ‘big data’-driven text-searching methods. Many ‘big data’ methods are designed for finding patterns in human-written texts. However, genomes and other’ omic data are not human-written and are unlikely to be meaningful in the same way
    • …
    corecore