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Abstract

A Genome Wide Association Study (GWAS) is an important bioinformatics method to associate variants

with traits, identify causes of diseases and increase plant and crop production. There are several optimizations

for improving GWAS performance, including running applications in parallel. However, it can be difficult for

researchers to utilize different data types and workflows using existing approaches.

A potential solution for this problem is to model GWAS algorithms as a set of modular tasks. In this thesis,

a modular pipeline architecture for GWAS applications is proposed that can leverage a parallel computing

environment as well as store and retrieve data using a shared data cache.

To show that the proposed architecture increases performance of GWAS applications, two case studies

are conducted in which the proposed architecture is implemented on a bioinformatics pipeline package called

TASSEL and a GWAS application called FaST-LMM using both Apache Spark and Dask as the parallel

processing framework and Redis as the shared data cache. The case studies implement parallel processing

modules and shared data cache modules according to the specifications of the proposed architecture.

Based on the case studies, a number of experiments are conducted that compare the performance of

the implemented architecture on a cluster environment with the original programs. The experiments reveal

that the modified applications indeed perform faster than the original sequential programs. However, the

modified applications do not scale with cluster resources, as the sequential part of the operations prevent the

parallelization from having linear scalability.

Finally, an evaluation of the architecture was conducted based on feedback from software developers

and bioinformaticians. The evaluation reveals that the domain experts find the architecture useful; the

implementations have sufficient performance improvement and they are also easy to use, although a GUI

based implementation would be preferable.
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1 Introduction

1.1 Motivation

A Genome-Wide Association Study (GWAS) is a method of finding genetic variations associated with partic-

ular traits by rapidly scanning polymorphisms revealed using genetic markers - DNA sequences with known

locations on chromosomes - over the entire sets of DNA or genomes. The goal of these activities is to discover

relationships between genetic variants and a specific attribute or trait, (e.g. a disease). There are various

GWAS algorithms which can be performed over a sequence of DNA. These algorithms can be expressed as

filters in a pipeline.

A pipeline is a connected set of operations called filters, through which data is transformed and produced

as output. In a GWAS pipeline, the input is a dataset containing marker information from individuals, along

with covariates and related files. Each filter represents a specific genome wide association algorithm. These

filters transform the input dataset so that another algorithm can work with the transformed output. In this

way, the GWAS pipeline transforms a genomic dataset to the desired output.

Several bioinformatics tools have implemented GWAS pipelines that use instances of GWAS algorithms.

These tools can be broadly divided in two categories – those supporting sequential operation and those

supporting parallel operation. Although researchers and developers have implemented several optimizations

[15, 56, 80] to improve GWAS performance, sequential operation is still too slow for the massive volume of

datasets required. In recent years, there have been numerous research works focusing on parallel solutions

for GWAS. These solutions range from using multiple processors [48, 63], using GPUs [5, 25, 65], using both

CPUs and GPUs [24] and using clusters of machines [26, 50]. The solutions demonstrate that it is possible

to achieve speedup using parallel execution and adding more resources. For example, Luecke et al. [48]

was able to achieve 36x speed improvment for epistasis detection using parallel MPI with Intel Xeon Phi

coprocessor. Wienbrandt et al. [25] was able to parallellize epistasis detection using GPU and achieved four

orders-of-magnitude speedup.

The variety of options can be confusing for a researcher who just wants to perform a GWAS and retrieve

results at the earliest time possible. Furthermore, each tool specifies its own structure to which researchers

have to adhere in order to produce results properly. For example, a genomic dataset can be represented in

various formats, such as PLINK [58], Variant Call Format (VCF) [10], HapMap (HMP) [21] and FASTA [55].

Not all of these formats are supported by every tool. For these reasons, researchers resort to using multiple

tools in order to produce results with which they can work.
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In addition to the problem of choosing the right tool, GWAS researchers face performance, usability and

flexibility problems. There are many operations in the domain of GWAS, and picking the right tool for a de-

sired operation with the right performance can be difficult. The most appropriate tool for a GWAS operation

can be lacking in performance, making it difficult for researchers to complete the operation quickly. Moreover,

a GWAS tool with the right operation can be difficult to use if the interface is built poorly. Researchers often

have to work with GWAS applications having confusing interfaces. Furthermore, researchers may have to

resort to using multiple tools with different configurations in order to execute a batch of GWAS operations,

which makes it less flexible for researchers to complete these steps of operations. This fragmentation of

appropriate tools in the GWAS domain makes it quite difficult for researchers to plan and execute a GWAS

workflow.

Due to these difficulties, there is a need for a generic solution for GWAS applications. This solution should

be independent of structural constraints such as data format, input and output type, fixed confugurations

as well as easily deployed in any environment. Furthermore, this solution can be configured to achieve the

maximum performance benefit dependent on the deployment resources available.

1.2 Potential Solution

As described in the previous section, researchers have a lot of choice when it comes to conducting GWAS.

Although these choices give researchers freedom to analyze DNA sequences, a specific scenario might need

a specific GWAS workflow. For example, a workflow where researchers conduct epistasis detection can be

different from another workflow of heritability estimation. Instead of building various complete workflows for

specific scenarios, scientists can benefit from a modular architecture.

In a modular architecture, software implementations are divided into modules, and each module performs

a specific set of tasks. If we model a GWAS algorithm as a set of tasks, we can transform the algorithm into

a module. These modules can be independent of other modules, making them excellent candidates for use in

a pipeline.

Once GWAS researchers model their tools as loosely dependent modules, they can easily pick and use

whichever algorithm they want to implement on a dataset, providing that they meet the interface constraints

and have equivalent pre/post conditions. Furthermore, parallelization techniques can also be modularized

in this way, making it easier for researchers to pick the right parallelization tool for specific tasks. These

potential solutions can be brought under an umbrella using a common architecture.

A number of potential parallel architectures such as MapReduce and MPI can be used to build modular

parallel tools. MapReduce [12] is a parallel programming model that is used to process large volumes of data.

It is a combination of two specific operations - map and reduce. Mapping means restructuring a dataset

into different partitions and executing a common operation on each partition at the same time. The reduce

operation takes the output of map operations as input and reduces the output to a combined output format

2



from all reducers. MPI (Message Passing Interface), on the other hand, is a standard [20] for the message

passing model, the goal of which is to pass messages between processors in order to perform a task. This

standard contains protocols and specifications of how parallel processing can be achieved by passing tasks as

messages between processors. These architectures are just two examples that can enable parallelization and

help developers increase performance as well as reduce response time for GWAS researchers.

1.3 Thesis Statement

The goal of this thesis is to show that a modular pipeline architecture for GWAS applications having a)

interfaces for modular development, b) a shared data cache and c) the ability to leverage parallel computing

environments such as clusters for increased performance and reduced latency can be built and maintained in

a straightforward manner by application developers and used by biologists and other scientific researchers.

The proposed pipeline architecture can be built with multiple modules having limited input and output

constraints, such as data format and size. Furthermore, the proposed architecture has a modular interface

for parallel frameworks with which developers can build parallel modules and expose an API for the pipeline.

The GWAS modules can then access the API to process data in parallel. Additionally, to ensure data

integrity during various stages in this pipeline, a modular interface for a shared data cache is proposed and

implemented such that developers can build modules to store and retrieve data . Together, these components

will form the modular pipeline architecture for GWAS applications.

To demonstrate that the architecture works in real world situations, two case studies are conducted, where

two GWAS applications are modified to implement the proposed architecture. The first case study focuses

on modifying a genomic analysis pipeline called TASSEL. Details of the TASSEL package are given in a

background section. A TASSEL plugin is modified which uses an implementation of modular interface for

parallel frameworks. A shared data cache is also implemented using the proposed modular interface. The

second case study modifies and implements the proposed architecture on Factored Spectrally Transformed

Linear Mixed Models (FaST-LMM), a GWAS application. Details of FaST-LMM are also provided in the

background section. Similar to the first case study, a FaST-LMM plugin is modified to use modular imple-

mentations of parallel frameworks as well as a shared data cache. Together, these implementations provide

evidence that the proposed architecture increases performance for GWAS applications.

Finally, an architectural evaluation will be conducted using feedback from domain experts such as software

developers and bioinformaticians. Their feedback will provide insight on the usefulness and configurability

of the architecture and its implementation.

1.4 Contributions

This thesis contributes to the area of GWAS and distributed computing. The four major contributions of

this thesis are as follows.
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• A modular pipeline architecture for GWAS applications having interfaces for parallel processing frame-

works and shared data caches. The interfaces enable GWAS applications to leverage parallel computing

environments and access data from a cache, which can be faster than a traditional disk read.

• Two prototype implementations of the proposed architecture, using two popular GWAS applications:

TASSEL and FaST-LMM. The prototypes used two parallel processing frameworks: Apache Spark and

Dask, as well as a key-value pair based cache store cluster called Redis.

• Demonstration of performance benefits using the prototype implementations. Various experiments were

conducted to provide evidence that the implementation of the proposed architecture results in increased

performance.

• Demonstration of architectural quality using evaluation feedback from domain experts. The feedback

from experts demonstrated that the architecture is useful and beneficial for developers and end users.

The first contribution paves the way for building modular GWAS applications which can harness the power

of distributed computing using modular components. The second contribution demonstrates an example

implementation of the architecture, and can be considered as a guideline for developers to build modular

GWAS applications. The third and fourth contributions assert that the architecture and its implementations

are indeed useful for developers building GWAS applications and biologists conducting genomic analyses.

1.5 Outline

The rest of this thesis is laid out as follows. Chapter 2 covers the background and related work for GWAS,

parallel data processing frameworks and the modular pipeline pattern. Chapter 3 describes the system design

of the proposed architecture. Chapter 4 describes the case studies, experimental setup of the case studies

along with the design of the architectural evaluation. Chapter 5 describes the results of the experiments and

evaluation. Chapter 6 concludes the thesis and outlines possible future work.
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2 Background and Related Work

2.1 Genome Wide Association Study

2.1.1 Definitions

Before explaining GWAS in detail, here are some definitions of common terms that are used throughout the

explanation of GWAS.

DNA Deoxyribonucleic acid [1] is a hereditary material found in all carbon-based organisms such as humans.

It is a double helix assembled by base pairs and located in the cell nucleus. DNA stores information as

a code of four chemical bases – A, C, G and T. The change in order of these bases determine how an

organism is formed.

Genome The Genome [54] is the genetic material of an organism, consisting of a complete set of DNA and

its genes. A gene is made of DNA which provide instructions to create protein. Although most genes

are the same in individuals of a species, a few genes are different, which contributes to the variation of

features between individuals.

Chromosome A chromosome is a DNA molecule which carries genetic information as a single unit that

is transferred to the next generation. It is found in the nucleus of living cells and have a thread-like

structure.

Locus A locus is a fixed physical position of a gene or a SNP on a chromosome. Several locus elements

together are called a loci.

SNP A single nucleotide polymorphism (SNP)[38] is the occurrence of genetic variation among individuals in

a single base. At a specific position in a genome, a SNP represents variation in a nucleotide, which is a

single DNA building block. SNPs can potentially act as genetic markers for genes which are associated

with diseases, which in turn can help researchers identify cause of those diseases.

Allele An allele is an expression of a gene or a SNP that may differ due to mutation. Diploid organisms

have two copies of each chromosome - one from their father and one from their mother. The two copies

are on separate but similar chromosomes. When these copies change due to mutation, they become

alleles.
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Heritability Estimation Heritability estimation is a statistical analysis of heritability, which is an estima-

tion of variation in a trait due to variation in genetic factors of individuals and the variations due to

the environment [75].

LMM Linear Mixed Model extends the generalized linear model to allow for random effects as well as fixed

effects. A linear model describes an equation in which a continuous response variable acts as a function

of a single or multiple predictor variables. In a generalized linear model, the response variable can be

modelled by a function of explanatory variables, in addition to an error term. In genetics, an LMM is

used for measuring genetic similarity to estimate probabilities of individuals sharing alleles which can

be related to diseases or traits [46].

Genetic Marker A genetic marker [52] is a sequence of DNA which is used to identify a chromosome or

locate genes on a genetic map. The arrangement of these markers on a chromosome is illustrated by

genetic and physical maps. Physical maps illustrate the alignment of DNA sequences, while genetic

maps illustrate the recombination frequency between molecular markers.

2.1.2 Background

The procedure of conducting a genome-wide association study is as follows. Two groups of participants

are used for a study. The participants of the first group have the trait or the condition the researchers are

trying to associate with a genotype. The participants of the second group do not have the trait/condition.

First, the researchers acquire DNA from each participant. Next, the cells obtained from the participants

are purified to extract each participant’s complete set of DNA (or genome). After that, the extracted DNA

samples are placed on small chips and then scanned with automated machines. The machines analyze each

participant’s DNA for key markers of genetic variations [7]. These key markers are called single nucleotide

polymorphisms, or SNPs.

After the key markers of genetic variations are analyzed, the researchers compare these variations based

on the frequency of the variations in the control groups. If a set of genetic variations are observed to be more

frequent in the participants of control group with the trait/condition compared to the participants of group

without the trait/condition, then the genetic variations are said to be correlated with the condition. From

this correlation, the researchers can potentially point to the regions of the genome which contributes directly

or indirectly towards the formation of the trait/condition.

GWAS has mostly been used by researchers for two reasons – to detect and identify diseases and to

uncover genetic architecture. Various techniques such as an efficient mixed-model association [33], a multi-

locus mixed linear model [73], a unified mixed-model [76] and a compressed mixed linear model [79] have

been developed to investigate characteristics of animals and plants.

GWAS has contributed to the extensive success in detecting genetic architecture of important traits in

plants and crops. Research on plants such as canola [42, 43], rice [29] and maize [44] has been carried out
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that identified genes related to specific traits and the underlying genetic architecture controlling these traits.

Identifying genes related to these traits can lead to increased production of crops and identifying regions for

mutagenesis to generate new variations.

GWAS also has a crucial role in detecting cause of diseases in animals and plants. Researchers have been

conducting GWAS to identify new genetic associations and finding genetic variations that causes common

and complex plant [47, 72, 81] and human [2, 4, 11, 17, 34, 35, 36] diseases. Three independent GWAS studies

in 2005 [35] discovered that a variation in the gene for complement factor H is responsible for a common form

of blindness. This gene produces a protein which regulates inflammation. Researchers also achieved further

success using GWAS for identifying genetic variations contributing to obesity [71], cardiovascular disease [70],

Parkinson’s disease [64], type 2 diabetes [18] and Crohn’s disease [17].

The simplest approach in performing a genetic association study is to analyze a single trait - a test

of association between a single SNP and a single trait. This approach studies the effect of single variants

with respect to a trait. However, this analysis approach does not exploit information inside related traits.

Furthermore, as most traits of interest are dependent on multiple factors, there might be a danger of biased

results due to low frequency of association between causal loci [37].

Due to these drawbacks, researchers often conduct multivariate analysis - a joint analysis of multiple

traits which may be potentially correlated. Correlation between traits can occur for two reasons [68]. First,

the traits in question can be genetically correlated and the effects of SNPs can be distributed across traits.

Second, the estimation error of the effects of SNPs can also be correlated across traits. If we take these

correlations into account, we can expect better results compared with analysis using single traits.

2.1.3 GWAS Tools

Various tools have been developed by researchers to perform GWAS efficiently. The remainder of this section

contains a summary of GWAS tools that are relevant to this work. These tools have implementations

of various GWAS algorithms using optimizations to speed up the overall process. The tools and their

optimizations are detailed as follows.

PLINK

PLINK [58] is an open-source GWAS tool set. The goal of PLINK is to manipulate and analyze huge

datasets containing millions of genetic markers genotyped for thousands of individuals in a rapid fashion.

In addition to efficient computation of basic genomic analysis, PLINK brings on an innovative solution for

covering whole-genome data. PLINK provides a simple approach to handle large GWAS data sets, produce

summary statistics, perform various standard association tests on huge datasets efficiently and assess rare

genetic variations using common SNP panels. According to the developer of this tool, loading, filtering and

performing association analysis for a data set of 100,000 SNPs for 350 individuals take around 10 seconds

with PLINK [58]. PLINK is written in C and C++. A command line interface (CLI) is used to access PLINK
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functionalities.

FaST-LMM

FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) is a set of tools [74] derived from an

algorithm for GWAS [45] which scales linearly in both runtime and memory usage according to the developers.

This algorithm can perform GWAS prediction and heritability estimation on large data sets. The researchers

claim that FaST-LMM reduces the computational expense of Linear Mixed Model (LMM) calculations by

using the FaST-LMM algorithm. The researchers also demonstrated that FaST-LMM can work with datasets

with over one million samples. It is written in Python and has Linux and Windows deployments.

Internally, FaST-LMM uses both multithreaded and MapReduce approaches to perform calculations. It

uses runners, which are modules capable of running GWAS operations in multiple environments, to run

distributed tasks in single core and multicore machines. However, the MapReduce approach defined in FaST-

LMM can only scale to a single machine in its current form. This is because the map operations are performed

using Python generators, and each generator’s next step is determined by its current state, which prevents the

generator operations from being truly parallel. Moreover, FaST-LMM uses nested MapReduce to distribute

tasks which increases complexity for task schedulers, as the schedulers have to track and manage all the

nested mappers and reducers.

TASSEL

TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) [22] is a Genotyping by Sequencing (GBS)

analysis pipeline written in Java. It was built with two objectives in mind - running analytics on large datasets

and low memory footprint. The developers of TASSEL claim that it can run from small to extremely large

studies [66, 78, 30, 69] with modest computing resources. The software consists of a number of analysis

and utility packages. The analysis packages run the main analytics tasks, while the utility packages provide

support for file loading and multithreading parallelism.

The architecture of TASSEL is pipeline-based, and each stage of the pipeline can run a number of pro-

cesses using multithreading tools concurrently. Although TASSEL utilizes the multithreading tools provided

by Java, the internal operations of plugins are mostly executed on a single thread, resulting in sequential

operation. Furthermore, the analysis modules of TASSEL are entirely dependent on Java thread classes,

which do not follow the modular paradigm. Consequently, it becomes hard to modify the tasks for running

in a distributed environment.

2.2 Parallel Data Processing Frameworks

The most basic form of modern parallel processing involves utilizing multiple processing cores of a single

machine [32]. Modern programming language implementations use threads to achieve logical parallelism,
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e.g. POSIX threads in C/C++, Java Service Executor and .NET Task Parallel Library. However, this level

of parallelism is limited to a single machine. Multiple execution cores in the CPU/GPU are required for

physical parallelism.

In the scientific and engineering community, parallel processing is achieved with the MPI (Message Passing

Interface) standard [20]. The MPI standard contains protocols and specifications of how parallel processing

can be achieved by passing tasks as messages between processors. This standard is based on the message

passing model in which processes communicate with other processes by sending and receiving messages.

Implementations of the MPI standard, such as Open MPI [19], MPICH [27] and TMP-MPI [60] are regularly

used by scientists and researchers to process data in parallel.

Although implementations of MPI work well for restricted forms of distributed computing, processing

Big Data requires efficient utilization of multicore CPUs distributed across multiple independent machines.

These machines form a cluster to take advantage of all processing, storage and network resources for parallel

operations. Each machine in a cluster is called a Node. Initializing a cluster and then distributing and man-

aging tasks in a cluster can be complicated. Parallel Data Processing Frameworks handle these complications

by running task schedulers, handling input and output of parallel tasks and managing nodes in a cluster.

Furthermore, these frameworks ensure that data is properly parallelized and distributed across nodes in a

cluster. Examples of these frameworks and their capabilities of handling complications will be described in

the following subsections.

Several parallel data processing frameworks are available in the research community and in industry,

such as Spark [77], Hadoop [57] and Dask [59]. Some of these frameworks are built with the intention of

handling generic big data, others are more focused on genomic data in particular. Each of these frameworks

implements a distributed architecture to execute parallel tasks in multiple machines. A summary of some of

the most relevant of these parallel data processing frameworks are given below.

2.2.1 Apache Hadoop

Apache Hadoop [57] is an open-source Big Data framework that handles large volumes of data efficiently

using distributed computing across clusters of machines. Hadoop can be used on a large number of machines

and provides fault tolerance at the application layer.

Apache Hadoop uses MapReduce programming model to process large volumes of data. A task scheduler

is required to allocate data partitions and operations to various worker nodes. A job scheduler handles the

scheduling of jobs and aims to utilize resources efficiently as well as reduce response time.

In addition to the MapReduce paradigm, Apache Hadoop uses a storage system called Hadoop Distributed

File System (HDFS) to store large volumes of data efficiently [62]. In HDFS, files are split into large blocks

and distributed across nodes of a cluster. HDFS implements data replication, which allows the same blocks

to exist in multiple nodes. Due to data replication, Hadoop can use data locality (the ability to initiate

computation close to the source of data) to process data in the same node as the replica of the partition
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required for the task. This ensures faster execution time compared to a parallel data processing system

requiring heavy use of a high speed network to transfer input data between nodes. However, data transfer

is needed during shuffle and reduce phase of Hadoop execution, as intermediate data that is stored on the

local file system of individual nodes is transferred from mappers to reducers.

The Apache Hadoop framework is written primarily in Java; in addition, there are a few modules written

in C. It requires the Java Runtime Environment (JRE) to work. Although most MapReduce tasks are written

in Java, Hadoop Streaming allows programming languages such as C, C++ and Python [13, 41] to stream

input data to the framework as a front end interface.

2.2.2 Apache Spark

Apache Spark [77] is an open source big data framework that uses Resilient Distributed Datasets (RDDs)

to persist intermediary results in node memory and a Directed Acyclic Graph (DAG) scheduler to process

large volumes of data split into partitions across clusters of machines. The DAG scheduler is a stage-oriented

scheduling method which transforms a logical execution plan into a physical one. An RDD is a wrapper

around a collection of elements that are fault tolerant; multiple RDDs can be processed in parallel. An RDD

can be persisted in-memory so that the data in the RDD as well as intermediate results can be saved in

RAM, reducing disk load latency and computational overhead. Spark achieves fault tolerance of an RDD

by replicating data to multiple Spark executors as well as remembering the lineage of the deterministic

operations. Similar to Hadoop, Spark works on clusters of machines, provides fault tolerance and can utilize

HDFS to process distributed datasets.

Although Spark provides Datasets as an RDD abstraction, the proposed architectural implementation

uses RDD only. A Dataset is a structured collection of distributed data, which uses an optimized execution

engine. The prerequisite of converting a plain dataset into a Spark Dataset is to define the structure of

the dataset. However, the implementation of the proposed architecture does not provide the input dataset

directly to Spark. Instead, Spark takes in a representation of the input dataset in the form of rows of objects.

Therefore, RDD is used instead of Dataset to preserve the ability to work with any form of unstructured

data.

Apache Spark uses the same MapReduce programming model that Apache Hadoop does. However, the

difference between Hadoop and Spark is in the way Spark handles the input datasets and intermediate output

datasets. Spark uses RDD to abstract away the input datasets. Furthermore, an RDD uses memory to store

data, and spills to disk when memory is full. Spark also has built in RDD operations which makes it easier

to operate on large datasets. Two types of operations are supported by RDD - transformations and actions.

Transformations create a new dataset from an existing one, whereas actions run computations on the dataset

and return a value to the driver program. One of the most common RDD operations is map, which transforms

each element of a dataset through a function and returns a new RDD with the transformed values. Another

common RDD action is reduce, which uses a function to aggregrate all elements of an RDD and returns a
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final value to the driver program. The map operation can be useful for GWAS applications, as it can help

transform GWAS dataset using a specified algorithm.

The core of Spark is written in Scala. This core exposes an application programming interface (API)

based on the RDD abstraction, which can be accessed with programming languages such as Java,1 Python,2

Scala3 and R.4 The interface of Spark also allows to work it with other languages such as SQL.

2.2.3 Dask

Dask [59] is an open source parallel computing library written in Python. Dask implements dynamic task

scheduling that accepts an interactive computational workload. It also provides collection wrappers which

can work in distributed environment and run with dynamic task schedulers.

A dynamic task scheduler handles distributed computing for Dask. Depending on the runtime environ-

ment, the task scheduler can be of multiple types - a thread pool scheduler, a process pool scheduler, a

synchronous scheduler or a distributed scheduler. The implemented scheduler processes spawns and manages

several worker processes distributed across multiple nodes in a cluster. The parallel computations in Dask are

represented by directed acyclic task graphs, similar to the Spark model of computation. The task scheduler

executes the task graphs to leverage parallelism.

Dask user interfaces are divided into two levels - high and low. The high level interface contains parallel

collections implemented over subset of existing Python packages such as Numpy, Pandas and Scikit-Learn.

The low level interface enables delayed parallel execution of individual functions.

Although Dask can process data in parallel similar to Apache Hadoop and Apache Spark, there are

a few differences. Dask is written in Python and can be seen as a component in the Python ecosystem.

Furthermore, Dask is less dependent on the MapReduce paradigm than Hadoop or Spark, instead focusing

on generic task scheduling.

2.2.4 Hail

Hail5 is an open source analytic framework based on Apache Spark for genomic data analysis. It enables

pipeline processing to import, process and export a variety of genomic data.

Hail is written in Python and uses Apache Spark to build and run its distributed algorithms in clusters of

machines. In addition, Hail implements a specific domain language interface called Expressions for express-

ing pipeline flow. As Hail is integrated with Spark, it can leverage SQL processing and machine learning

algorithms as well.

1Spark Java API - https://spark.apache.org/docs/latest/api/java/index.html
2Spark Python API - https://spark.apache.org/docs/latest/api/python/index.html
3Spark Scala API - https://spark.apache.org/docs/latest/api/scala/index.html
4Spark R Api - https://spark.apache.org/docs/latest/api/R/index.html
5Hail - scalable genomic data analysis. https://github.com/hail-is/hail.
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The query functions and Expression language of Hail help users build pipelines with which they can

process genomic data in parallel. Unfortunately, the users are entirely dependent on the type of input that

Hail supports. Moreover, building plugins for Hail requires implementing its interface, which may not match

how the user wants to process a genomic dataset. Furthermore, although Hail supports caching plugin specific

data, it has no support for caching data which can be used at any stage of a pipeline.

2.2.5 VariantSpark

VariantSpark [50] is another open source toolkit for conducting GWAS based on Apache Spark. VariantSpark

uses Spark as its analysis engine in a similar fashion to the mechanisms used by Hail. It is more specifically

tuned however to analyze extremely wide GWAS datasets; it uses the random forest (RF) model for SNP

analysis. RF is a machine learning algorithm which constructs decision trees during training and provides

regression of individual trees as predictions. VariantSpark is specifically built for datasets with large samples

and wide feature vector per samples.

VariantSpark uses RF because it can efficiently process extremely wide GWAS datasets by building a

random forest from transposed data. Using RF, SNPs are ranked in accordance to their predictive score.

RF is built from a transposed representation of a dataset, allowing efficient operation on GWAS datasets

with large number of columns. The RF implementation in VariantSpark splits dataset per sample and within

samples as well, while maintaining data cohesion. VariantSpark uses VCF and CSV files as input.

Although VariantSpark has fewer features than Hail, it can efficiently process big GWAS datasets. Hail

supports more input formats, however, than VariantSpark does. Unfortunately, VariantSpark does not extend

the pipeline functionality that Spark has, making it less likely to work with individual plugins.

2.3 Modular Pipeline Software Engineering Patterns

2.3.1 Modules and Pipelines

The concept of a module originates from the modular programming paradigm [53], which has been a widely

used technique for several decades in Software Engineering. This paradigm states that the functionality of a

program should be separated into loosely coupled and interchangeable components. The purpose of a module

is to encapsulate and implement a particular functionality. This functionality can impose pre-conditions and

post-conditions. Preconditions state the constraints that must be met before the module is performed, while

postconditions describe the constraints corresponding to the output state after the operation is completed.

A module should have an interface which expresses the services provided and consumed by the module.

Furthermore, the interface should enable other modules to plug in and operate together.

The aim of modular programming is to control the complexity of a large system by dividing it into

modules. In this paradigm, a system is decomposed into several modules. These modules interact with each
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other to consume input and produce output. In addition, modular programming encourages loose coupling

and high cohesion. Modules are loosely-coupled when they have little or no dependency on other modules.

This minimal dependency of modules results in streamlined responsibilities and individual functionalities for

each module, resulting in high cohesion. Finally, modules are built for reusability - they are designed in such

a way that they can be interchanged to produce different outputs.

In software engineering, a pipeline is an arrangement of processing elements such as modules in such a

way that the produced output of one element can be consumed by another element. An initial element begins

a chain of a pipeline and takes in data as input. Processed data moves from one element to another in either

stream or batch.

A pipeline can be viewed as a decomposition of a sequential process into sub-processes. These sub-

processes can be implemented as modules and operate with other modules in a pipeline or in parallel. As

modules are independent and interchangeable, they can be used at any stage of a pipeline, provided that

they support the output of the previous module as an input.

2.3.2 Related Work on Modular Pipeline Architecture

In the recent years, a number of research projects have been conducted to build systems using modular pipeline

architecture in different domains. In this section, a sample of research on modular pipeline architecture

from different domains will be described first. Next, research on modular pipeline architecture belonging

specifically to bioinformatics domain will be described. After that, a number of modern scientific workflows

having modular and pipeline design will be introduced. Finally, an explanation will be given on how this

thesis work will differ from these existing works.

The research works discussed below exploits two prevalent principles - they use a modular approach and

pipeline design. Modularity is used as means to solve complex problems. For example, Torreno et al. [67]

used modular out-of-core design to solve memory overflow problem, and Hutchison et al. [28] used modular

workflow to develop a parallel message-passing architecture for their tool. In addition to modularity, pipelines

also play an important role in solving the research problems. Utilizing a pipeline design helped render graphics

[49], gather motion data [16] as well as process DNA sequence datasets [67], microarray datasets [14] and

microarray images [61]. Moreover, other research [28, 40, 8] parallellized pipeline execution for improved

performance. This thesis will extend the research works described below by exploiting the modular and

pipeline principles.

Mobius et al. [49] created an open-source modular framework called OpenFlipper which can process and

visualize complex geometric models. The software is built with plugin components which are modular in

nature. The software also includes an advanced rendering pipeline which can render high-end graphics.

Flam et al. [16] implemented a flexible and modular architecture in a system called OpenMoCap, which

is a real time motion capture system. A modular pipeline is used in this software to gather motion data. The

software also allows new modules to be added in the pipeline for additional processing and output generation.
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Another example of modular pipeline architecture implementation is the research conducted by Law

et al. [40], in which an open-source visualization application called ParaView was built. The application

has a modular architecture and uses parallel visualization pipeline. It was demonstrated to handle ocean

temperature and salinity data. Two filters in sequence were used to analyze the dataset - geometry and filter.

Kopczynski et al. [9], on the other hand, built a modular framework named PEAX which can perform

automatic peak extraction from raw data matrix for clustering and classification purpose. PEAX is built with

a pipeline architecture in which each step performs a subtask using modules. The framework provides an

interface using which new modules can be created. Using this modular pipeline architecture, the researchers

claim that the software is able to automatically output peak list within a few seconds.

In addition to these modular pipeline architecture implementations, there are a few works which focused

on implementing the architecture in the bioinformatics domain. Icay et al. [31] built an RNA workflow

called SePIA that focused on solving complex and large-scale sequencing experiments by building a com-

putational workflow. The workflow utilizes modular design and pipeline architecture. It contains modular

and independent components as well as pipeline infrastructure to connect the components as a workflow.

Another research on bioinformatics workflow pipelines was conducted by Hutchison et al. [28], in which they

built a tool named EasyProt. This tool utilizes a parallel message-passing architecture to develop modular

workflows in computational biology using cloud based resources. The system is able to parallelize modular

components by using thread based parallelism to expand execution across multiple machines. Torreno et al.

[67] focused on solving bottlenecks in processing large biological sequence datasets using modular designs.

The solution was to modularize a pairwise genome comparison application named GECKO. The strategy for

the solution was to use modular out-of-core strategy to use secondary storage for avoiding memory overflow.

The additional improvement was to modularize GECKO process to store intermediate results to disk. The

result of the modularization was reduction of computation complexity and memory consumption. Mura et

al. [8] built a modular framework called PaPy which utilized parallel pipelines to flexibly execute bioinfor-

matics workflows. The workflow utilizes modular and reusable components, and multiple workflows can be

distributed in parallel.

Two additional research projects need to be mentioned that focus on modularizing microarray processing.

Dondrup et al. [14] built a software named EMMA, which can store and analyze large microarray datasets

efficiently. EMMA has a modular architecture as well as pipeline for data processing. The system can also be

extended to support additional data sources. Another research by Samavi et al. [61] focused on processing

DNA microarray images using a modular and scalable architecture. They proposed and implemented a

modular pipeline which can process images in batches. The proposed architecture was implemented on

FPGAs and was both scalable and modular for VLSI implementation.

Along with research done on implementing modular pipeline architecture itself, there are three scientific

workflow applications which are relevant to this thesis because of their modular pipelined approach. The first

application is called Galaxy [23], which is a web-based genomic workbench. The benefit of using Galaxy is
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tracking and managing data provenance as well as interactive computational analysis. Next, Kepler [3] is a

scientific workflow system which can capture scientific workflows and can run workflow design with minimal

effort. Finally, Taverna [51] is a bioinformatics workflow tool which contains a graphical workbench tool to

create and run bioinformatics experiments in the form of a workflow. The similarity between these three

workflow tools is that they enable the users to create a pipeline or a workflow using modular components

to conduct scientific analysis such as working with genomic data. The difference between these workflow

tools and the modular pipeline implementations described earlier is that the workflows provide a higher level

architecture to work with, whereas the modular pipeline implementations are more specific in nature.

All of the existing works discussed above have many of the characteristics that the proposed architecture

is aiming to have. However, none of these works specifically target modularizing and implementing pipelines

for GWAS operations. Furthermore, although some research did focus on parallellizing execution [28, 40, 8],

none of them provide a common interface for parallel processing framworks specifically intended for GWAS

operations, which can not only modularize parallel operations, but also can give end users the choice of using

their preferred parallel processing frameworks.

2.3.3 Summary

In conclusion, this chapter discusses the background and research work related to GWAS parallelization.

First, the definition, role and contributions of GWAS was discussed. Next, a number of relevant GWAS

tools, their architecture, benefits and drawbacks were discussed. After that, parallel processing is explained

and a number of relevant parallel processing frameworks were described along with their architecture, benefits

and drawbacks. Next, modules and pipelines were introduced and defined. Finally, research work related to

modular pipeline and its relevance to the GWAS pipeline architecture designed and evaluated in this thesis

was discussed.
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3 System Design and Architecture

In this chapter, the proposed architecture and its system design is laid out. First, modular pipeline and

parallelization are explained in the context of software engineering with examples. Next, a few candidate

applications’ architectural designs are analyzed and design flaws that can be fixed are identified. Based on

this analysis, design considerations are established which must be followed for the proposed architecture. Fi-

nally, the proposed architecture is presented with explanation regarding the components and the interactions

between them.

3.1 Existing System Design/Architectures of GWAS applications

To build a generalized architecture for GWAS applications, existing applications must be analyzed first. The

chosen applications introduced in Chapter 2 can perform multiple GWAS operations on a variety of systems.

The architecture of each of these applications will be described first, then the benefits and drawbacks of the

said architectures will be evaluated.

3.1.1 Modular Pipeline and Parallelization in Software Engineering

In parallel computation, large problems are divided into smaller ones and solved simultaneously. Parallel

computing allows a single task to be divided and executed in parallel on the available cores in a cluster,

which should enable performance improvement that scales with the number of cores [6].

Due to its modular nature, a pipeline is a good candidate for implementing data parallelization. At any

stage of pipeline processing, data may be divided into small pieces and executed using modules in parallel.

This ensures that all the computing resources are fully utilized, and data processing time is decreased by a

factor of the amount of parallelism.

Figure 3.1 demonstrates an example of a parallel pipeline. In this pipeline, the output of module 1 is split

into several partitions. Each data partition is then executed by module 2 in parallel. Finally, the output of

each parallel instance is concatenated and then used as input to module 3.

This approach of parallelization, however, has a problem. It is not clear how the partition and con-

catenation of data is handled. Before being used by a parallel module, input data must be separated by a

module. Similarly, the resultant output data from each parallel module must be correctly reduced to a single

output for further use or as a terminal output. In other words, this approach closely follows the MapReduce

paradigm, the map and reduce tasks. It would make sense if the map and reduce tasks are encapsulated as
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Module 1

Module 2

Module 2

Module 2

Module 3

Figure 3.1: Example of a Parallel Pipeline

a module that handles the parallelization process.

Figure 3.2 demonstrates a solution to the problem. Instead of modeling data partitioning and assimilation

as part of data transfer, it can be visualized as part of a module. In the pipeline displayed in Figure 3.2,

Module 2 handles data partitioning, executing operations in parallel and data reduction. Other modules

only require providing the input data to the parallel module which handles all the necessary operations.

Module 1 Module 3

Parallel Process 3

Parallel Process 2

Parallel Process 1

Module 2

Figure 3.2: Example of a Modular Parallel Pipeline

This improved Modular Parallel Pipeline, however, still has a flaw - no separation of concerns for parallel

processing. Parallel processing usually consists of operations such as data partitioning, task assignment and
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result retrieval. These are the concerns that need to be separated from other tasks in a module. These

operations can be executed with various tools and techniques. If we include any of these techniques as part of

a module, then we need to modify the module every time we want to use a new tool or improve the technique.

We need to remember that parallelization typically assumes an arbitrary process and arbitrary data - it does

not matter what process is being executed in parallel. Therefore, a separate module can be constructed that

will only handle parallelization and will depend on a provided processing function and data. The input of

this module can be an input dataset and a function that will be applied on the input dataset in parallel. The

module can optionally take configurations for tweaking parallelization as input.

The advantage of such an independent module for parallelization is that developers can utilize the module

regardless of the type of data and the complexity of the parallel process. The module will only use a specific

tool and technique to parallelize given data and apply the given function on each data partition. Each tool

can be encapsulated in each module, and the most appropriate tool can be plugged in at any stage of a

pipeline.

Figure 3.3 demonstrates a pipeline which uses such a parallel module design. Module 2 is providing

the parallel module with the data to work on and the processing function which will be executed on each

partition. The parallel module handles data partitioning, processing, shuffling and combining. After all the

stages have been completed, the parallel module finally returns the processed output to Module 2. In this

way, Module 2 does not need to know the details of parallel operations - it delegates the responsibility of

parallelization to the parallel module.

3.1.2 FaST-LMM

As described in Section 2.1.3, FaST-LMM is a program which performs GWAS on a genome dataset of

arbitrary size. The architecture of FaST-LMM is modular. The program contains a number of GWAS

functions, such as single SNP GWAS, epistasis GWAS, heritability estimation and others abstracted behind

an API. Each of these functions return statistical analysis of the GWAS function performed. Further details

of the functions can be found in FaST-LMM API documentation.1

Each of the modular GWAS functions requires a runner to complete the operation. A runner can be a

module which can run the GWAS operation in different environments. A runner module implements the

IRunner interface, which defines a function to execute a distributable job. The runners provided with the

FaST-LMM package can run the operations using a single core processor, multi-core processors or a cluster

of machines.

The architecture of FaST-LMM has a few benefits such as modular reusability and system portability. The

modular components of the program ensure ease of use for specific use case scenarios. The runner modules

enable operation of the program in different system environments, and the program can handle arbitrary

data size, depending only on the size of the worker machine being used with the runner.

1FaST-LMM API Documentation, http://microsoftgenomics.github.io/FaST-LMM
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Figure 3.3: Example of a Modular Pipeline with Parallel Module
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However, the architecture also has some shortcomings. Although the modules are reusable, they cannot

be interconnected, as each module is meant to be a silo running one operation only. This means that the

output of one module cannot be used as input to another module. This prevents ease of execution in scenarios

where a genome dataset is transformed through multiple GWAS functions. Furthermore, there is no provision

for caching supplementary and intermediate input files, which can considerably speed up data access.

3.1.3 TASSEL

As described in Section 2.1.3, TASSEL is a bioinformatics analysis pipeline. The main goal of TASSEL is

to process raw sequence data into SNP genotypes. Like FaST-LMM, the architecture of TASSEL is also

modular. The GWAS operations are encapsulated inside analysis modules, which are grouped together in

an analysis package. All the analysis modules implement a common Plugin interface that helps developers

create new modules easily. In addition to analysis modules, a set of utility modules are grouped together in

a Utility package. This package includes statistical, mathematical and file loading modules.

TASSEL uses the batch sequential pipeline method as basis for its architecture. The modules can form

a pipeline through which genomic data is transformed and a terminal output in a tab or comma delimited

format is generated at the end of the pipeline. Usually, the file loader module loads the input dataset and

supplementary file first, then passes on the loaded dataset to the next module in the pipeline, and so on.

At each stage of the pipeline, TASSEL uses Java multithreading tools to run several processes concurrently,

split and recombine process results, and push the output to the next stage of the pipeline.

The key benefits of the TASSEL architecture are its modular and pipeline form. TASSEL modules are

reusable and replaceable in the pipeline, and the pipeline ensures simpler execution of GWAS operations

based on data transformation.

Despite the use of Java multithreading tools, TASSEL is limited to using a single machine and not scalable

to multiple machines in its current form. This is because the tasks are not distributable and the Java threads

only work on a single machine natively. Furthermore, TASSEL lacks data caching facilities; this could speed

up access during any stage of pipeline execution.

3.1.4 Hail

As described in Section 2.2.4, Hail runs on top of Apache Spark. Similar to TASSEL, Hail also has a pipeline

based architecture due to its dependency on Spark. Hail uses a domain language interface called Expressions

to construct the execution pipelines. This interface enables Hail users to perform complex GWAS operations.

The usage of domain specific language by Hail improves the usability of the program in complex situations.

Furthermore, using distributed components of Spark, Hail can scale its operations to clusters of machines.

The architecture of Hail lacks in two aspects. First, there are no clear interfaces defined in Hail to create

analysis modules, which means that developers cannot create new modules without substantial modifications

to the original code. Finally, although Spark supports data caching through its use of Broadcast variables,
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the caching process is too much dependent on Spark and it is not possible to use an arbitrary data cache

without considerable modifications.

3.2 Design Considerations

Based on the analysis of existing GWAS applications in the previous section, the architectures of those

applications are lacking in two desired features:

• Ability to scale performance in a modular way, and

• Ability to store and retrieve data with low latency in a modular way.

To mitigate these drawbacks and build a better architecture, the proposed architecture should follow

some design considerations. These considerations point to the characteristics that improve the structure of

the architecture and enable simpler implementation of an application. The design rules are described in the

following subsections.

3.2.1 Scalability

Scalability is an attribute of a system in an environment that characterizes the ability of the system to handle

increased workload when resources are added to the environment. An architecture can be called scalable if its

implementation can process an increasing amount of data as resources are increased at the same rate. GWAS

applications need to operate on datasets ranging from small to large to massive. A GWAS architecture should

be able to scale to the demands of the application. In particular, the architecture should be able to handle

a large volume of data efficiently in terms of scalable processing time. For example, if a GWAS application

is executed in a cluster containing multiple machines, then the implementation of the architecture should

be able to scale execution to all of the cluster machines in a linear or near-linear fashion. Furthermore, the

architecture should ensure that larger programs are constructed and executed more efficiently.

3.2.2 Modifiability

As the proposed architecture is generic, a key design consideration is the ease of modifiability. Modifiability

is a system attribute which defines the ease with which the system can be modified with minimum footprint

on the system environment. As the modules are reusable and independent from each other, the architecture

should ensure ease of modification without propagating changes to other elements. For example, if a GWAS

application supports a module that utilizes parallel processing frameworks, the module should be modifiable

such that changing the framework in the module does not affect any other operations or modules of the

application. Furthermore, the loose coupling and high cohesion characteristics of modules can ensure that

the combinations of these modules are highly interchangeable. Additionally, the developers can adapt the

architecture to their needs for easier deployment.
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3.2.3 Portability

Portability is a system characteristic which defines the ease with which the system can be executed on multiple

environments, with minimal modification to the system. The architecture should allow for portability across

different systems such as single core machines, multicore machines and clusters. Due to the variation of

GWAS algorithms and datasets, different GWAS applications may have varying needs for system resources.

Some applications may require more CPU power, other applications may depend on more GPU power. That

is why the architecture should ensure that a GWAS algorithm is not constrained to run on a specific system.

For example, the implementation of the architecture should have modules which enables a GWAS application

to work with various systems such as a single machine, a cluster of machines, a GPU and so on.

3.2.4 Configurability

Configurability is a system attribute which defines the ease with which execution strategy can be changed and

configured for the system. The architecture should allow the GWAS algorithms to be configured arbitrarily.

Various GWAS algorithms can constitute a workflow, in which a genome dataset is transformed using GWAS

algorithms. In this workflow, each GWAS algorithm can be encapsulated and parameterized so that they can

be configured as required by the end user. Furthermore, the architecture should ensure that the workflow is

configurable at any stage and provides output as desired.

3.2.5 Usability

Usability is an attribute of a system which defines the degree of ease with which the end users can achieve their

objectives using the system.The architecture should ensure that the developers can build the components of

the GWAS application easily and the end users can accomplish their desired workflow in a transparent way.

For example, if the architecture supports using parallel processing frameworks to execute GWAS operations,

then it should be easy for end users to pick and choose the framework to use as necessary. The system should

be able to understand and learn, and it should be efficient to use.

3.3 Overall Architecture

Based on the architecture analyses and design considerations of the previous sections, the proposed architec-

ture is presented in this section. Previous research on modular architecture [39, 53] was used as an inspiration

and guideline.

The proposed architecture takes a generalized form, meaning that the architecture is less proscriptive

about the implementation, so that developers can find use for it in many use cases. Thus, the intent is

to allow flexibility in the use of the architecture. Two views are employed to describe the architecture - a

modular decomposition view and a data flow view. The first view decomposes the architecture into modules
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and displays the relation between them. The second view describes the interaction and data flow between

the architectural elements.

Figure 3.4 demonstrates a modular decomposition view of the proposed architecture. At the centre of

the architecture is a GWAS module. This module will encapsulate a set of operations representing a GWAS

operation. The module can take in arbitrary data and produce arbitrary output. As the architecture is very

generalized, it is up to the developer to extend the constraints of input and output of the GWAS module.

<<Interface>> 
ParallelProcessingInterface<In,Out>

+ process(List<In>, Function): List<Out> 

<<Interface>> 
CacheInterface

+ put(Serializable): Char[] 
+ get(Char[]): Object

GWAS Module

Shared Data Cache  
Module

Parallel Processing  
Module

Implements Implements 

Key  - UML

Legends <<Interface>> 

Interface Module

Implementation Use Dependancy

Use Use

Figure 3.4: Modular Decomposition View of proposed architecture

The GWAS module is dependent on two additional modules – the Parallel Processing and the Shared

Data Cache module. The Parallel Processing module processes a block of data that can be a list or a stream

using a provided function. The module implements a Parallel Processing interface which defines two arbitrary

data types and a process function. The process function takes in the input data in list format, along with the

function which will run on the input and returns a transformed list dataset. The first data type In, which

characterizes the input data, generalizes the type of the input in the input dataset. The second data type

Out, which characterizes the output data, generalizes the type of the output in the output dataset.
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The Shared Data Cache module stores arbitrary data in a cache store supporting key-value pairs. This

module implements a Cache Interface having two methods: get and put. The put method takes in a serializable

object and returns a key which points to the cached data in the repository, and get takes in the key and

returns the cached object from the repository.

Although the architecture follows a very generalized approach, both the Parallel Processing and Shared

Data Cache module implement specific conventions. The Parallel Processing module supports both batch

and streaming input formats for passing between filters in a pipeline. The module can only process and

return a dataset in a batched or streamed list format, and only the function provided to the module can be

executed on the input dataset. The module is designed this way in the hope that the implementer will use

the MapReduce technique to map the provided function to each partition of the input dataset. The number

of partitions can be defined prior to using the module. As MapReduce is a proven technique for efficiently

processing large volumes of data in a linear flow, it makes sense to design the module in a way to make it

easy to implement MapReduce operations.

The Shared Data Cache module allows working with cache repositories which support key-value based

caching. In a key-value cache, data is usually stored in a hash table, and the key refers to the row in which

the data is stored. Data retrieval in a hash table using a key is fast and efficient. Due to this benefit, the

module is designed to support any key-value based cache, so that a key can be used to retrieve stored data.

Figure 3.5 demonstrates a data flow view of the proposed architecture. The modules described in Figure

3.4 are shown here interacting with each other. The GWAS modules can be connected with each other in a

pipeline. The first module in the pipeline receives input data from an arbitrary location. Subsequent modules

can process and pass data through the pipeline. The terminal output from the last module of the pipeline

can be forwarded to an arbitrary output location.

The GWAS modules can make use of the Parallel Processing and Shared Data Cache modules defined

previously. The connection to a GWAS module from each of these modules is duplex, meaning data can be

passed in any direction between each of the connected modules.

It is not necessary for a GWAS module to use the Parallel Processing and Shared Data Cache modules.

However, using these modules is beneficial in certain cases. The Parallel Processing module can abstract

away the distributed nature of the computation and the required communication details. A user only needs

to plug in the Parallel Processing module to a GWAS module to harness the power of distributed computing

and achieve scalable execution as well as a performance boost. Similarly, the Shared Data Cache can be used

to cache and retrieve data at any stage of a pipeline. If a distributed cache is used as the cache repository,

then the GWAS modules can access large volumes of cached data and achieve lower latency during data

retrieval.

24



Input Medium GWAS Module GWAS Module Output Medium

Parallel Processing  
Module

Shared Data Cache  
Module

Other modules may be present

Pipe Duplex Pipe System I/O

Key  - UML

Legends 

Figure 3.5: Data Flow View of proposed architecture

3.4 Architecture Quality Fulfillment

In section 3.2, a number of design considerations were described which could mitigate the shortfalls of existing

GWAS applications, improve architecture structure and enable simpler application implementation. The

previous section described the proposed architecture in detail. To show that the proposed architecture follows

the design considerations, the relation between each of the design rules and the architecture is described.

The description is given in the following subsections.

3.4.1 Scalability

The proposed architecture provides scope for scalability by introducing a parallel processing interface. This

interface can handle implementations of frameworks which can work with clusters of machines. A parallel

processing framework can distribute tasks to multiple processing cores. The more cores available to a frame-

work, the more tasks can be distributed, which means that increasing resources should result in increased

performance. However, the level of scalability depends not only on how the tasks are distributed, but also on

sequential dependencies of tasks. In this way, the proposed architecture supports scaling GWAS applications

in different environments.
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3.4.2 Modifiability

The implementations of the architecture are modular in nature, which means that the implemented modules

can be modified as necessary without significantly affecting operations of other modules. For example, if

a GWAS application implements the proposed architecture and there are a number of modules that imple-

ment the defined interfaces, it is easy to bring changes to the modules without modifying other operations

and still change how the program is executed. In this way, the proposed architecture supports modifying

implementation as needed with minimal footprint.

3.4.3 Portability

The proposed architecture enables a specific form of portability by defining interfaces for parallel processing

and shared data cache modules. By defining reusable modules, various parallel processing frameworks and

cache stores can be used on different environments. If a specific module is needed for a specific environment,

the architecture implementation will enable choosing a reusable module as needed. For example, there can be

parallel processing modules implemented for both a single machine and clusters of machines, making it easy

to run GWAS applications in both environments. Through these methods, portability becomes an attribute

of the proposed architecture.

3.4.4 Configurability

As the interfaces described for the architecture are generic in nature, it is possible for a developer to make

the implemented modules as configurable as possible. For example, by encapsulating a GWAS algorithm in

a module, a developer can configure various parameters of the algorithm, set default parameters and enable

execution tweaks as simply as setting command line parameters or loading a configuration file. Although it

is possible to configure the parameters programmatically as part of the interface during load time, the choice

should be made based on use cases. Parallel processing frameworks can follow the same course of action to

be configurable. In this way, the implementation of the proposed architecture can be configured as much as

needed.

3.4.5 Usability

The proposed architecture supports usability for both developers and end users. The modular nature of the

architecture enables developers to encapsulate logic in blocks of modules and thoroughly test them before

integrating with the main application. Consequently, the modular blocks enable end users to pick and choose

operations as needed, making it easy for them to understand what is being executed and how to achieve

specific objectives. A GWAS application implemented with the proposed architecture can have multiple

GWAS operations encapsulated in individual modules, which can be easy to assemble in a workflow for end

users. These benefits make the architecture easy to implement for developers and highly usable for end users.
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3.5 Summary

In conclusion, this chapter described the system design of the proposed architecture. The architecture of

candidate applications were analyzed first, and drawbacks were listed. Next, based on the analysis, design

considerations for the proposed architecture were listed. Afterwards, the proposed architecture was presented

and described using two architectural views. Finally, the proposed architecture was compared with the design

considerations to see whether the architecture supports the design rules.
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4 Case Study Details, Experimental Setup and

Architectural Evaluation Details

In this chapter, the premise and setup of two case studies conducted based on the proposed architecture

is described. An architectural evaluation based on survey questions is also described in this chapter.

4.1 Experimental Environment

In order to conduct the case study experiments, a number of experimental environments have been set up.

These environments consist of two clusters (one physical and one virtual) and two single virtual machines.

The goal of these environments is to conduct experiments in different scenarios. The environments are

described as follows.

The first cluster, labeled as Cluster 1 , is a cluster consisting of 10 physical machines. Each of the machines

contain a 4 core Intel Core i7-2600 CPU with a frequency of 3.4 GHz hyper-threaded for 8 virtual cores,

physical memory of 16 GB and a Gigabit network connection. The operating system is Linux Ubuntu 16.04

LTS (Xenial Xerus) for all machines. One machine is set as the master, while the rest of the machines are

set as workers. The same cluster is used for configuring Redis cluster, where 3 nodes are set as master and

6 nodes are set as slaves. The master machine is not used as a Redis node.

The second cluster, labeled as Cluster 2 , is a cluster consisting of 4 virtual machines. Each of the

machines contain 7 quad-core Intel Xeon CPUs with a frequency of 2.1 GHz hyper-threaded for 56 virtual

cores, physical memory of 504 GB and 492 GB of disk space. The operating system is Linux Ubuntu 18.04

LTS (Bionic Beaver) for all machines. One machine is set as the master, while the rest of the machines are

set as workers.

A virtual machine called discus-project1, labeled as Single Machine 1 , contains 4 quad-core Intel Core i7

CPUs with a frequency of 2.6 GHz hyper-threaded for 32 virtual cores, physical memory of 32 GB and 84

GB of disk space. The operating system is Linux Ubuntu 16.04 LTS (Xenial Xerus) for all machines.

Finally, a virtual machine labeled as Single Machine 2 was created on a larger class server machine

(barley.usask.ca). It contains 8 quad-core Intel Xeon Gold 6130 CPUs with a frequency of 2.1 GHz hyper-

threaded for 64 virtual cores, physical memory of 1.48 TB, Gigabit ethernet connection and 137 GB of disk

space. The operating system is Linux Ubuntu 18.04 LTS (Bionic Beaver) for all client virtual machines. The

host runs Linux Ubuntu 18.04 LTS (Bionic Beaver).
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4.2 TASSEL Case Study

The first case study is an implementation of the proposed architecture using TASSEL. As the architecture of

TASSEL is already based on a pipeline, it is an ideal candidate on which to implement the architecture. The

case study is laid out as follows. First, the architecture of TASSEL is described. Two architectural views

for TASSEL are provided - a modular decomposition view and a data flow view. Next, the architecture is

extended based on the proposed architecture, and the modified architecture design is described. A TASSEL

plugin called Weighted MLM was chosen to be modified and extended. After that, the steps taken to

implement the extended architecture is reported. A number of bottlenecks were identified and two modules

from the extended architecture were inserted in place of the bottlenecks to increase performance. Finally,

a number of experiments are set up to understand the performance benefits of this implementation. The

experiments deal with factors such as number of cores, partition count and dataset size to verify the change

in performance. Chapter 5 will report on the results of the experiments.

4.2.1 Architecture of TASSEL

Figure 4.1 demonstrates a modular decomposition view of the TASSEL architecture. In this view, TASSEL

contains a set of analysis modules inside an Analysis package and a set of utility modules inside a Utility

package. The analysis modules contain implementations of GWAS operations and the utility modules contain

statistical, mathematical and file load operations. Both types of modules implement a Plugin interface, which

allows the modules to be usable in a pipeline environment.

Analysis Package Utility Package

Key  - UML

Legends 

Package

«interface» 
Plugin

«interface» Interface

Implements Implements

Implementation

Figure 4.1: Modular Decomposition View of TASSEL architecture

Figure 4.2 demonstrates a data-flow view of the TASSEL architecture. In this view, the modules im-

plementing the Plugin interface are connected via a pipeline. The initial module, usually a file load plugin,

receives input from a data source. The plugin then prepares and loads the data into memory to be used in

subsequent modules of the pipeline. The final output of the pipeline is stored in an output medium, usually a
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filesystem. As TASSEL supports thread-based execution, each stage of a pipeline can execute a given plugin

under multiple threads concurrently. However, the successive plugins operate sequentially.

Input Medium Output Medium

Other pipeline stages may be presentPipe System I/O

Key  - UML

Legends 

Module

File Loader Plugin  Analysis Plugin

Figure 4.2: Data Flow View of TASSEL architecture

4.2.2 Modification of TASSEL Using Proposed Architecture

Figure 4.3 showcases the modular decomposition view of the modified architecture of TASSEL, using the

proposed architecture. The modified architecture utilizes the Parallel Processing and Shared Data Cache

modules from the proposed architecture. The modules are used by both the Analysis and Utility modules.

In this way, the modules can parallelize their internal processing and store reusable data in the cache.

A data-flow view of the modified TASSEL architecture is shown in Figure 4.4. Here, the modules in

the pipeline use both the Parallel Processing and Shared Data Cache modules. The connection between the

modules in the pipeline and the helper modules are duplex, meaning that data flows both ways. It is not

mandatory to use these modules; they can increase execution and data access speed.

4.2.3 Case Study Steps

The MLM module carries out association analysis using a mixed linear model (MLM). The MLM conducts

association tests for each combination of markers and traits. It takes a genomic dataset as input and creates

two output tables which represent model statistics and model effects. The table with the model statistics

shows the test result for each trait. The second table with the model effects shows a list of estimated

effects of each allele related to each marker. If compression is used with the plugin, then a third table called

compression result shows the genetic and error variances, as well as the likelihood for each tested compression

level.

The first step in this case study was to find where the Parallel Processing and Shared Data Cache modules

could be inserted to maximize performance and decrease data access latency. To do that, bottlenecks inside

the Weighted MLM plugin that can benefit from parallelization needed to be identified. Two experiments

were performed with TASSEL as base to accomplish this task.
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Figure 4.3: Modular decomposition view of modified TASSEL architecture extended from the pro-
posed architecture

The experiments used a sample Arabidopsis dataset containing 214,051 SNPs as input. All of the exper-

iments used Single Machine 1 and had fixed parameters of 32 cores, 32 GB RAM and no GPU. From these

experiments, two potential bottlenecks were found using debug breakpoints. Both bottlenecks are iterations

over code blocks that take a significant portion of the overall execution time. Moreover, both bottlenecks are

inside a class called CompressedMLMusingDoubleMatrix which is called from the weighted MLM plugin.

The first bottleneck is inside the method computeZKZ. The time-consuming block of code iterates through

the provided genetic similarity matrix and generates a compression report. The code block for this bottleneck

is described in Appendix A. The second bottleneck is inside the method solve. Here, the code iterates over

genetic markers of the input dataset and generates output of the weighted MLM plugin. The code block for

this bottleneck is described in Appendix B.

After the bottlenecks were identified, both the Parallel Processing and Shared Data Cache modules specific

to TASSEL were implemented. Apache Spark was the processing framework chosen to realize the Parallel

Processing module, while Redis Cluster was the cache store chosen to realize the Shared Data Cache module.

The details of these implementations are as follows.

To build the Parallel Processing module, the first step at this stage was to decide what operation to
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Figure 4.4: Data flow view of modified TASSEL architecture extended from the proposed architecture

run over the RDD. The RDD operation mapPartitionsWithIndex was the perfect candidate for this, as this

operation applies the map function to each partition of the RDD and tracks the index of the original partition

as well. In this way, the module will satisfy the constraints of the ParallelProcessing interface by representing

the RDD as a collection of items. The code block of the implementation of the Parallel Processing module

using Spark is provided in Appendix C.

After building the Parallel Processing module, the next step was to refactor the bottlenecks to a function

which can process the iterator passed on to the module. The bottlenecks are wrapped by for loops, which loop

over a list of genetic markers. The code block inside each for loop process each item of the list. This code

block can be wrapped in a function, the parameter of which can be a single genetic marker. The code blocks

demonstrated in Appendix A and B were refactored, and the resultant functions can be seen in Appendix D

and E, respectively.

Redis cluster1 was selected as the cache store for the Shared Data Cache module. Redis is a data structure

store which uses a combination of memory and disk to store data in key-value pairs. In a Redis cluster, data

is automatically partitioned across distributed Redis nodes. This helps in caching and replicating large

data, which can be retrieved from any cluster machine with low latency. Although HDFS was another

option for storing the data in a distributed fashion, data access using Redis is much faster due to its hash

table structure and architectural optimization. This demonstrates that the modular architecture allows

1Redis Cluster Tutorial, https://redis.io/topics/cluster-tutorial
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parts of other frameworks to be used effectively. In this case, the standard use of HDFS was replaced by

an improvement. The implementation of the Shared Data Cache module using Redis is demonstrated in

Appendix F.

4.2.4 Experiment Setup

Once the modules have been constructed, the implementation of the modified TASSEL architecture was

complete. To verify the implementation and understand performance benefits, a set of experiments were con-

ducted with the implementation using different scenarios. There are two objectives for the experiments. The

first objective is to show that implementing the proposed architecture using a parallel processing framework

results in increased performance. The second objective is to find out how much the performance scales as

resources are increased and experiment factors are changed.

Two sets of data are used in this case study - a sample dataset of Arabidopsis thaliana and a lentil dataset.

The Arabidopsis dataset is acquired from the Arabidopsis thaliana polymorphism database2 and contains

214,051 SNPs. The provided file is in HapMap format, and the size of the file is 170 MB. All except the last

set of experiments used the Arabidopsis dataset. The lentil dataset, on the other hand, is provided by the

Plant Science department of the University of Saskatchewan, and contains 31,883,135 SNPs. These SNPs are

divided into 8 files; 7 of those files represent SNPs from chromosome 1 to 7, and one file has unassigned SNPs.

The last set of experiments will use the first chromosome, which is in VCF format. It contains 4,651,975

SNPs, and the size of the file is 33 GB.

For the first set of experiments, the number of partitions will remain the same, but the number of cores

will increase. For the second set of experiments, the number of cores will remain the same, but the number

of partitions will increase. For the third set of experiments, the number of partitions will increase with the

amount of resources, decreasing the partition size. It is expected that this should influence the performance

due to communication between the cores for intermediate and output data. In the last set of experiments,

the number of SNPs in the subset of the lentil dataset will increase, while the number of partitions and the

amount of resources remain fixed.

In the experiments, the number of partitions were chosen as parameters to vary instead of the size of

partitions. This is due to the way TASSEL handles datasets as input. TASSEL stores each row of the

input dataset as an object, then processes each row sequentially. It was therefore not feasible to partition

the input dataset based on size, as a representation of the dataset is partitioned instead of the raw dataset

that TASSEL uses as input directly. Partitioning the dataset itself would require substantial modification of

TASSEL file loading operation, which is beyond the scope of this thesis.

In order to find out how Spark partitions the rows of objects of the Arabidopsis dataset, a test experiment

was conducted with the default Spark parameters. In that experiment, Spark opted to set the number of

partitions to 72, bringing the partition size to 2.36 MB. Setting 72 as the default number of partitions for the

2https://github.com/Gregor-Mendel-Institute/atpolydb/tree/master/250k_snp_data
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Arabidopsis dataset, the experiments with TASSEL used a range of higher and lower number of partitions

as variables, to better understand the effect of varying number of partitions.

Cluster 1 and Cluster 2 described in this chapter were used for the case study. In addition, a Redis cluster

was set up in Cluster 1, having 3 master nodes and 6 slave nodes. No Redis cluster was set up on Cluster 2,

as the machines in the cluster were virtual.

Baseline Experiments

Before conducting the scalability experiments, a set of preliminary experiments were conducted in which the

original, unmodified TASSEL package was executed with the Arabidopsis and the lentil dataset.

For the Arabidopsis dataset, the experiments had two scenarios. In the first scenario, TASSEL used one

core only for processing. In the second scenario, all cores were available for execution. Both experiments ran

on Single Machine 1.

For the lentil dataset, subsets of the first chromosome containing 0.5 million, 1 million, 2.5 million and

4.65 million SNPs were used. All cores were used and the experiments were conducted on Single Machine 2.

Spark Experiments: Increasing Core Count Only

The second set of experiments kept the partition count the same, but the core count differed. All of the

experiments used 8 GB memory for the Spark driver and 13 GB memory per executor. Each experiment was

replicated 4 times. The partition count for all of the experiments was fixed at 252, and the partition size

was 675 KB. Recall that the actual input size is much smaller than the size of the object (number of rows)

that are used as input by TASSEL. 9 executors were used for the experiments. The experimental details are

given in Table 4.1.

Table 4.1: Spark Experiments: Increasing Core Count Only

Exp. No. Cores/Executor Total Cores

7 1 9

8 2 18

9 4 36

10 7 63

Spark Experiments: Increasing Number of Partitions Only

The next set of experiments kept the core count the same, but the number of partitions differed. All of the

experiments used 8 GB memory for the Spark driver and 13 GB memory per executor. Each experiment

was replicated twice and the average value is reported. The executor count was fixed at 9 and the total core

count was fixed at 63 for all of the experiments. The experimental details are given in Table 4.2.

34



Table 4.2: Spark Experiments: Increasing Number of Partitions Only

Exp. No. Partitions Partition Size

11 36 4.72 MB

12 72 2.36 MB

13 144 1.18 MB

14 252 675 KB

Spark Experiments: Scaling Core Count with Partition Count

The fourth set of experiments varied the number of tasks with total core counts. All of the experiments used

8 GB memory for the Spark driver and 13 GB memory per executor. Each experiment was replicated 4 times

and 9 executors were used. The experimental details are given in Table 4.3.

Table 4.3: Spark Experiments: Scaling Core Count with Partition Count

Exp. No. Cores/Executor Total Cores Partitions Partition Size

15 1 9 36 4.72 MB

16 2 18 72 2.36 MB

17 4 36 144 1.18 MB

18 7 63 252 675 KB

Spark Experiments: Using lentil dataset in Cluster 1

The first chromosome of the lentil dataset used for the experiments contains around 4.65 million SNPs. For

these experiments, only the dataset containing SNPs of the first chromosome has been selected. The objective

of these experiments is to see how the performance scales in the Spark Cluster while the number of SNPs in

the dataset changes. To accomplish this, the number of partitions and the amount of resources remains the

same, while the number of SNPs changes.

Two types of experiments were conducted for this environment. For the first experiment type, executor

count was fixed at 9, cores per executor was 7 and executor memory was 13 GB. For the second experiment

type, executor count was fixed at 63, cores per executor was 1 and executor memory was 2 GB. The experi-

ments use 8 GB memory for the Spark driver. For all of the experiments, the core count was fixed at 63 and

the partition count was fixed at 630, making the partition size 52 MB. The experimental details are given in

Table 4.4.

Spark Experiments: Using lentil dataset in Cluster 2

Similar to the previous experiment, these experiments seek to evaluate how the performance scales in the

Spark Cluster while the number of SNPs in the dataset changes (total data size volume). Compared to
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Table 4.4: Spark Experiments: Using lentil dataset in Cluster 1

Exp. No. No. of SNPs Executors Cores/Executor RAM/Executor

19 0.5 million 9 7 13

20 1 million 9 7 13

21 2.5 million 9 7 13

19 0.5 million 63 1 2

20 1 million 63 1 2

21 2.5 million 63 1 2

Cluster 1, Cluster 2 has more cores (168 compared to 72), more RAM (1.5 TB compared to 144GB), faster

network speed (25 Gbps compared to 1 Gbps) and the processors are slower (2.1 GHz i7-2600 CPU compared

to 3.4 GHz Xeon CPU). The experiments use 300 GB memory for the Spark driver and 300 GB memory per

executor. The core count for all of the experiments was fixed at 156, 3 executors were used and the partition

count was fixed at 630, making the partition size 52 MB. The experimental details are given in Table 4.5.

Table 4.5: Spark Experiments: Using lentil dataset in Cluster 2

Exp. No. No. of SNPs

22 0.5 million

23 1 million

24 2.5 million

25 4.65 million

4.3 FaST-LMM Case Study

The second case study is an implementation of the proposed architecture using FaST-LMM, another GWAS

application. The case study is laid out as follows. First, the architecture of FaST-LMM is described. Next,

the architecture is extended based on the proposed architecture and the modified architecture design is

described. After that, the steps taken to implement the extended architecture is reported. Finally, a set of

experiments are set up to understand the performance benefits of this implementation. The next chapter

will report on the results of the experiments.

4.3.1 Architecture of FaST-LMM

Figure 4.5 demonstrates a modular decomposition view of the FaST-LMM architecture. FaST-LMM primarily

contains three packages - Association, Inference and Utility. The Association package contains all the GWAS

operations of the program. The Inference package contains predictors for linear mixed models and linear
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regression. The Utility package contains helper modules needed by the other packages such as runners. As

previously described, runners are modules that can run GWAS operations in different environments. While

the modules inside the Association package run the major portion of an operation, they also use the modules

of Inference and Utility packages to perform GWAS operations.

Association

Inference Utility

Use
Use

Key  - UML

Legends 

Package Use Dependancy

Figure 4.5: Modular Decomposition View of FaST-LMM architecture

Figure 4.6 demonstrates a data-flow view of the FaST-LMM architecture. The modules of the Association

package can consume input, process it and produce an output. There are no multiple modules connected

together with a pipeline - a single association module computes and returns output. During computation,

the association module can call module operations from both Inference and Utility packages. Typically, an

association module calls a runner from the Utility package to determine in which environment to run the

operations, and a predictor from the Inference package to predict and score associations.

4.3.2 Modification of FaST-LMM using proposed architecture

Figure 4.7 showcases the modular decomposition view of the modified architecture of FaST-LMM, using

the proposed architecture. The modified architecture borrows the Parallel Processing and Shared Data

Cache modules from the proposed architecture. The borrowed modules can be used by the modules of the

Association, Inference and Utility packages. In this way, the modules can parallelize their internal logic and

store reusable data in the cache.

A data flow view of the modified FaST-LMM architecture is shown in Figure 4.8. Here, the modules can

use both the Parallel Processing and Shared Data Cache modules at any stage of operation. Both of these

modules can send data to and receive data from the main modules of FaST-LMM. As these modules can

increase execution and data access speed, it is recommended for implementors to use these modules if there

is a substantial performance benefit, although usage of these modules are optional.
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Figure 4.6: Data Flow View of FaST-LMM architecture
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Figure 4.7: Modular decomposition view of modified FaST-LMM architecture extended from the
proposed architecture
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Figure 4.8: Data flow view of modified FaST-LMM architecture extended from the proposed archi-
tecture

4.3.3 Case Study Steps

In this case study, the single snp all plus select module of the FaST-LMM package was selected for perfor-

mance improvement. This association module performs single SNP GWAS based on two kernels; one is based

on all SNPs and the other is a similarity matrix based on top SNPs. It takes a SNP dataset and a single

phenotype as input, and returns a dataframe with statistical values of the test SNPs.

The first step in this case study was to find out where the Parallel Processing and Shared Data Cache

modules could be inserted to maximize performance and decrease data access latency. To do that, bottlenecks

inside the single snp all plus select module, which can benefit from parallelization, needed to be identified.

Fortunately, the module uses a modified implementation of MapReduce. By investigating and modifying

this implementation, the Parallel Processing and Shared Data Cache modules can be integrated inside the

single snp all plus select module.

There are three functions in the single snp all plus select module which are used in the map opera-

tion - mapper find best given chrom, mapper gather lots and mapper single snp 2K given chrom. The map-

per gather lots function is a map operation nested inside the mapper find best given chrom function. In order

to allow FaST-LMM to work with generic MapReduce implementations, the nested MapReduce operation

needed to be flattened so that a single MapReduce job can perform the whole operation.

To flatten the nested MapReduce implementations, both the parent and child operations were modified

in such a way that only the mapper gather lots function was sufficient to perform required operations in

parallel. There was no need for the mapper find best given chrom function anymore, so it was removed. This

left the single snp all plus select module with two MapReduce jobs to perform.
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After the single snp all plus select module was modified, both the Parallel Processing and Shared Data

Cache modules were implemented. Two processing frameworks were chosen to instantiate the Parallel Pro-

cessing module - Apache Spark and Dask. Redis Cluster was the cache store chosen to instantiate the Shared

Data Cache module. The implementation of the Redis Cluster as the Shared Data Cache module follows the

description provided in Section 4.2.3 and demonstrated in Appendix I. The details of the implementations

of the Parallel Processing modules are as follows.

To build the Parallel Processing module using Apache Spark, the first step at this stage was to transform

the MapReduce operations of the single snp all plus select module into RDD map operations. These opera-

tions allow the module to satisfy the constraints of the ParallelProcessing interface by representing the RDD

as a collection of items. The code block of the implementation of the Parallel Processing module using Spark

is provided in Appendix G.

Similar to the implementation of Apache Spark, the first step of implementing Dask for the Parallel

Processing module is to transform the MapReduce operations of the single snp all plus select module into

distributed Dask operations. Dask provides a map function to distribute parallel tasks to workers, which

allows the module to satisfy the constraints of the ParallelProcessing interface. The code block of the

implementation of the Parallel Processing module using Dask is provided in Appendix H.

4.3.4 Experiment Setup

To verify the implementation and understand performance benefits, a set of experiments were conducted

with the implementation using different scenarios. Similar to the first case study with TASSEL, there are

two targets of these experiments - to show that the implementation of the proposed architecture increases

performance, and to find out performance scalability in terms of increasing resources and varying experiment

factors.

Two parallel processing frameworks called Dask and Spark are used for these experiments. Three sets of

experiments will be conducted with each of these frameworks. For the first experiment in the set, the number

of partitions remain the same while the number of cores increase. For the second experiment in the set, the

number of cores remain the same the while the number of partitions increase. For the third experiment in

the set, the number of partitions increases with the number of cores.

Similar to how TASSEL stores input dataset, as explained in Section 5.1.1, FaST-LMM stores each row

of the input dataset as objects, then processes each row in sequence or parallel, depending on the type of

runner used. In order to find out how Spark and Dask partitions the rows of objects of the Arabidopsis

dataset, a test experiment was conducted using Spark and Dask with their default configurations. In the

experiments, both Spark and Dask opted to set the number of partitions to 880, bringing the partition size

to 193 KB. Setting 880 as the default number of partitions for the Arabidopsis dataset, the experiments with

FaST-LMM used a range of higher and lower number of partitions as variables, to better understand the

effect of varying number of partitions.
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Cluster 1 and Cluster 2 were used for the experiments. In addition, a Redis cluster was set up on Cluster

1, having 3 master nodes and 6 slave nodes. All of the experiments used the Arabidopsis thaliana dataset.

Baseline Experiments

A set of preliminary experiments were conducted in which the original, unmodified FaST-LMM package was

executed in three scenarios. In the first scenario, FaST-LMM used a local runner which uses only one core

for processing. In the second scenario, FaST-LMM used a multiprocessor runner which used 8 cores for

processing. The last experiment in the set used the same multiprocessor runner to run with 64 cores. All of

the experiments ran on Single Machine 2.

Dask and Spark Experiments: Increasing Core Count Only

The next set of experiments will keep the number of partitions the same, but the core count differed. All of

the experiments used 8 GB memory of master machine for Dask scheduler, 8 GB memory per Dask worker,

8 GB memory for the Spark driver and 13 GB memory per Spark executor. Each experiment used 9 Spark

executors, 9 Dask workers and was replicated 4 times. The partition count for all of the experiments were

fixed at 880, making the partition size 193 KB. The experimental details are given in Table 4.6.

Table 4.6: Dask and Spark Experiments: Increasing Core Count Only

Exp. No. Cores/Worker Total Cores

7 1 9

8 2 18

9 4 36

10 7 63

Dask and Spark Experiments: Increasing Number of Partitions Only

The third set of experiments will keep the core count the same, but the number of partitions differed. All of

the experiments used 8 GB memory of master machine for Dask scheduler, 8 GB memory per Dask worker,

8 GB memory for the Spark driver and 13 GB memory per Spark executor. Each experiment was replicated

twice and the average value was counted. The core counts for all of the experiments were fixed at 63. 9 Dask

workers and 9 Spark executors were used. The experimental details are given in Table 4.7.

Dask and Spark Experiments: Scaling Core Count with Partition Count

The fourth set of experiments varied the number of tasks with total core counts. These experiments used

8 GB memory of master machine for Dask scheduler, 8 GB memory per Dask worker, 8 GB memory for
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Table 4.7: Dask and Spark Experiments: Increasing Number of Partitions Only

Exp. No. Partitions Partition Size

11 440 386 KB

12 880 193 KB

13 1760 96 KB

14 3520 48 KB

the Spark driver and 13 GB memory per Spark executor. Each experiment was conducted 4 times. 9 Dask

workers and 9 Spark executors were used. The experimental details are given in Table 5.4.

Table 4.8: Dask and Spark Experiments: Scaling Core Count with Partition Count

Exp. No. Cores/Worker Cores Partitions Partition Size

3 1 9 440 386 KB

4 2 18 880 193 KB

5 4 36 1760 96 KB

6 7 63 3520 48 KB

4.4 Evaluation of Architecture using Feedback from Experts

The final part of this chapter is a description of an architectural evaluation using a questionnaire and asking

feedbacks from domain experts. The evaluation details will be laid out, including domain expert choice and

question list. The next chapter will have the responses and evaluation of the questionnaire.

In addition to performance evaluation, there is a need for the architecture and its implementation to be

evaluated by domain experts and end users. In this section, a review of the proposed architecture and its

implementation was conducted by preparing a questionnaire and asking for feedback from domain experts.

The target of the questionnaire was domain experts in Software Engineering, Bioinformatics and Distributed

Programming.

To conduct the evaluation, two sets of questionnaires were prepared. The first set of questions, demon-

strated in Table 4.9, are closed-ended, meaning that the interviewee can answer the questions by saying yes,

no or no comment. The second set of questions, demonstrated in Table 4.10, are open ended, which means

that the interviewee can provide a thorough answer on those questions. The purpose of these questions is to

investigate whether the architecture and its implementation are useful to domain experts and end users.

There are three objectives of the questionnaires. The first objective is to find out whether the performance

benefit of the architecture makes is useful for the end users. The second objective is to find out whether the

reusability of the modules makes it easy for both developers and end users to use the architecture and its
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Table 4.9: Closed-Ended questions

Questions

Q1. If an architecture is proposed where multiple machines are used for executing a GWAS application

faster, would you find it valuable?

Q2. Does the architecture clearly explain how reusable modules can be used to gain performance

improvement?

Q3. Is the module reusability for performance gain in the architecture useful for you?

Q4. Is the performance benefit compared to the original implementation in the experiments useful for

you?

Q5. Is the implementation of the proposed architecture easy enough for you to use?

Q6. Do you believe the proposed architecture is extendible towards other GWAS applications?

Table 4.10: Open-Ended questions

Questions

Q1. What benefits do you see from this implementation?

Q2. What challenges/disadvantages of the implementation do you see?

implementation. The third objective is to find out the opinion of the domain experts regarding the feasibility

of the architecture to be used in additional GWAS applications.

The domain experts for the evaluation were chosen from three domains . Three experts from each domain

were chosen for the evaluation. These nine experts include graduate and post graduate students as well

as research assistants. These experts were chosen for their knowledge in their respective domain and their

involvement in GWAS studies.

4.4.1 Summary

In conclusion, this chapter lays out the details of two case studies being conducted using the proposed archi-

tecture. The objectives of the case studies are to demonstrate prototypes of the architecture implementation

and verify performance benefits of the implementations. Additionally, a plan for an architectural evaluation

based on feedbacks from domain experts has also been laid out. The feedback will serve as evaluation for the

architecture and the prototype implementation.

43



5 Case Study Performance Experiment and

Architectural Evaluation Results

In this chapter, the results of the experiments performed to understand the performance and usability

benefits of the case studies of the architecture described in Chapter 4 are reported and discussed. First, the

experiment results of the case study in TASSEL are described. Next, the experiment results of the case study

in FaST-LMM are described. Finally, the results of the architecture evaluation using feedback from experts

is also reported.

5.1 Experiment Results for TASSEL Case Study

In this section, the baseline experiment results will be described first. Next, three sets of experiment results

for the arabidopsis dataset follow - experiments where only the number of cores changed, experiments where

only the number of partitions changed and experiments where the number of cores were scaled with number

of partitions. These results indicate that using the prototype implementation results in better performance

compared to original implementation, but the performance also demonstrates sub-linear scalability. After

that, the experiment results using the lentil dataset are presented. The experiment results with lentil dataset

indicate that although the prototype implementation performs much better than the original implementation,

it can process data set sizes in a linear scalable manner to a certain threshold before encountering a memory

error. Finally, discussions regarding common patterns in the results and corresponding insight is provided.

5.1.1 Baseline Experiments

Table 5.1 describes the results for the baseline experiments with the Arabidopsis dataset. Each experiment

was repeated twice and the average value is reported. There is not much performance difference between

the restricted and unrestricted execution of TASSEL. Using 32 cores in unrestricted environment results

in 1.2% increase of execution time. This is not a significant increase in execution time, which means the

performance remains almost the same for both restricted and unrestricted execution. A potential reason

for the degraded performance can be the overhead in switching between cores during multicore execution.

During its execution, TASSEL uses only one core for most of the operational period, except when the input

files are being loaded. Therefore, allowing the application to run using multiple cores does not result in

significant performance differences.
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Table 5.1: Baseline experiments with original, unmodified TASSEL and Arabidopsis dataset

Exp. No. Cores Exec. Time

1 1 3697 seconds

2 32 3741 seconds

Table 5.2 describes the results for the baseline experiments with the lentil dataset. Each experiment was

repeated twice and the average value is reported. Working on 0.5 million SNPs takes around 128 minutes,

while working on 4.65 million SNPs takes around 1076 minutes. 4.65 million SNPs is 9.3 times bigger than

0.5 million SNPs but the increase in execution time is only 8.4. This suggests that the rate of computation is

super linear for sequential execution as dataset size is increased. A potential reason for this is that each row

in the input dataset takes roughly the same time to be processed, allowing the program to maintain linear

scalability as much as possible. Furthermore, overlapping during calculation on bigger dataset can also result

in more than linear speedup.

Table 5.2: Baseline experiments with original, unmodified TASSEL and lentil dataset

Exp. No. SNPs Exec. Time

3 0.5m 7730 seconds

4 1m 15258 seconds

5 2.5m 38205 seconds

6 4.65m 64579 seconds

5.1.2 Spark Experiments: Increasing Core Count Only

Figure 5.1 shows the performance comparison between sequential and cluster operations while scaling the

number of cores only. The sequential run is the experiment done with 32 cores, while the restricted sequential

run was restricted to one core only. Each experiment was repeated four times and the average value is

reported. The coefficient of variation between the replications is 0.05.

Using Spark with 1 core per executor can boost performance up to 7 times compared to the sequential

operation. Even though there are 9 worker machines, this shows some sequential computation that cannot

be parallellized. Compared to the performance of 1 core per executor, using 7 times the cores per executor

only results in 2.2 times speed improvement. The implications of these experimental results will be discussed

further in the discussion section.

5.1.3 Spark Experiments: Increasing Partition Count Only

Figure 5.2 demonstrates how fixed core count and increasing partition count (decreasing partition size) affects

Spark performance. There is very little difference between the performance of experiments with 36, 72 and
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Figure 5.1: Sequential vs. Spark operation: scaling core count only

144 partitions. However, the execution time of the experiment with 252 partitions is 439 seconds, which is

around 22% better than the average execution time of the previous three experiments. This suggests that

there is an optimal partition count related to a core count which will bring about the best performance for

a parallel operation for the specific dataset and cluster being used.

5.1.4 Spark Experiments: Scaling Core Count with Partition Count

Figure 5.3 demonstrates how increasing core count and partition count together affects Spark performance.

For the experiments, the coefficient of variation between the replications is 0.07 and the experiments were

repeated 4 times. Using Spark with 1 core per executor can boost performance up to 7 times compared to

the sequential operation. However, the execution time does not scale further in a linear fashion as core count

increases. Compared to the performance of 1 core per executor, using 7 times the cores per executor only

results in 2.5 times speed improvement.

The key difference between this and the previous set of experiments is that while the previous set of

experiments are changing either core count or partition count, this set of experiments is changing both

factors. However, the experiment results do not differ by much compared to the experiments where only

core count is increased. This, along with the result of experiment sets where only partition count is changed,

suggests that the effect of dividing up the partitions into small parts may be offset by the performance
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Figure 5.2: Spark operation: scaling partition count only
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Figure 5.3: Sequential vs. Spark operation: scaling core count with number of partitions
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increase due to increasing core count.

5.1.5 Spark Experiments: Lentil Dataset in Cluster 1

Figure 5.4 displays the results of the scalability experiments using the first chromosome of the lentil dataset

to demonstrate how varying dataset size affects the performance and scalability of Spark in Cluster 1. Two

replications were conducted and the coefficient of variation between the replications is 0.005.
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Figure 5.4: Spark experiment: Cluster 1 with lentil dataset

Unfortunately, experiment no. 19, 20 and 21 could not be executed due to Java Heap Memory errors.

These experiments used 63 executors and 2 GB per memory, as described in Chapter 4. Although the

actual size of the dataset is 4.65 million, the maximum amount of SNPs used in these experiments is 2.5

million. When the input dataset is being chunked and broadcasted to worker machines, the broadcasted

data is initially saved in memory. As each machine in Cluster 1 had only 16 GB of RAM available, it was

not possible to assign more than 2 GB RAM to each executor, so Spark threw a memory error whenever

its memory limit was exceeded. The target for this set of experiments was to use more executors with less

resources to see if more parallelism could be achieved. However, as the experiments were not successful, a

future work would be to assign more RAM to the executors and find out if it makes any difference to the

performance.

The initial experiment used 0.5 million SNPs from lentil dataset, resulting in an execution time of 1162

seconds. The next experiment used 1 million SNPs, which increased execution 1.94 times and resulted in an

execution time of 2262 seconds. Finally, using 2.5 million SNPs results in an execution time of 5792 seconds,
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which is a 2.56x increase in execution time compared to using 1 million SNPs. These results indicate that

the rate of computation scales linearly as dataset size is increased, and Spark is able to scale performance

with increasing dataset size.

5.1.6 Spark Experiments: Lentil Dataset in Cluster 2

Figure 5.5 displays the results of the experiments using the first chromosome of the lentil dataset to demon-

strate how varying dataset length affects the performance and scalability of Spark in Cluster 2. Cluster 2

has more cores, more RAM and slower processors. Two replications were conducted and the coefficient of

variation between the replications is 0.02.

0.
5M

S
N

P
s

1M
S

N
P

s

2.
5M

S
N

P
s

4.
65

M
S

N
P

s

0

500

1,000

1,500

2,000

Experiment Type

E
x
ec

u
ti

on
T

im
e

(i
n

S
ec

on
d

s)

Lentil dataset: 56 cores/300GB RAM per executor

Figure 5.5: Spark experiment: Cluster 2 with lentil dataset

An attempt was made to run both chromosome 1 and 2 of the lentil dataset together - which amounted to

10 million SNPs - in Cluster 2. However, the execution encountered the same Java Heap Memory error that

plagued Cluster 1 experiments. Further experiments with 1 TB and larger amount of RAM per executor are

part of future work on the scalability.

The execution time for these experiments are much faster than the experiments with Cluster 1. On aver-

age, the execution time is around 5 times faster for the results of Cluster 2 when comparing with the results

of Cluster 1, in spite of using only 2.5 times more cores. The rate of computation does not degrade for these

experiments either.

Comparing the experiment results of Cluster 1 and Cluster 2 using lentil dataset, it can be seen that using
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Cluster 2 resulted in an average of 5 times speedup compared to Cluster 1. Cluster 1 had 63 cores and 117

GB of RAM in total available to executors, whereas Cluster 2 had 156 cores and 900 GB of RAM in total

available to executors. However, the processing cores of Cluster 1 had higher frequency compared to Cluster

2 (3.4 GHz compared to 2.1 GHz). As the cores of Cluster 2 are slower than Cluster 1, and both clusters

use the same type of disks, a combination of memory and network speed may be responsible for the speedup.

The network of Cluster 1 is capped at 1 Gbps, whereas the virtual machines in Cluster 2 share a 25 Gbps

network. This indicates that network speed might be a significant reason for the speedup. To verify the effect

of network speed improvement on the execution speedup, an attempt was made to run Spark experiment

with lentil dataset using 2 GB RAM per executor. However, the execution encountered Java Heap Memory

error, which prevented quantifying the performance difference.

5.1.7 Discussion

From the experiment results described above, it can be seen that although using Spark increases performance

of TASSEL, the performance is not increasing linearly relative to resources. On average, using 7 cores per

machine brings about only 2.1 times speedup compared to using 1 core per machine. This anomaly can be

attributed to the way calculations occur inside map operations of the modified program. Some operations

inside the map tasks for the WeightedMLM plugin are repeated and sequential in nature, meaning that the

map tasks scale in a sub-linear fashion.

The first three experiments use the Arabidopsis dataset to measure how varying resources with fixed

dataset size impacts performance. However, the experiments with lentil dataset measure how varying dataset

size with fixed resources impact performance. As the lentil dataset is much bigger than the arabidopsis

dataset, subsets of the data file were used initially to see if the performance scales with increasing amount

of data. Using 2.5 million SNPs resulted in 5 times execution increase compared to using 0.5 million SNPs,

which means the rate of computation does not degrade. This indicates that the scalability problem is not

affected by the dataset size; Spark is able to scale performance with increasing dataset size.

Although Cluster 1 failed to run 4.65 million SNPs of the first chromosome of lentil dataset, Cluster 2 had

no problem running it. On the other hand, Cluster 2 failed to run 10 million SNPs of the combined first and

second chromosome of lentil dataset. Cluster 1 had 14 GB of memory available to each executor, whereas

Cluster 2 had 300 GB memory per executor. Cluster 2 succeeded to run 4.65 million SNPs because Spark

was able to store the required amount of data in memory, but the amount of memory was not enough for 10

million SNPs. A supplementary experiment was conducted on Single Machine 2 to verify if the implemented

prototype can handle larger input if more memory is provided. A standalone Spark cluster was initiated

on the machine, acting as both master and worker and having 64 cores and 1.5 TB of RAM. The Spark

instance had 8 executors, and each executor had 8 cores - all 64 cores were used for the experiment. Each

executor was given 50 GB of memory, and the Spark driver was given 50 GB of memory as well. This

TASSEL-Spark configuration was able to successfully run the complete chromosome 1 of the lentil dataset in

50



3025 seconds, without throwing any memory errors. This result indicates that increasing the memory of each

executor can result in the implemented prototype handling more data. More work is needed to understand

the relationship between dataset size and amount of memory required. The physical memory of Cluster 1

cannot be expanded, but configurations available in Cluster 2 will permit this scalability evaluation.

In the TASSEL experiments, the number of cores used in experiments of Cluster 1 were 1, 2, 4 and 7, while

the number of partitions used in the same cluster were 36, 72, 144 and 252. Trying out all the combinations

between the core count and the partition count would lead to a full factorial experiment. However, the

experiments were not completed due to their running length. Performing the full factorial experiment can

be an important future work, which may lead to greater insight on whether the core count only matters at

some partition sizes.

From the discussions above and the insights from the experiment results, three conclusions can be drawn.

The first conclusion is that the performance of the prototype implementation does not scale with executor

size in terms of CPU cores. Although the experiments exhibit increased performance compared to sequential

implementations, the sequential code blocks inside the implementation still hampers the scalability of the

implementation, resulting in sub-linear scalability. Fixing this problem requires further optimization of the

application, which will involve finding more sequential code blocks and making them work with parallel

execution. The second conclusion is that changing the number of partitions does not affect performance

substantially. This means that it is best to let the parallel processing frameworks handle the partition

amount and optimize the operation in the best way possible. The third conclusion is that increasing the

size of dataset results in scalable performance - execution time decreases at the same scale of increasing

dataset size when resources are fixed. This means that the size of the dataset does not affect scalability of

performance. The fourth conclusion is that even in cluster operations, not having enough memory in worker

machines can hamper working with large datasets. It is therefore imperative to have enough memory in

worker machines so that parallel operations do not face memory problems. Furthermore, discovering what

level of resources are required for each experimental scenario does not seem to be trivial.

5.2 Experiment Results for FaST-LMM Case Study

In this section, the baseline experiment results are described first. Then the results of Dask and Spark

experiments respectively, using the Arabidopsis dataset are described. For both sets of experiments, the

results of experiments where the number of cores are increased only are provided first. Next, the results of

experiments where the number of partitions are increased only will be described. Afterwards, the results

of experiments where the number of cores is scaled with the number of partitions are described. These

results indicate that similar to TASSEL experiments, using the prototype implementation results in better

performance compared to original implementation, but the performance does not scale linearly. Finally, a

comparison is conducted between the results of experiments done using Dask and Spark. The experimental
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results demonstrate that there is little difference between the results of these two frameworks.

5.2.1 Baseline Experiments

Table 5.3 describes the results for the baseline experiments conducted on Single Machine 2 . As described

in the previous chapter, the experiment with local runner uses one core, while the experiments with multi-

proc runner use multiple cores. The local runner with one core has the worst performance. However, the

performance of multiprocessor runner with 8 cores is better than that of 64 cores. This result is similar

to the TASSEL baseline experiments detailed in Section 5.1.1, where using more cores resulted in degraded

performance. As explained, a potential reason for the degraded performance can be the overhead in switching

between cores during multicore execution.

Table 5.3: Baseline experiments with original, unmodified FaST-LMM

Exp. No. No. of Cores Runner type Exec. Time (seconds)

1 1 Local 10513

2 8 Multiproc 7695

3 64 Multiproc 9050

5.2.2 Dask and Spark Experiments: Increasing Core Count Only

From Figure 5.6, using Dask and Spark with 1 core per worker can boost speed up to 12 times compared to

local execution, and up to 8.5 times compared to multicore execution. However, the execution time increases

very slightly as core count increases upwards from 2 cores per machine. The execution time scales down

to a minimum from 1 core to 2 cores per machine, then gradually increases until the core count is 7 per

machine. Both the Dask and Spark experiments were replicated 3 times. The coefficient of variation between

the replications for Spark experiments is 0.51, while for Dask experiments it is 1.31.

5.2.3 Dask and Spark Experiments: Increasing Partition Count Only

From Figure 5.7, there seems to be very little difference between the execution time of the experiments. The

target of the experiments was to determine the difference between the results of each core configuration of

Dask and Spark. Table 5.4 displays the average, standard deviation and coefficient of variation between

Table 5.4: Statistics for Experiment Results of Figure 5.7

Framework Average Std. Dev. COV

Dask 1253.59 5.57 0.004

Spark 1253.21 14.64 0.012
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Fixed Partition Size (880 partitions of 193 KB)
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(a) Dask: increasing core count only
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Figure 5.6: Sequential vs. Multicore vs. Dask/Spark operation: increasing core count only
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(a) Dask: increasing partition count only
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Figure 5.7: Sequential vs. Multicore vs. Dask/Spark operation: increasing partition count only
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Scaling Core Count With Number of Partitions
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(a) Dask: scaling core count and number of partitions
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Figure 5.8: Sequential vs. Multicore vs. Dask/Spark operation: scaling core count and number of
partitions

results for each core, categorized by the frameworks being used. The coefficient of variations for both Dask

and Spark are relatively low, less than 0.02. This suggests that for FaST-LMM under both Dask and Spark

operations and for the specific dataset and cluster being used, partition count has little effect on execution

time; dividing the dataset more has no effect. However, the experiments have smaller partition size compared

to the traditional ones used by Dask and Spark. The size of the Arabidopsis dataset is 170 MB, which means

that 440 partitions will result in partition size of 386 KB and 3520 partitions will result in partition size of

50 KB. In comparison, the default partition size in Spark configuration is 128 MB. Therefore, it cannot be

claimed with certainty that partition count has little effect on execution time when compared with Spark

defaults.

5.2.4 Dask and Spark Experiments: Scaling Core Count with Partition Count

From Figure 5.8, using Dask and Spark with 1 core per worker can boost speed up to 12 times compared

to sequential execution, and up to 8.5 times compared to multicore execution. However, instead of gradual

reduction of execution time with increasing core count, the execution time increases as core count increases

upwards from 2 cores per machine. The execution time scales down to a minimum from 1 core to 2 cores per

machine, then gradually increases until the core count is 7 per machine.
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Comparing the results of the previous sets of experiments which focuses on increasing core count and

partition count individually, the result for this set of experiments is similar to the results of experiments with

increasing core count only, and execution time remains similar for the experiments with increasing partition

count.

The results of the experiments with FaST-LMM and Spark mirror the results of the experiments with

FaST-LMM and Dask closely. In both sets of experiments, the execution time decreases for 2 cores and then

increases for 7 cores. This suggests that both Dask and Spark perform similarly when given the same amount

of resources. This conjecture will be validated in the next set of experiments, as the performance of Dask

and Spark are compared more closely.

5.2.5 Performance Comparison of Dask and Spark

Comparison of Increasing Core Count only between Dask and Spark

Each experiment in Figure 5.9 was replicated 3 times. While Spark has slight advantage over Dask while

running on 4 and 7 cores per machine, Dask regains the slight advantage while running on 1 and 2 cores per

machine. The little difference of execution time shows that Dask and Spark are evenly matched for running

parallel tasks when partition count remains static and core count increases.
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Figure 5.9: Dask vs. Spark: increasing core count only

Comparison of Increasing Partition Count only between Dask and Spark

From Figure 5.10, there is again little difference between the performance of Dask and Spark. The frameworks

are evenly matched with the number of partitions as an experimental factor.
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Figure 5.10: Dask vs. Spark: increasing partition count only

Comparison of Scaling Core Count with Partition Count between Spark and Dask

Figure 5.11 provides the zoomed in comparison between Dask and Spark. The little difference of execution

time shows that Dask and Spark are almost evenly matched for running parallel tasks when scaling core

count with partition count, with Spark having slight advantage on some cases.

5.2.6 Discussion

Compared to the experiments done with TASSEL and Spark, there are a number of differences in the

experiments with FaST-LMM on Dask and Spark. The first difference is how the performance scales as core

count is increased. In the experiments with TASSEL and Spark, execution time decreased as core count

increased, but the scalability was sub-linear. In the experiments with FaST-LMM, Dask and Spark, not

only the scalability was sub-linear, but the execution time actually increased as more cores were used. On

average, using 7 cores per machine resulted in a 1.08x execution time increase compared to using 1 core per

machine. The reason for the suboptimal result of the experiments is the redundant operation problem which

was prevalent in the Spark experiments as well. There are sequential and repeated code blocks inside the

map tasks of FaST-LMM which prevent the tasks from scaling with core count increase. Using more cores

means more time spent in repeated operations, possibly resulting in increased execution time compared to

using lower number of cores.

Unfortunately, it was not possible to use the lentil dataset with FaST-LMM, as FaST-LMM was not able

to read the dataset because of data formatting issues that have not been resolved yet. Despite FaST-LMM not

being able to use the lentil dataset, the experiments demonstrated enough evidence that the implementation

56



1 2 4 7
0

200

400

600

800

1,000

1,200

Number of Cores

E
x
ec

u
ti

on
T

im
e

(i
n

S
ec

on
d

s)

Scaling Core Count - Dask vs. Spark

Dask Spark

Figure 5.11: Dask vs. Spark: scaling core count per executor and partition count

of the proposed architecture is able to handle large datasets for GWAS operations. Moreover, the slowdown

of operations observed in FaST-LMM can be an indication that using TASSEL may have more benefit in

terms of scalability and speedup, compared to FaST-LMM. Future work can compare similar operations

between TASSEL and FaST-LMM to determine which application performs better in diverse scenarios. This

will require modification to the input module and/or data format.

From the above discussion, two conclusions can be drawn. The first conclusion is that similar to the

experiments with TASSEL and Spark: the performance of the prototype implementation does not scale with

the amount of resources. Although the experiments exhibit increased performance compared to sequential

implementations, increasing the number of cores does not result in increased performance. Fixing this problem

requires further optimization of how FaST-LMM operates, which may involve finding sequential code blocks

and making them work with parallel execution. Comparing the performance of TASSEL and FaST-LMM,

the optimizations selected for TASSEL provides more scalability than the corresponding optimization in

FaST-LMM. The second conclusion is that changing the number of partitions does not affect performance,

which is also similar to the conclusion drawn for TASSEL and Spark.

5.3 Evaluation results using feedback from experts

Table 5.5 lists the closed-ended questions and the responses from the domain experts. The first three questions

ask about the architecture in general. For the first question, all experts agreed that it would be valuable for

them to make a GWAS application faster using an architecture that utilizes multiple machines. Although

most experts are clear on the topic asked on the second qeustion, two experts stated that they are unclear
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Table 5.5: Closed-Ended questions

Questions Answers

Yes No No Comment

Q1. If an architecture is proposed where multiple machines are used for

executing a GWAS application faster, would you find it valuable?

9 0 0

Q2. Does the architecture clearly explain how reusable modules can be used

to gain performance improvement?

7 2 0

Q3. Is the module reusability for performance gain in the architecture useful

for you?

9 0 0

Q4. Is the performance benefit compared to the original implementation in

the experiments useful for you?

9 0 0

Q5. Is the implementation of the proposed architecture easy enough for you

to use?

8 1 0

Q6. Do you believe the proposed architecture is extendible towards other

GWAS applications?

5 0 3

about the explanation due to its generalized manner, and would prefer more detailed explanation. For the

third question, all experts agreed that the module reusability would be quite useful for them.

The next two questions ask about the implementation of the architecture. All experts acknowledged in

Question 4 that the performance gain of the implementation prototype is indeed useful for them. All but

one experts found the implementation easy enough to use, when answering Question 5.

To answer the last question, 5 experts believed that the proposed architecture can be extended towards

other GWAS applications; 3 experts had no comment on the question, as they lacked enough information to

answer the question.

The benefit most commonly acknowledged by the experts for the first open-ended question is the fast

computation of the implementation. The experts believed that the speedup of the implementation would

reduce time to conduct important genome studies. Some experts also stated that the implementation would

be easier to use and configure for end users without sufficient background in computer science. Others

talked about the benefit for developers - easier implementation, separation of concerns, adaptability to layer

architecture and extendibility to other tools. A few experts also noted that the use of shared data cache

module can result in lower latency and fast retrieval of cached data.

The drawback most commonly mentioned by the experts for the second open-ended question is the lack of a

GUI system. The prototype implementation of the architecture is operated from terminal and uses command

line arguments to switch modules. Although the experts found the implementation easy enough to use, they

also expressed the opinion that using a GUI system would make it much easier to run GWAS operations and

switch modules as needed. Some experts also commented on the generalization of the architecture and stated
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that the tradeoff of generalization might be a burden for developers during implementation. The developers

also have a big role to play for the usability and configurability of the implementation, and some experts

are of the opinion that the implementation may depend too much on how good the developer is. Finally,

a bioinformatics expert commented that there are different ways of doing GWAS studies and further work

need to be done to ensure that the proposed architecture is applicable in most cases.

5.4 Chapter Discussion

A few more general observations can be made from the case studies conducted using TASSEL and FaST-LMM.

The first observation is the lack of linear scaling in the experiments. The prototype implementations for both

TASSEL and FaST-LMM had sub-linear scalability. The given explanation was that there are sequential and

repeated code blocks inside the parallel implementations of TASSEL and FaST-LMM, which prevented the

parallel tasks from scaling with core count increase. Solving this problem requires much more optimization

than plugging in a parallel processing module. The best performing parallel tasks are those which are

embarrassingly parallel - tasks which can be parallellized without any sequential dependancy. Sufficient effort

to optimize sub-linear section of operations in TASSEL and FaST-LMM may result in increased performance

and scalability, but it will be difficult to make these tasks completely independent. Therefore, it is wiser to

expect sub-linear scalability in GWAS operations and set the target to optimize the operations and achieve

as much scalability as possible. This optimization can come in the form of caching frequently accessed data,

buffering data in memory and efficient algorithms.

In addition to the sub-linear scalability problem, the experiments also suffered from memory overflow

errors. When handling the lentil dataset, TASSEL was not able to run more than 4.65 million SNPs even

with 300 GB of RAM provided per executor. The complete lentil dataset has around 32 million SNPs.

Optimizing the parallel tasks as mentioned previously would go a long way towards fitting more SNPs using

less RAM. However, fixing the way the input dataset is loaded into the application is paramount towards

loading big data efficiently. Both TASSEL and FaST-LMM loads the input dataset directly into memory.

Additionally, they encapsulate each row of data into an object, which takes even more space in memory

than the raw dataset does. This makes it difficult to load a big dataset without having substantial amount

of memory in a machine. An intuitive solution to this problem can be using a buffer to store and operate

on input dataset. The buffer can detect the amount of memory available to the application and operate on

the input dataset in batches. This will prevent the memory overflow problem. However, in the perspective

of the architecture proposed in this thesis, a better solution could be implementing a file operation module

specifically designed to work with traditional distributed file systems such as HDFS. Together with a buffer,

this will not only prevent memory overflow, but also enable storing and operating on big data scale datasets.

Furthermore, the API for the file operation module can be made interoperable with the parallel processing

modules, which means that parallel operations can be directly run on the input dataset without loading all
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of it in memory first. This can be an important future work.

The case studies used the number of partitions as an experiment factors. This resulted in the experiments

having smaller partition size than the traditional ones. For example, in one of the experiments, 3520 partitions

were used for the arabidopsis dataset, the size of which is 170 MB. This means that the size of each partition

was 50 KB on average. Compared to this, the default partition size in Spark configuration is 128 MB. In a

distributed filesystem such as HDFS, data is stored in fixed partition size, which usually can be in the range

of multiples of megabytes. Although the size of the arabidopsis dataset is relatively small compared to a

larger dataset like the lentil dataset, the decision to use partition count instead of partition size was a design

choice. As explained in Section 5.1.1, both TASSEL and FaST-LMM stores each row of the input dataset

as an object, so a representation of the dataset is partitioned instead of the dataset. The experiment results

demonstrated that varying the number of partitions do not influence performance by much. However, the

conclusion is not solid due to two reasons - the arabidopsis dataset was much too small, and the experiments

were not replicated enough. A future work can focus on varying the number of partitions in different scenarios

and observe how it affects performance.

The final observation can be made on how much the end users can benefit from the architecture implemen-

tation with regards to the evaluation feedback. The feedback demonstrated a need for fast GWAS operation

with easy to use interface. Although the experiments did demonstrate that the implementations performed

much faster than the original applications, the implementations were not able to run datasets having more

than 4.7 million SNPs and to linearly scale performance. As discussed above, making the implementations

run on larger datasets on a linear scale requires substantial amount of work. The implementations can run

datasets in the range of gigabytes; however, running datasets in the range of terabytes require further work.

Moreover, the parallellization of TASSEL and FaST-LMM was performed on a chosen GWAS plugin of each

application. Running other GWAS plugins will require finding the bottlenecks of those plugins and plugging

in the implemented modules on a case by case basis. It is possible to do this as evidenced by the experiments.

Whether it is more beneficial to continue to optimize such implementations or use entirely modular designs

from scratch is beyond the scope of this research. One of the contributions of this thesis is that it is now

much easier to get a basic level of speedup from most available GWAS plugins by finding the bottlenecks and

plugging in the parallel processing module. However, as mentioned previously, achieving scalable performance

requires further optimization.

5.5 Summary

In conclusion, this chapter reports the results of the case study experiments as well as the architecture evalu-

ation feedback described in Chapter 4. The case study experiments demonstrated that the implementations

of the proposed architecture performed much better than the original programs. However, none of the im-

plementations achieved linear scalability because there were sequential code blocks with repeated operations
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inside every map tasks of the implementations. As core count increases, the repetition of the operations

also grow in number, resulting in sub-linear scalability, that is, the performance does not scale with resource

increase. The experiments with varying number of partitions and fixed resources demonstrated that the

performance does not differ much when changing the amount of partitions. In addition to the Arabidopsis

dataset, a lentil dataset was also used for a number of experiments. These experiments demonstrated that

the performance scales down linearly with the size of the dataset. A comparison of performance between

Dask and Spark using FaST-LMM indicated that there is not much performance difference between these

two frameworks.

The architecture evaluation garnered mostly positive feedback from domain experts, who found the pro-

posed architecture and its implementations useful, performance oriented and easy to use. However, the

experts also noted the lack of GUI in the implementations and the tradeoff of architecture generalization the

developers have to face.

61



6 Conclusion and Future Work

6.1 Conclusion

In this thesis, a modular pipeline architecture for GWAS applications that can improve performance by

leveraging parallel processing and data cache was designed, implemented and evaluated. Although existing

GWAS applications implement performance optimizations to process large volumes of data, researchers can

find it difficult to adapt to the various workflows and data types these applications represent. Due to the

number of GWAS application options that researchers have, a modular architecture can better suit their

needs. Loosely coupled modules can represent GWAS algorithms and parallelization techniques can be

encapsulated via these reusable modules.

The goal of this thesis was to build a usable, high-performing modular pipeline architecture that software

developers can use to configure, deploy and maintain GWAS applications to be used in various analysis

scenarios by bioinformaticians. The architecture supports interfaces for modular development, a shared data

cache for lower latency access to data and the capability to leverage parallel computation in a distributed

environment.

Two case studies were conducted in which the proposed architecture was implemented and evaluated to

prove its usefulness and efficiency. In the first case study, a genomic analysis pipeline TASSEL was chosen

to be modified using the proposed architecture. For the specific implementation, the Apache Spark parallel

processing framework and the Redis cache store were modularized. For the second case study, the proposed

architecture was used to implement the FaST-LMM GWAS application. Apache Spark and Dask were the

chosen parallel processing frameworks to be modularized, while Redis still remained the cache store.

Based on the case studies, a number of experiments were set up to evaluate the performance benefit of

the implementations. There were a few key findings of the performance experiments. The first finding was

that although implementing the proposed architecture does indeed result in improved execution time, the

performance does not scale as resources are increased, that is, the performance displays sub-linear scalability.

Scalability of an application is usually tied to the nature of an application, and if there are sequential code

blocks in parallel tasks, they will not scale with the rest of the operation. This lack of scalability on speedup

can also be related to Amdahl’s law, which states that non-parallel portions of a code limit the maximum

speedup possible from parallelization. However, despite the limited scalability in the implementations, it

has been demonstrated that it is possible to take advantage of obvious parallelization with the proposed

architecture.
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The second finding of the experiments was that changing the number of partitions (for the Arabidopsis

dataset) or the dataset size (for the lentil dataset) has little impact on the scalability of execution. From

the Arabidopsis experiments, it was demonstrated that varying the number of partitions results in almost

similar execution time when the resources are fixed. Furthermore, as demonstrated by the experiments with

the lentil dataset, varying dataset size in a fixed resource environment results in linear speedup; for example,

if dataset size is increased by twofold, then the speed should also slowdown twofold.

The third finding of the experiments was that between TASSEL and FaST-LMM, TASSEL displayed more

stability in terms of performance and scalability. Using TASSEL with Spark in the implemented prototype

resulted in sub-linear scalable execution; however, using FaST-LMM with both Spark and Dask resulted in

decreased performance when increasing core count. This suggests that FaST-LMM has more sequential code

blocks in its GWAS implementation than TASSEL has.

The final finding of the experiments was that in a cluster environment, the memory amount in the worker

machines limits the amount of data that can be operated on in parallel. As demonstrated in the experiments

with the lentil dataset, Spark could only handle a specific amount of SNPs in its worker memory before

it threw a memory error. This suggests that there is an opportunity to optimize GWAS applications and

parallel processing frameworks so that more data can be handled, and also that even in a cluster environment,

having sufficient memory in a worker machine is imperative.

In addition to performance experiments, an architectural evaluation was also conducted to receive feedback

on the proposed architecture from domain experts. A questionnaire including open-ended and closed-ended

question was prepared for the evaluation. In the feedback, the domain experts supported the necessity of

the proposed architecture and agreed that the implementation of the architecture is useful for them, is easy

enough to use and the performance benefit is noticeable. However, some experts pointed out that a GUI

implementation would be easier to use, the implementation quality will largely depend on developers and the

extendability of the architecture on other GWAS applications needs further work to be ensured.

6.2 Future Work

Although the architecture was built for GWAS applications, it can also be used in cases where an application

with a pipeline architecture needs to increase performance with minimal change. Further work can be

undertaken with these applications of different domains by implementing the proposed architecture and

observing the performance benefits. The architecture can also be extended to fit in with workflow other than

pipelines, as modular components can work with other paradigms as well.

As observed from the experiment results, sequential parts in the parallel tasks prevent the parallel oper-

ations from achieving linear speedup. In the future, steps can be taken to optimize such GWAS operations

to reduce sequential parts and increase linear scalability. Additionally, the file load operation to read a

dataset into memory by TASSEL and FaST-LMM prevented the implementations from working with a larger
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dataset. Further work can be undertaken to implement a file operation module as part of the demonstrated

architecture that can work with traditional distributed file systems and be interoperable with the parallel

processing modules.

An advantage of implementing the proposed architecture for GWAS applications is that it can be inte-

grated into more extensive bioinformatics workflows. Large bioinformatics projects often require orchestrating

workflows where multiple pipelines are executed. These orchestrations are usually provisioned by automation

engines such as Ansible,1 Puppet2 and Chef.3 Further work can be done to integrate with such workflows so

as to improve performance and so that the workflows can operate in multiple environments.

A number of potentially useful experiments could be conducted to gain further insights. Full factorial

experiments for the core count and the partition count may lead to greater insight on whether the core count

only matters at some partition sizes. In addition, it would be worthwhile to vary the number of partitions in

different scenarios to observe how it affects performance. Finally, assigning more RAM to the executors to

find out performance impact would also be of interest.

Although several experiments were completed with TASSEL and FaST-LMM in this thesis, there has not

been an appropiate comparison of performance between these two packages. A future work can compare

similar operations between TASSEL and FaST-LMM to determine which application performs better in

diverse scenarios.

1Ansible, Simple IT Automation - https://www.ansible.com
2Puppet - https://puppet.com
3Chef - Automate IT Infrastructure - https://www.chef.io/chef/
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Laukens, Ian Lawrance, Marc Lémann, Arie Levine, Cecile Libioulle, Edouard Louis, Dermot P. Mc-
Govern, Monica Milla, Grant W. Montgomery, Katherine I. Morley, Craig Mowat, Aylwin Ng, William
Newman, Roel A. Ophoff, Laura Papi, Orazio Palmieri, Laurent Peyrin-Biroulet, Julián Panés, Anne
Phillips, Natalie J. Prescott, Deborah D. Proctor, Rebecca Roberts, Richard Russell, Paul Rutgeerts,
Jeremy Sanderson, Miquel Sans, Philip Schumm, Frank Seibold, Yashoda Sharma, Lisa A. Simms,
Mark Seielstad, A. Hillary Steinhart, Stephan R. Targan, Leonard H. van den Berg, Morten Vatn, Hein
Verspaget, Thomas Walters, Cisca Wijmenga, David C. Wilson, Harm-Jan Westra, Ramnik J. Xavier,
Zhen Z. Zhao, Cyriel Y. Ponsioen, Vibeke Andersen, Leif Torkvist, Maria Gazouli, Nicholas P. Anag-
nou, Tom H. Karlsen, Limas Kupcinskas, Jurgita Sventoraityte, John C. Mansfield, Subra Kugathasan,
Mark S. Silverberg, Jonas Halfvarson, Jerome I. Rotter, Christopher G. Mathew, Anne M. Griffiths,
Richard Gearry, Tariq Ahmad, Steven R. Brant, Mathias Chamaillard, Jack Satsangi, Judy H. Cho,
Stefan Schreiber, Mark J. Daly, Jeffrey C. Barrett, Miles Parkes, Vito Annese, Hakon Hakonarson,
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Appendix A

Code block of first bottleneck extracted from Weighted

MLM Plugin of TASSEL

Listing A.1: Code block extracted from computeZKZ method

1 while (g > 3) {

2 cm.setNumberOfGroups(g);

3 DoubleMatrix compressedZ = cm.getCompressedZ(Z);

4 DoubleMatrix compressedK = cm.getCompressedMatrix(kinmethod);

5 try {

6 emlm = new EMMAforDoubleMatrix(data, X, compressedK, compressedZ, 0, Double.NaN);

7 emlm.solve();

8
9 //output number of groups, compression level

10 //(= number of taxa / number of groups), -2L, genvar, resvar

11 compressionReportBuilder.add(new Object[]{traitname, g,

12 ((double) nkin) / ((double) g),

13 -2 * emlm.getLnLikelihood(),

14 emlm.getVarRan(),

15 emlm.getVarRes()});

16
17 if (Double.isNaN(bestlnlk) || emlm.getLnLikelihood() > bestlnlk) {

18 bestlnlk = emlm.getLnLikelihood();

19 bestCompression = g;

20 resvar = emlm.getVarRes();

21 genvar = emlm.getVarRan();

22 }

23 } catch (Exception e) {

24 System.out.println("Compression failed for g = " + g);

25 }

26
27 int prev = g;

28 while (g == prev) {

29 exponent++;

30 int prog = (int) (exponent * 100 / maxexponent);

31 prog = Math.min(prog, 99);

32 parentPlugin.updateProgress(prog);

33 g = (int) (nkin * Math.pow(base, exponent));

34 }

35 }
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Appendix B

Code block of second bottleneck extracted from

Weighted MLM Plugin of TASSEL

Listing B.1: Code block extracted from solve method

1 for (int m = 0; m < numberOfMarkers; m++) {

2 OpenBitSet missingObsForSite = new OpenBitSet(missing);

3 missingObsForSite.or(missingForSite(m));

4
5 //only data for which missing=false are in the Z matrix

6 //the block below finds the rows of Z that have no marker data.

7 //Those rows/columns will need to be removed from ZKZ or from V,

8 //depending on the analysis method.

9 OpenBitSet missingFromZ = new OpenBitSet(nonMissingObs);

10
11 int nonMissingCount = 0;

12 for (int i = 0; i < totalObs; i++) {

13 if (!missing.fastGet(i)) {

14 if (missingObsForSite.fastGet(i)) {

15 missingFromZ.fastSet(nonMissingCount);

16 }

17 nonMissingCount++;

18 }

19 }

20
21 //adjust y for missing data

22 DoubleMatrix ymarker = AssociationUtils.getNonMissingValues(y, missingFromZ);

23
24 //adjust the fixed effects

25 DoubleMatrix fixed2 = AssociationUtils.getNonMissingValues(fixed, missingFromZ);

26
27 //add marker data to fixed effects

28 ArrayList<Byte> markerIds = new ArrayList<>();

29 int nAlleles = 0;

30 int markerdf = 0;

31 DoubleMatrix X;

32 int[] alleleCounts = null;

33
34 if (useGenotypeCalls) {

35 byte[] genotypes = AssociationUtils.getNonMissingBytes(myGenoPheno.genotypeAllTaxa

↪→ (m), missingObsForSite);

36 FactorModelEffect markerEffect = new FactorModelEffect(ModelEffectUtils.

↪→ getIntegerLevels(genotypes, markerIds), true);

37 X = fixed2.concatenate(markerEffect.getX(), false);

38 nAlleles = markerEffect.getNumberOfLevels();

39 alleleCounts = markerEffect.getLevelCounts();

40 markerdf = nAlleles - 1;

41 } else if (useReferenceProbability) {
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42 double[] genotypes = AssociationUtils.getNonMissingDoubles(myGenoPheno.

↪→ referenceProb(m), missingObsForSite);

43 int nrows = genotypes.length;

44 X = fixed2.concatenate(DoubleMatrixFactory.DEFAULT.make(nrows, 1, genotypes),

↪→ false);

45 nAlleles = 1;

46 alleleCounts = new int[]{nrows};

47 markerdf = 1;

48 } else {

49 X = null;

50 }

51
52 CompressedMLMResult result = new CompressedMLMResult();

53 //need to add marker information to result once Alignment is stable

54
55 if (useP3D) {

56 testMarkerUsingP3D(result, ymarker, X, Vminus.getInverse(missingFromZ,

↪→ nonMissingObs), markerdf, markerIds);

57 } else {

58 DoubleMatrix Zsel = AssociationUtils.getNonMissingValues(zk[0], missingFromZ);

59 testMarkerUsingEMMA(result, ymarker, X, zk[1], Zsel, nAlleles, markerIds);

60 markerdf = result.modeldf - baseModeldf;

61 }

62
63 //if the results are to be filtered on pmax check for that condition

64 boolean recordTheseResults = true;

65 if (parentPlugin.isFilterOutput() && result.p > parentPlugin.getMaxp()) {

66 recordTheseResults = false;

67 }

68
69 if (recordTheseResults) {

70 //add result to main

71 //{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","errordf","MarkerR2","

↪→ Genetic Var","Residual Var", "-2LnLikelihood"};

72 //results with additive and dominance effects

73 //{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","add_effect","add_F","

↪→ add_p","dom_effect","dom_F","dom_p","errordf","MarkerR2","Genetic Var","

↪→ Residual Var", "-2LnLikelihood"}

74
75 String markername = myGenotype.siteName(m);

76 String chr = "";

77 String pos = "";

78 String locus = myGenotype.chromosomeName(m);

79 String site = Integer.toString(myGenotype.chromosomalPosition(m));

80 double errordf = (double) (ymarker.numberOfRows() - result.modeldf);

81
82 tableRow = new Object[]{attr.name(),

83 markername,

84 locus,

85 site,

86 new Integer(markerdf),

87 new Double(result.F),

88 new Double(result.p),

89 new Double(result.addEffect),
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90 new Double(result.Fadd),

91 new Double(result.padd),

92 new Double(result.domEffect),

93 new Double(result.Fdom),

94 new Double(result.pdom),

95 new Double(errordf),

96 new Double(result.r2),

97 new Double(genvar),

98 new Double(resvar),

99 new Double(-2 * lnlk)};

100 siteReportBuilder.add(tableRow);

101
102 //add result to alleles

103 //"Trait","Marker","Chr","Pos","Allele","Effect", obs

104 int numberOfRowsKept = totalObs - (int) missingObsForSite.cardinality();

105 if (useReferenceProbability) {

106 tableRow = new Object[]{attr.name(),

107 markername,

108 locus,

109 site,

110 "",

111 result.beta.get(result.beta.numberOfRows() - 1, 0),

112 numberOfRowsKept

113 };

114
115 //record the results

116 alleleReportBuilder.add(tableRow);

117 } else if (nAlleles > 1) {

118 for (int a = 0; a < nAlleles; a++) {

119 Double estimate;

120 if (a < nAlleles - 1) {

121 estimate = result.beta.get(result.beta.numberOfRows() - nAlleles + 1 +

↪→ a, 0);

122 } else {

123 estimate = 0.0;

124 }

125 tableRow = new Object[]{attr.name(),

126 markername,

127 locus,

128 site,

129 NucleotideAlignmentConstants.getNucleotideIUPAC(markerIds.get(a)),

130 estimate,

131 alleleCounts[a]

132 };

133
134 //record the results

135 alleleReportBuilder.add(tableRow);

136 }

137 }

138
139 }

140 iterationsSofar++;

141 int progress = (int) ((double) iterationsSofar / (double) expectedIterations * 100);

142 progress = Math.min(99, progress);
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143 parentPlugin.updateProgress(progress);

144 }
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Appendix C

Implementation of Parallel Processing Module for

TASSEL using Apache Spark

Listing C.1: Code block of implemented Parallel Processing Module

1 public class Spark<T,S> implements java.io.Serializable, ParallelModuleInterface<T,S> {

2
3 public SparkConf tconf;

4
5 public Spark(){

6 tconf = new SparkConf().setAppName("Tassel Application");

7 }

8
9 public List<S> process(List<T> data, Function2<Integer, Iterator<T>, Iterator<S>> f) {

10 SparkSession tspark = SparkSession.builder().config(tconf).getOrCreate();

11 JavaSparkContext tsc = JavaSparkContext.fromSparkContext(tspark.sparkContext());

12
13 int repartition_count = this.getRepartitionCount(tconf); //Calculate repartition

↪→ count based on spark configuration

14
15 JavaRDD<T> distData = tsc.parallelize(data, repartition_count);

16 JavaRDD<S> mappedData = distData.mapPartitionsWithIndex(f, true)

17 .persist(StorageLevel.MEMORY_ONLY_SER());

18
19 return mappedData.collect();

20 }

21 }
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Appendix D

Refactored code block of the first bottleneck of

TASSEL to a function

Listing D.1: Refactored code block

1 public Function2<Integer, Iterator<Integer>, Iterator<EmmaResult>> processGCalculation(

2 CompressedDoubleMatrix cm,kinshipMethod kinmethod,String dataKey,

3 String xKey, String zKey

4 ){

5 return new Function2<Integer, Iterator<Integer>, Iterator<EmmaResult>>(){

6
7 @Override

8 public Iterator<EmmaResult> call(Integer index, Iterator<Integer> rows){

9 //resolving data from cache

10 DoubleMatrix data = (DoubleMatrix) cache.get(dataKey);

11 DoubleMatrix X = (DoubleMatrix) cache.get(xKey);

12 DoubleMatrix Z = (DoubleMatrix) cache.get(zKey);

13
14 List<EmmaResult> map = new ArrayList<EmmaResult>();

15 while(rows.hasNext()){

16 int g = (int) rows.next();

17 cm.setNumberOfGroups(g);

18 DoubleMatrix compressedZ = cm.getCompressedZ(Z);

19 DoubleMatrix compressedK = cm.getCompressedMatrix(kinmethod);

20 EMMAforDoubleMatrix emlm = new EMMAforDoubleMatrix(data, X, compressedK,

↪→ compressedZ, 0, Double.NaN);

21 try{

22 emlm.solve();

23 } catch (Exception e) {

24 System.out.println("Compression failed for g = " + g);

25 } finally{

26 EmmaResult emmaResult = new EmmaResult();

27 emmaResult.g = g;

28 emmaResult.lnLikelihood = emlm.getLnLikelihood();

29 emmaResult.varRan = emlm.getLnLikelihood();

30 emmaResult.varRes = emlm.getVarRes();

31 map.add(emmaResult);

32 }

33 }

34 return map.iterator();

35 }

36 };

37 }

79



Appendix E

Refactored code block of the second bottleneck of

TASSEL to a function

Listing E.1: Refactored code block

1 public Function2<Integer, Iterator<Integer>, Iterator<ArrayList<ArrayList<Object[]>>>>

↪→ processMarkers(

2 CompressedMLMusingDoubleMatrix c,OpenBitSet missing,int nonMissingObs, int totalObs,

↪→ String yKey, String fixedKey,

3 boolean useGenotypeCalls, boolean useReferenceProbability, GenotypePhenotype

↪→ myGenoPheno, boolean useP3D,

4 SymmetricMatrixInverterDM Vminus, String zkKey, int baseModeldf, GenotypeTable

↪→ myGenotype,

5 PhenotypeAttribute attr, double genvar, double resvar, double lnlk) {

6 return new Function2<Integer, Iterator<Integer>, Iterator<ArrayList<ArrayList<Object

↪→ []>>>>() {

7 @Override

8 public Iterator<ArrayList<ArrayList<Object[]>>> call(Integer index, Iterator<

↪→ Integer> rows) {

9 //retrieving cache values

10 DoubleMatrix y = (DoubleMatrix) cache.get(yKey);

11 DoubleMatrix fixed = (DoubleMatrix) cache.get(fixedKey);

12 DoubleMatrix[] zk = (DoubleMatrix[]) cache.get(zkKey);

13
14 //Array List which saves total site report and allele rows

15 ArrayList<ArrayList<ArrayList<Object[]>>> totalRow = new ArrayList<ArrayList<

↪→ ArrayList<Object[]>>>();

16 while (rows.hasNext()) {

17 //Array list which saves each site report and allele instances

18 ArrayList<ArrayList<Object[]>> currentRow = new ArrayList<ArrayList<Object

↪→ []>>();

19 int m = rows.next();

20 OpenBitSet missingObsForSite = new OpenBitSet(missing);

21 missingObsForSite.or(c.missingForSite(m));

22
23 //only data for which missing=false are in the Z matrix

24 //the block below finds the rows of Z that have no marker data.

25 //Those rows/columns will need to be removed from ZKZ or from V, depending

↪→ on the analysis method.

26 OpenBitSet missingFromZ = new OpenBitSet(nonMissingObs);

27
28 int nonMissingCount = 0;

29 for (int i = 0; i < totalObs; i++) {

30 if (!missing.fastGet(i)) {

31 if (missingObsForSite.fastGet(i)) {

32 missingFromZ.fastSet(nonMissingCount);

33 }

34 nonMissingCount++;
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35 }

36 }

37
38 ////////

39 //adjust y for missing data

40 DoubleMatrix ymarker = AssociationUtils.getNonMissingValues(y, missingFromZ

↪→ );

41
42 //adjust the fixed effects

43 DoubleMatrix fixed2 = AssociationUtils.getNonMissingValues(fixed,

↪→ missingFromZ);

44
45 //add marker data to fixed effects

46 ArrayList<Byte> markerIds = new ArrayList<>();

47 int nAlleles = 0;

48 int markerdf = 0;

49 DoubleMatrix X;

50 int[] alleleCounts = null;

51
52 if (useGenotypeCalls) {

53 //String[] genotypes = AssociationUtils.getNonMissingValues(myGenoPheno

↪→ .getStringGenotype(m), missingObsForSite);

54 byte[] genotypes = AssociationUtils.getNonMissingBytes(myGenoPheno.

↪→ genotypeAllTaxa(m),

55 missingObsForSite);

56 FactorModelEffect markerEffect = new FactorModelEffect(

57 ModelEffectUtils.getIntegerLevels(genotypes, markerIds), true);

58 X = fixed2.concatenate(markerEffect.getX(), false);

59 nAlleles = markerEffect.getNumberOfLevels();

60 alleleCounts = markerEffect.getLevelCounts();

61 markerdf = nAlleles - 1;

62 } else if (useReferenceProbability) {

63 double[] genotypes = AssociationUtils.getNonMissingDoubles(myGenoPheno.

↪→ referenceProb(m),

64 missingObsForSite);

65 int nrows = genotypes.length;

66 X = fixed2.concatenate(DoubleMatrixFactory.DEFAULT.make(nrows, 1,

↪→ genotypes), false);

67 nAlleles = 1;

68 alleleCounts = new int[] { nrows };

69 markerdf = 1;

70 } else {

71 X = null;

72 }

73
74 CompressedMLMusingDoubleMatrix.CompressedMLMResult result = c.new

↪→ CompressedMLMResult();

75 //need to add marker information to result once Alignment is stable

76
77 if (useP3D) {

78 c.testMarkerUsingP3D(result, ymarker, X, Vminus.getInverse(missingFromZ

↪→ , nonMissingObs),

79 markerdf, markerIds);

80 } else {
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81 DoubleMatrix Zsel = AssociationUtils.getNonMissingValues(zk[0],

↪→ missingFromZ);

82 c.testMarkerUsingEMMA(result, ymarker, X, zk[1], Zsel, nAlleles,

↪→ markerIds);

83 markerdf = result.modeldf - baseModeldf;

84 }

85
86 // //if the results are to be filtered on pmax check for that condition

87 // boolean recordTheseResults = true;

88 // if (c.parentplugin.isFilterOutput() && result.p > parentPlugin.getMaxp()

↪→ ) {

89 // recordTheseResults = false;

90 // }

91 boolean recordTheseResults = true;

92
93 if (recordTheseResults) {

94 //add result to main

95 //{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","errordf","

↪→ MarkerR2","Genetic Var","Residual Var", "-2LnLikelihood"};

96 //results with additive and dominance effects

97 //{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","add_effect

↪→ ","add_F","add_p","dom_effect","dom_F","dom_p","errordf","

↪→ MarkerR2","Genetic Var","Residual Var", "-2LnLikelihood"}

98
99 String markername = myGenotype.siteName(m);

100 String chr = "";

101 String pos = "";

102 String locus = myGenotype.chromosomeName(m);

103 String site = Integer.toString(myGenotype.chromosomalPosition(m));

104 double errordf = (double) (ymarker.numberOfRows() - result.modeldf);

105
106 ArrayList<Object[]> siteReportRows = new ArrayList<Object[]>();

107 siteReportRows.add(new Object[] { attr.name(), markername, locus, site,

↪→ new Integer(markerdf),

108 new Double(result.F), new Double(result.p), new Double(result.

↪→ addEffect),

109 new Double(result.Fadd), new Double(result.padd), new Double(

↪→ result.domEffect),

110 new Double(result.Fdom), new Double(result.pdom), new Double(

↪→ errordf),

111 new Double(result.r2), new Double(genvar), new Double(resvar),

↪→ new Double(-2 * lnlk) });

112
113 //add result to alleles

114 //"Trait","Marker","Chr","Pos","Allele","Effect", obs

115 ArrayList<Object[]> alleleRows = new ArrayList<Object[]>();

116 int numberOfRowsKept = totalObs - (int) missingObsForSite.cardinality()

↪→ ;

117 if (useReferenceProbability) {

118 alleleRows.add(new Object[] { attr.name(), markername, locus, site,

↪→ "",

119 result.beta.get(result.beta.numberOfRows() - 1, 0),

↪→ numberOfRowsKept });

120 } else if (nAlleles > 1) {
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121 for (int a = 0; a < nAlleles; a++) {

122 Double estimate;

123 if (a < nAlleles - 1) {

124 estimate = result.beta.get(result.beta.numberOfRows() -

↪→ nAlleles + 1 + a, 0);

125 } else {

126 estimate = 0.0;

127 }

128 alleleRows.add(new Object[] { attr.name(), markername, locus,

↪→ site,

129 //markerIds.get(a),

130 NucleotideAlignmentConstants.getNucleotideIUPAC(markerIds

↪→ .get(a)), estimate,

131 alleleCounts[a] });

132 }

133 }

134 //Add site report and allele rows to the current row container

135 currentRow.add(siteReportRows);

136 currentRow.add(alleleRows);

137 totalRow.add(currentRow);

138 }

139 ////////

140 }

141 return totalRow.iterator();

142 }

143 };

144 }
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Appendix F

Implementation of Shared Data Cache module for

TASSEL using Redis

Listing F.1: Implementation of Shared Data Cache module

1 public class RedisCache implements CacheInterface, Serializable {

2
3 private String host;

4 private Integer port;

5
6 public RedisCache(String host, Integer port){

7 this.host = host;

8 this.port = port;

9 }

10
11 @Override

12 public String put(Serializable o) {

13
14 String key = Integer.toString(System.identityHashCode(o));

15 try(ByteArrayOutputStream b = new ByteArrayOutputStream();

16 ObjectOutput output = new ObjectOutputStream(b)){

17 output.writeObject(o);

18 output.flush();

19 try(JedisCluster jedis = new JedisCluster(new HostAndPort(this.host, this.

↪→ port))){

20 jedis.set(key.getBytes(), b.toByteArray());

21 return key;

22 }

23 }

24 catch(Exception e){

25 e.printStackTrace();

26 return null;

27 }

28
29 }

30
31 @Override

32 public Object get(String key) {

33 try (JedisCluster jedis = new JedisCluster(new HostAndPort(this.host, this.port)))

↪→ {

34 try (ByteArrayInputStream bin = new ByteArrayInputStream(jedis.get(key.getBytes

↪→ ()));

35 ObjectInput input = new ObjectInputStream(bin)) {

36 return input.readObject();

37 }

38 }

39 catch(Exception e){

40 e.printStackTrace();
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41 return null;

42 }

43 }

44
45 }
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Appendix G

Implementation of Parallel Processing Module for

FaST-LMM using Apache Spark

Listing G.1: Implementation of Parallel Processing module

1 try:

2 from pyspark import SparkContext, SparkConf, StorageLevel

3 except:

4 pass

5
6 class Spark:

7 try:

8 conf = SparkConf().setAppName("FaST-LMM")

9 except:

10 pass

11
12 def __init__(self):

13 pass

14
15 def process(self, data, process_function):

16 sc = SparkContext.getOrCreate(conf=Spark.conf)

17 pdata = sc.parallelize(data,len(data))

18 del data

19 collected_data = pdata.map(process_function).collect()

20 del pdata

21 return collected_data
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Appendix H

Implementation of Parallel Processing Module for

FaST-LMM using Dask

Listing H.1: Implementation of Parallel Processing module

1 from dask.distributed import Client

2 from distributed.diagnostics import progress

3 import dask.bag as db

4
5 class DaskCluster:

6
7 def __init__(self,host,port):

8 self.host = host

9 self.port = port

10
11 def process(self, data, process_function):

12 client = Client("{}:{}".format(self.host,self.port))

13 scattered_data = client.scatter(data)

14 map_operation = client.map(process_function,scattered_data)

15 progress(map_operation)

16 output = client.gather(map_operation)

17 client.close()

18 return output
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Appendix I

Implementation of Shared Data Cache module for

FaST-LMM using Redis

Listing I.1: Implementation of Shared Data Cache module

1 from rediscluster import StrictRedisCluster

2 import uuid

3 import cPickle

4
5 class Redis:

6
7 def __init__(self, host, port):

8 self.host = host

9 self.port = port

10
11 def put(self, obj):

12 startup_nodes = [{"host": self.host, "port": self.port}]

13 rc = StrictRedisCluster(

14 startup_nodes=startup_nodes, decode_responses=True)

15 # Convert object to pickle

16 serialized_object = cPickle.dumps(obj)

17 key = self.generate_random_key()

18 rc.set(key,serialized_object)

19 return key

20
21 def get(self, key):

22 startup_nodes = [{"host": self.host, "port": self.port}]

23 rc = StrictRedisCluster(

24 startup_nodes=startup_nodes, decode_responses=True)

25 return cPickle.loads(rc.get(key))

26
27 def generate_random_key(self):

28 random = str(uuid.uuid4())

29 random = random.upper()

30 random = random.replace("-", "")

31 return random[0:16]
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