48 research outputs found

    Fault-Tolerant Ring Embeddings in Hypercubes -- A Reconfigurable Approach

    Get PDF
    We investigate the problem of designing reconfigurable embedding schemes for a fixed hypercube (without redundant processors and links). The fundamental idea for these schemes is to embed a basic network on the hypercube without fully utilizing the nodes on the hypercube. The remaining nodes can be used as spares to reconfigure the embeddings in case of faults. The result of this research shows that by carefully embedding the application graphs, the topological properties of the embedding can be preserved under fault conditions, and reconfiguration can be carried out efficiently. In this dissertation, we choose the ring as the basic network of interest, and propose several schemes for the design of reconfigurable embeddings with the aim of minimizing reconfiguration cost and performance degradation. The cost is measured by the number of node-state changes or reconfiguration steps needed for processing of the reconfiguration, and the performance degradation is characterized as the dilation of the new embedding after reconfiguration. Compared to the existing schemes, our schemes surpass the existing ones in terms of applicability of schemes and reconfiguration cost needed for the resulting embeddings

    An Improved Characterization of 1-Step Recoverable Embeddings: Rings in Hypercubes

    Get PDF
    An embedding is 1-step recoverable if any single fault occurs, the embedding can be reconfigured in one reconfiguration step to maintain the structure of the embedded graph. In this paper we present an efficient scheme to construct this type of 1-step recoverable ring embeddings in the hypercube. Our scheme will guarantee finding a 1-step recoverable embedding of a length-k (even) ring in a d-cube where 6 less than or equal to k less than or equal to (3/4)2/sup d/ and d greater than or equal to 3, provided such an embedding exists. Unlike previously proposed schemes, we solve the general problem of embedding rings of different lengths and the resulting embeddings are of smaller expansion than in previous proposals. A sufficient condition for the non-existence of 1-step recoverable embeddings of rings of length \u3e(3/4)2d in d-cubes is also give

    Fault-tolerance embedding of rings and arrays in star and pancake graphs

    Full text link
    The star and pancake graphs are useful interconnection networks for connecting processors in a parallel and distributed computing environment. The star network has been widely studied and is shown to possess attactive features like sublogarithmic diameter, node and edge symmetry and high resilience. The star/pancake interconnection graphs, {dollar}S\sb{n}/P\sb{n}{dollar} of dimension n have n! nodes connected by {dollar}{(n-1).n!\over2}{dollar} edges. Due to their large number of nodes and interconnections, they are prone to failure of one or more nodes/edges; In this thesis, we present methods to embed Hamiltonian paths (H-path) and Hamiltonian cycles (H-cycle) in a star graph {dollar}S\sb{n}{dollar} and pancake graph {dollar}P\sb{n}{dollar} in a faulty environment. Such embeddings are important for solving computational problems, formulated for array and ring topologies, on star and pancake graphs. The models considered include single-processor failure, double-processor failure, and multiple-processor failures. All the models are applied to an H-cycle which is formed by visiting all the ({dollar}{n!\over4!})\ S\sb4/P\sb4{dollar}s in an {dollar}S\sb{n}/P\sb{n}{dollar} in a particular order. Each {dollar}S\sb4/P\sb4{dollar} has an entry node where the cycle/path enters that particular {dollar}S\sb4/P\sb4{dollar} and an exit node where the path leaves it. Distributed algorithms for embedding hamiltonian cycle in the presence of multiple faults, are also presented for both {dollar}S\sb{n}{dollar} and {dollar}P\sb{n}{dollar}

    Distributed Fault-Tolerant Embeddings of Rings in Incrementally Extensible Hypercubes with Unbounded Expansion

    Get PDF
    [[abstract]]The Incrementally Extensible Hypercube (IEH) is a generalization of interconnection network that is derived from the hypercube. Unlike the hypercube, the IEH can be constructed for any number of nodes. That is, the IEH is incrementally expandable. In this paper, the problem of embedding and reconfiguring ring structures is considered in an IEH with faulty nodes. There are a novel embedding algorithm proposed in this paper. The embedding algorithm enables us to obtain the good embedding of a ring into a faulty IEH with unbounded expansion, and such the result can be tolerated up to O(n*log2m ) faults with congestion 1, load 1, and dilation 4. The presented embedding methods are optimized mainly for balancing the processor loads, while minimizing dilation and congestion as far as possible.[[notice]]補正完畢[[journaltype]]國際[[incitationindex]]EI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]TW

    Interconnection Networks Embeddings and Efficient Parallel Computations.

    Get PDF
    To obtain a greater performance, many processors are allowed to cooperate to solve a single problem. These processors communicate via an interconnection network or a bus. The most essential function of the underlying interconnection network is the efficient interchanging of messages between processes in different processors. Parallel machines based on the hypercube topology have gained a great respect in parallel computation because of its many attractive properties. Many versions of the hypercube have been introduced by many researchers mainly to enhance communications. The twisted hypercube is one of the most attractive versions of the hypercube. It preserves the important features of the hypercube and reduces its diameter by a factor of two. This dissertation investigates relations and transformations between various interconnection networks and the twisted hypercube and explore its efficiency in parallel computation. The capability of the twisted hypercube to simulate complete binary trees, complete quad trees, and rings is demonstrated and compared with the hypercube. Finally, the fault-tolerance of the twisted hypercube is investigated. We present optimal algorithms to simulate rings in a faulty twisted hypercube environment and compare that with the hypercube

    Simulation of Meshes in a Faulty Supercube with Unbounded Expansion

    Get PDF
    [[abstract]]Reconfiguring meshes in a faulty Supercube is investigated in the paper. The result can readily be used in the optimal embedding of a mesh (or a torus) of processors in a faulty Supercube with unbounded expansion. There are embedding algorithms proposed in this paper. These embedding algorithms show a mesh with any number of nodes can be embedded into a faulty Supercube with load 1, congestion 1, and dilation 3 such that O(n2-w2) faults can be tolerated, where n is the dimension of the Supercube and 2w is the number of nodes of the mesh. The meshes and hypercubes are widely used interconnection architectures in parallel computing, grid computing, sensor network, and cloud computing. In addition, the Supercubes are superior to hypercube in terms of embedding a mesh and torus under faults. Therefore, we can easily port the parallel or distributed algorithms developed for these structuring of mesh and torus to the Supercube.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]EI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]KO

    Optimal simulation of full binary trees on faulty hypercubes

    Get PDF
    The problem of operating full binary tree based algorithms on a hypercube with faulty nodes was investigated. Developing a method for embedding a full binary tree into the faulty hypercube is the solution to this problem. Two outcomes for embedding an (n-1)-tree into an n-cube with unit dilation and load, that were based on a new embedding technique, were presented. For the problem where the root can be mapped to any nonfaulty hypercube node, the optimum toleration of faults was shown. Moreover, it was demonstrated that the algorithm for the variable root embedding problem is maximal within a class algorithms called recursive embedding algorithms as far as the number of tolerable faults is concerned. Lastly, it was demonstrated that when an O(1/√n) fraction of nodes in the hypercube are faulty, a O(1)-load variable root embedding is not always possible regardless of the significance of the dilation.published_or_final_versio
    corecore