
Distributed Fault-Tolerant Embeddings of Rings in

Incrementally Extensible Hypercubes with

Unbounded Expansion

Jen-Chih Lin1, Steven K.C. Lo1, Shih-Jung Wu2* and Huan-Chao Keh2

1Department of Information Management, Jin-Wen Institute of Technology,

Taipei, Taiwan 231, R.O.C.
2Department of Information Science & Information Engineering, Tamkang University,

Tamsui, Taiwan 251, R.O.C.

Abstract

The Incrementally Extensible Hypercube (IEH) is a generalization of interconnection network

that is derived from the hypercube. Unlike the hypercube, the IEH can be constructed for any number

of nodes. That is, the IEH is incrementally expandable. In this paper, the problem of embedding and

reconfiguring ring structures is considered in an IEH with faulty nodes. There are a novel embedding

algorithm proposed in this paper. The embedding algorithm enables us to obtain the good embedding

of a ring into a faulty IEH with unbounded expansion, and such the result can be tolerated up to

O(n*�log2m�) faults with congestion 1, load 1, and dilation 4. The presented embedding methods are

optimized mainly for balancing the processor loads, while minimizing dilation and congestion as far as

possible.

Key Words: Incrementally Extensible Hypercube (IEH), Fault-Tolerant, Embedding, Linear Array,

Ring

1. Introduction

The n-dimensional hypercube (n-cube) is one of the

most popular interconnection topologies for parallel com-

puters. One of the main reasons for the popularity of hy-

percube architecture is its ability to efficiently simulate

other architectures. If composite hypercubes are to be

competitive as an architecture, we must demonstrate si-

milar simulation capabilities. Hypercube-based parallel

machines are built and sold commercially, and it is ex-

pected that they will continually play an important role in

the future. One of the most important issues related to

such parallel machines is how they can compute in the

presence of faults. Hypercube popularity may be attrib-

uted to its regular structure and the requirements of its

rich interconnection topology, and the number of nodes

must be a power of 2. In order to alleviate this shortcom-

ing, several ‘incomplete’ hypercube-like architectures

have been proposed.

The issue of computing with faulty hypercubes has

been addressed in several recent papers [1�8]. And the

results proposed by Hastad, Leighton and Newman [9]

should be paid particular attention. They considered

that in a faulty hypercube, every node is faulty with

constant probability p < 1 and the faults are independ-

ently distributed. They proved that, with high proba-

bility, the faulty hypercube can simulate a fault-free

hypercube with only a constant factor slowdown. Thus

the hypercube is extremely tolerant of randomly dis-

tributed faults.

The problem of embedding an n-processor guest net-

work G into an n-processor host network H is an important

problem in distributed computing or parallel processing.

Results on this problem not only demonstrate computa-

tional equivalence or non-equivalence) between networks

of different topology, but also lead to efficient simulations

Tamkang Journal of Science and Engineering, Vol. 9, No 2, pp. 121�128 (2006) 121

*Corresponding author. E-mail: 890190084@s90.tku.edu.tw

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225218054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of algorithms originally designed for G on host H. Em-

bedding and their implications to distributed computing or

parallel processing have been studied extensively recently.

Graph embeddings have been used successfully to

show simulation capabilities of a guest architecture by

another host architecture [10,11]. In graph embedding

techniques, host and guest architectures are viewed as

graphs H and G, respectively, and then the graph G is em-

bedded into the graph H. In the embedding of a graph G

into H, we map the set of nodes of G into the set of noses

of H and the edges of G to paths in H which connect the

image of the nodes of G. In order to obtain efficient simu-

lations of G by H, various cost measures of an embed-

ding must be optimized. One such measure is the dilation

of an embedding. The dilation of an edge of G is the

length of the path onto which an edge of G is mapped.

The dilation of the embedding is the maximum edge dila-

tion of G. The expansion of the embedding is the ratio of

the number of nodes in G to the number of nodes in H.

The congestion is defined as the maximum number of

paths over an edge in H, where every path represents an

edge in G. The load is defined as the maximum number

of nodes of G assigned to any node of H. We say that an

embedding achieves a balanced load when load = 1.

In this paper, we study how algorithms that are de-

signed for fault-tolerance Incrementally Extensible Hy-

percube can be implemented on Incrementally Extensi-

ble Hypercubes that contain faults. In the following dis-

cussion we will consider a parallel computer as a graph,

in which the nodes correspond to processors and the ed-

ges correspond to communication links.

The remainder of this paper is organized as follows.

Section 2 is devoted to some notations and definitions.

The construction of the ring in an IEH is addressed in

Section 3. Section 4 develops the embedding algorithm

to a faulty IEH with unbounded expansion. Section 5

concludes this paper.

2. Preliminaries

We briefly describe notations and definitions of the

IEH graph. The IEH graph is the composition of some m

different hypercubes. Let Gn(N) be an IEH graph with N

nodes, and N can be expressed by the binary string N =

bnbn�1bn�2…b1b0, and bi � {0,1}. An IEH graph Gn(N) is

composed of some different hypercubes which have low-

er dimension than Gn(N) has. That is, Gn(N) contains a

hypercube, denoted by Hi, if and only if the ith bit in the

binary representation of N is 1.

Accordingly, the IEH graph is composed of some

hypercubes, so there is a new type of connections beside

the usual connections in a hypercube. These edges (or

links) are used for connecting two hypercubes are called

Inter-Cube or IC edges. The basic philosophy in the de-

sign of the IEH graphs is to express N as a sum of several

powers of 2, i.e., to write N as a binary number, build the

smaller hypercubes, and then to add appropriate inter-

cube edges to connect those smaller hypercubes. For any

given N, 2n � N < 2n+1, the steps of finding IEH graphs

are as follows.

Step 1 Build subcube graphs. Express N as (n+1)

bits a binary number as N = bnbn�1bn�2…b1b0, where bi �
{0,1} and bn = 1 since N � 2n. For each bi, bi � 0, construct

a hypercube graph Hi with 2i nodes.

Step 2 Label the nodes. Note that each node has a

(n+1)-bit binary label. Each hypercube Hi is labeled as

11…10bi�1bi�2…b1b0. Obviously each hypercube of di-

mension i (having 2i nodes) has i number of dashed and

the individual nodes of the hypercube can be obtained by

filling the dashes with 0 or 1 in all possible ways. In other

words, the binary representation of each node in Hi has

the same prefix of (n�i)1’s followed by a single zero.

Step 3 Construct the incremental hypercube in steps

by providing the inter-cube edges. Find the minimum i

such that bi � 0. Set j = i and Gj = Hi.

Set i = i + 1.

While i � n do

if bi � 0 then

if i � j = 1 then

each node x in Gj with label 11…bjbj�1…b0 is con-

nected to the node 11…10bjbj�1…b0 of Hi.

else

each node x in Gj with label 11…1bjbj�1…b0 is con-

nected to (i�j) different nodes of Hi chosen in the follow-

ing way:

122 Jen-Chih Lin et al.

1n-i

1 0

1n-i

1 0

1n-i

1 0

1n-i

1 0

11......11011......11

11......110 01......11

11......11010......11

11......11011......01

i j

j j

i j

j j

i j

j j

i j

j j

b b b

b b b

b b b

b b b

� �

�

� �

�

� �

�

� �

�

� � � �

��� ���

��� ���

��� ���

��� ���

1n-i

1 0
11......11011......10

i j

j j
b b b

� �

�

�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
��� ���

Set j = i and set Gj to be the composite graph gener-

ated in the previous steps. Note that Gj has now bk

k

k

j

2
0�

	

nodes and the binary label of each node in Gj has a prefix

of (n�j) 1’s.

i = i + 1

Return Gn as the desired incremental hypercube gra-

ph of N vertices.

Figure 1.1 shows the example of G3(14). G3(14) con-

sists of three subcubes. The three subcubes are 1-sub-

cube (H1), 2-subcube (H2), and 3-subcube (H3). Nodes 12

and 13 are composed as a 1-subcube (H1), Nodes 8, 9, 10,

and 11 are composed as a 2-subcube (H2), and nodes 0, 1,

2, 3, 4, 5, 6 and 7 are the elements of a 3-subcube (H3).

The edges (8, 12), (9,13) are IC edges connected between

H1 and H2 such that H1 and H2 are connected to be an IEH

graph containing 6 nodes (G2(6)). In addition, the H3

connects to G2(6) with these IC edges (0, 8), (1, 9),

(2,10), (3,11), (4,12), and (5,13).

Definition 2.1 [3] The Hamming distance between two

nodes with labels x = xn�1xn�2...x0 and y = yn�1 yn�2...y0 is

defined as

HD(x, y) = hd x yi i

i

n

(,)
�

�

	
0

1

, where hd(xi, yi) =
0, ifx y ,

1, ifx y .

i i

i i

�

�
�
�

Definition 2.2 [3] Let x = xn�1…x0, y = yn�1…y0, then

Dim(x, y) = {i in (0…n�1)xi � yi}

Definition 2.3 [3] The Binary-Reflected Gray Code

(BRGC) is defined recursively as follows.

Cn+1 = {0Cn, 1(Cn)
R}, where C1 = {0, 1} and C2 =

{0C1, 1(C1)
R}

For example, a 2-bit Gray Code can be constructed

by the sequence, defined in definition 2.3, and insert a ci-

pher in front of each codeword in C1, then insert an one in

front of each codeword in (C1)
R. We get the code C2 =

{00, 01, 11, 10}. Now, we can then repeat the procedure

to built a 3-bit Gray Code, and also get the code C3 =

0C2�1(C2)
R = {000, 001, 011, 010, 110, 111, 101, 100}.

Definition 2.4 [4] If G is a graph, the vertex set of G is

denoted by V and the edge set of G is denoted by E. A

graph G	 is said to be a subgraph of G if V	�V and E	�E.

Definition 2.5 [3] Suppose that an IEH graph contains

N nodes, then Hi and Hj are two different-sized sub-

cubes in the IEH graph, assume i < j. Let (p,q) is an edge

in Hi, and (r,s) is an edge in Hj. If r and s are image

nodes, in Hj, of p and q respectively, then the edge (r,s)

is called an image edge, in Hj, of the edge (p,q).

Because (p,q) is an edge of Hi, where HD(p,q) = 1

and Dim(p,q) = {0}. According to the steps of finding

IEH graphs HD(r,s) = 1 and Dim(r,s) = {0}, so (r,s) is an

edge in Hj.

3. Rings Embedding

Almost all of IEH graphs, except for those with N =

2n � 1 nodes, have a Hamiltonian cycle; if an IEH graph

with N = 2n � 1 nodes then it has only a Hamiltonian

path, not cycle. The IEH graphs G0(1), G1(2), and G1(3)

can obtain no cycle, because they are graphs with no cy-

cle. Therefore, the number of nodes of an IEH graph con-

tains a Hamiltonian cycle must be more than 3. Besides,

in the properties of the IEH graph, there is no Hamil-

tonian cycle in an IEH graph of 2n � 1 nodes.

Lemma 3.1 [12] Suppose that Hn is an n-dimen-

sional hypercube, then the permutation of nodes in

Hn as the sequence in a BRGC Cn is a Hamiltonian

path. Consequently, a Hamiltonian cycle exists in a

hypercube.

Embedding Rings in a Faulty IEH 123

Figure 1.1. The IEH graph contains 14 nodes.

According to lemma 3.1, we know how to find a

Hamiltonian cycle or path in a hypercube. It is simple

that following the sequence of n-bit BRGC can find the

Hamiltonian path and cycle in a hypercube Hn.

Lemma 3.2 [12] A ring Rr of length r can be mapped

into the n-cube when r is even and 4 � r � 2n.

Lemma 3.3 [12] There is no cycles of odd length in a

hypercube.

Lemma 3.4 [3] An IEH graph Gn�1(N) only contains a

Hamiltonian path and no Hamiltonian cycle for all N � 3

and N = 2n�1.

Theorem 3.1 An IEH graph contains a Hamiltonian cy-

cle for all N � 4 and N � 2n�1.

Proof. Let Gn(N) be an n-dimensional IEH graph with N

nodes, and N can be expressed by the binary string N =

bnbn�1bn�2…b1b0, where bi � {0,1}. We consider two

cases.

Case1:N is even. Because N is even, b0 = 0. In other

words, H0 does not exist. Let Hi and Hj be two

adjacent subcubes in an IEH graph Gn(N), where

i < j. Let (p,q) is an edge in Hi, there exists an

image edge (r,s) of (p,q) in Hj such that (p,r) and

(q,s) is two IC edge. Note that r and s will differ

in the same bit that p and q. We find a Ha-

miltonian cycle using the BRGC method in each

subcube Hk, 0 < k � n, except subcube H1. With-

out loss of generality, (p,q) and (r,s) are an edge

of a Hamiltonian cycle of Hi and Hj. We can

combine Hi and Hj by IC edges (p,r) and (q,s).

We combine all of cycles by IC edges between

different-sized subcubes to form a large cycle.

We can also add these nodes of H1 into the cycle

by the above method if H1 exists in the IEH

graph. The final cycle will be a Hamiltonian cy-

cle of the IEH graph.

Case 2:N is odd. Since N � 2n�1, there exists bm = 0,

where m � 0 and m � n. In other words, H0 has at

least two IC edges connecting to some nodes in

Hk with bk = 1 for m < k. Let r and s are the

neighbor nodes of H0 in Hk connected by the IC

edges. By the steps of finding IEH graphs, r and

s are adjacent. Without loss of generality, be-

cause the subcube Hk is symmetric, we can re-

vise the Hamiltonian cycle such that (r,s) is an

edge of a Hamiltonian cycle of Hk. We can com-

bine Hk and H0 by IC edges. We combine all of

cycles by IC edges between different-sized sub-

cubes to form a large cycle. The final cycle will

be a Hamiltonian cycle of the IEH graph.

Lemma 3.5 [3] A linear array or a ring contains any

number of nodes can be embedded into an IEH graph

with dilation 2.

4. Fault-Tolerant Embedding with

Unbounded Expansion

In the previous section, we have constructed a linear

array and a ring into an IEH graph. In the section, we con-

sider a faulty IEH with unbounded expansion embedding.

Theorem 4.1 A linear array or a ring can be mapped

into an IEH graph with unbounded expansion.

Proof. It is trivial by lemma 3.5.

The cardinality of Hi, denoted by |Hi|, is number of

nodes in Hi. Similarly, |Gn(N)| is number of nodes in the

IEH graph Gn(N).

Theorem 4.2 Suppose Gn(N) is an IEH graph contains

N nodes, Hn is the maximal hypercube exists in Gn(N),

then |Hn| > (N-|Hn|). On the other hand, if Gn(N) is di-

vided into two parts, Hn and Gm(N-|Hn|), Hn contains

more nodes than Gm(N-|Hn|) does, where 0 m < n.

Proof. Let Gn(N) be an IEH graph contains N = (an�1

an�2...a0) nodes. It is composed by hypercubes Hi if ai �

0 for 0 � i � n. It is necessary that the most significant bit

an�1 must be equal to 1, so Hn is a part of Gn(N) Because

Hn is an n-dimensional hypercube, |Hn| = 2n. The rest

part of Gn(N) is Gm(N-|Hn|) which is possibility com-

posed by H0, H1,..., and Hn�1 if it is greatest, so the maxi-

mal number of nodes in Gm(N-|Hn|) is |H0| + |H1| + |H2|

+...+ |Hn1| = 20 + 21 +... + 2n�1 = 2n�1. As the result, 2n

= |Hn| � (N-|Hn|) = 2n�1.

Theorem 4.3 For an IEH Gn(N), the subgraph Hn has an

IC edge at most.

Proof. By the construction of IEH and theorem 4.2, all

of nodes of Gm(N), where m < n, has an unique IC edges

connecting to Hn. Therefore, the subgraph Hn of an IEH

Gn(N) has an IC edge at most.

Algorithm LB_Embedding(x)

Input: x /*the faulty node*/, Gn(N), Rm

Output: y /*the replaceable node*/

1. i = 0; j = 0; k = 0

2. Create a Queue Q; Q = �

3. if a node x is faulty

124 Jen-Chih Lin et al.

4. then

5. {

6. while i < (n + 1 � log2m�) do

7. {

8. search the node y /*HD(x, y) = 1, Dim(x, y) =

log2m� + i*/

9. if y is not a virtual node and it is free

10. then

11. return(y) /*replace x with y*/

12. remove all nodes in Q

13. exit()

14. else

15. enqueue(y, log2m� + i)

16. i = i + 1

17. }

18. }

19. while Q is not empty do

20. {

21. dequeue(a,b)

22. while j < b do

23. {

24. search the node y /*HD(a, y) = 1, Dim(a, y) = j*/

25. if y is not a virtual node and it is free

26. then

27. return(y) /*replace x with y*/

28. remove all nodes in Q

29. exit()

30. j = j + 1

31. }

32. }

33. search the node y /*(x, y) is a IC edge*/

34. if y is not a virtual node and it is free

35. then

36. return(y) /*replace x with y*/

37. exit()

38. while k < �log2m� do

39. {

40. search the node y /*HD(q, y) = 1, Dim(x, y) = k*/

41. if y is not a virtual node and it is free

42. then

43. return(y) /*replace x with y*/

44. exit()

45. k = k + 1

46. }

47. return (“Failure”)

48. end

node 0 = 0Xn�1Xn�2...X�log2m� ...X1X0

node 1 = 0Xn�1Xn�2...X	�log2m� ...X1X0

node 2 = 0Xn�1Xn�2...X	�log2m�+1 X�log2m� ...X1X0

�

node (n��log2m�) = 0X	n�1Xn�2...X�log2m� ...X1X0

node (n��log2m� + 1) = 1Xn�1Xn�2...X�log2m�... X1X0

node (n��log2m� + 2) = 0Xn�1Xn�2...X	�log2m�

 X1X	0
node (n��log2m� + 3) = 0Xn�1Xn�2...X	�log2m� ...X	1X0

�

node (n��log2m� + 1 + �log2m�) = 0Xn�1Xn�2...

X	�log2m�X	�log2m��1...X1X0

node (n��log2m� + 1 + �log2m� + 1) = 0Xn�1Xn�2...

X	�log2m�+1...X1X	0
node (n��log2m� + 1 + �log2m� + 2) = 0Xn�1Xn�2...

X	�log2m�+1...X1X	0
�

node (n��log2m� + 1 + 2*�log2m�) = 0Xn�1Xn�2...

X	�log2m�+1X�log2m�X	�log2m��1...X1X0

�

node ((n��log2m� + 1)*(�log2m� + 1)) = 1Xn�1Xn�2...

X	�log2m��1...X1X0

node ((n��log2m� + 1)*(�log2m� + 1) + 1) = YnYn�1

Yn�2...Y�log2m�...Y1Y0

(The IC edge connect node 0 and node ((n�log2m� +

1)*(�log2m� + 1) + 1))

node ((n��log2m� + 1)*(�log2m� + 1) + �log2m�) =

YnYn�1Yn�2...Y�log2m�...Y1Y	0
�

node((n��log2m� + 1)*(�log2m� + 1) + �log2m�) =

YnYn�1Yn�2...Y	�log2m��1...Y1Y0

We give a simple example in this section to explain

the operations of the LB_Embedding algorithm when the

faulty nodes exist. For the IEH G3(11) as Figure 4.1,

where the R6 has been embedded in it. The sequence of

R6 is {0, 4, 5, 1, 3, 2}.

1.If the node 0 is faulty, it visits or signals the node

4, to check whether it is free or not. If it is, it ter-

minates.

2.If not, insert the node 4 to the queue, and search

the node 8, to check whether it is free or not. If it

is, it terminates.

3.If not, insert the node 8 to the queue, and de-

lete the node 4 from the queue, search the node

5, to check whether it is free or not. If it is, it

terminates.

Embedding Rings in a Faulty IEH 125

4.If not, search the node 6, to check whether it is

free or not. If it is, it terminates.

5.If not, delete the node 4 from the queue, search

the node 9, to check whether it is free or not. If it

is, it terminates.

6.If not, return (“Failure”).

Therefore, the whole searching path is listed as

{4(0100), 8(1000), 5(0101), 6(0110), 9(1001), 10(1010)}.

We illustrate two examples of finding a replaceable

node in an IEH graph G3(11) as shown Figure 4.1, Figure

4.2, and an examples of finding a replaceable node in an

IEH graph G3(12) as shown Figure 4.3.

Theorem 4.3 A linear array or a ring Rm can be mapped

into a faulty IEH Gn(N) graph with dilation 4, conges-

tion 1, and load 1.

Proof. Every searching path is only one path according

to the algorithm LB_Embedding(), allowing us to ob-

tain congestion 1 and load 1. Herein, we allow unbo-

unded expansion to obtain the replaceable node of the

faulty node. When a node is faulty and m is odd, it is a

worse case in which the dilation = 2 + 2 = 4 at most by

algorithm LB_Embedding() and lemma 3.5. Because

these nodes and links of searching paths are not repli-

cated from algorithm LB_Embedding(), These costs as-

sociated with graph embedding are dilation 4, conges-

tion 1, and load 1.

Theorem 4.4 A searching path of algorithm LB_Em-

bedding() is including ((n��log2m� + 1) + (n� log2m�

126 Jen-Chih Lin et al.

Figure 4.1. Embedding R6 into a H3 of G3(11) with dilation 1.

Figure 4.2. Embedding R5 into a H3 of G3(11) with dilation 1.

Figure 4.3. Embedding R5 into a H3 of G3(12) with dilation 2.

+ 1)* �log2m� + �log2m�) nodes.

Proof. We can embed Rm into Gn(N) by Theorem 4.3. If

a node is faulty, we can change a bit in the binary string

sequence from bit log2m� to bit n and insert its corre-

sponding node into the queue. In the worst case, we can

get (n��log2m� + 1) different nodes. Then we delete the

node from the queue. From the first node we can change

a bit in the sequence from bit 0 to bit (�log2m� � 1), and

we can get log2m� different nodes. We can also change

a bit in the sequence from bit 0 to bit (�log2m� �1) from

the second node of the queue and we can also get from

bit 0 to bit (�log2m� �1) different nodes. Until the queue

is empty, the sum of all searched nodes is (n��log2m� +

1)* �log2m�. The search path includes (n��log2m� + 1)

+ (n��log2m� + 1)* �log2m� nodes. We assume there is

an IC edge connecting to the faulty node. Therefore, we

can search log2m� nodes in the worst case. We infer the

edges of the replacing method exist and none of the no-

des and the edges has a duplicate replacement. That is,

the whole search path includes (n��log2m� + 1) + (n�

�log2m� + 1)* �log2m� + log2m� nodes.

Theorem 4.5 There are O(n*�log2m�) faults, which can

be tolerated.

Proof. By theorem 4.4, the whole search path includes

(n��log2m� + 1) + (n��log2m� + 1)* �log2m� + �log2m�

= n*�log2m� � �log2m�2 + �log2m� + n � �log2m� + 1 +

�log2m� = n*�log2m� � �log2m�2 + �log2m� + n +

1nodes. That is, O(n*�log2m�) faults can be tolerated.

Theorem 4.6 Our results for the embedding methods

are optimized mainly for balancing the processor and

communication link loads.

Proof. Because these nodes and edges of searching pa-

ths are not replicated from the algorithm LB_Embed-

ding() and load 1, this observation implies that the pri-

mary optimization objective of mapping is to minimize

the interprocessor communication cost and to balance

the workload of processors having reached.

5. Conclusions

In this paper, we try to find the replaceable node of

the faulty node. The main result of this paper is the fact

that it is always possible to give solutions to the embed-

ding of linear arrays and rings in a faulty IEH. After a

ring is mapped into an IEH, we develop a novel algo-

rithm to unbound expansion. And such costs are dilation

4, congestion 1, load 1, and O(n*�log2m�) faults can be

tolerated. Furthermore, we can prove them and present

some algorithms to solve them. According to the result,

we can embed the parallel algorithms developed by the

structure of a ring in an IEH. These methods of recon-

figuring realize extremely high-speed parallel computa-

tion. This is an improvement of the results given in [8],

when fault tolerance is of interest in a faulty hypercube.

By the results, we can easily port the parallel or distrib-

uted algorithms developed for the structure of rings to the

IEH graph.

References

[1] Armstrong, J. R. and Gray, F. G., “Fault Diagnosis in a

Boolean n Cube Array of Microprocessors,” IEEE Trans.

on Computers, Vol. 30, pp. 587�590 (1981).

[2] Day, K. and Al-Ayyoub, A. E., “Fault Diameter of

k-ary n-cube Networks,” IEEE Trans. on parallel and

distributed systems, Vol. 8, pp. 903�907 (1997).

[3] Jen-Chih Lin, “Simulation of Cycles in the IEH Gra-

ph,” International Journal of Hjgh Speed Computing,

Vo1. 10, pp. 327�342 (1999).

[4] Lin, J. C. and Keh, H. C, “Reconfiguration of Com-

plete Binary Trees in Full IEH Graphs and Faulty

Hypercubes,” International Journal of High perfor-

mance computing Applications, Vo1. 15, pp. 55�63

(2001).

[5] Lin, J. C and Hsien, N. C., “Reconfiguring Binary Tree

Structures in a Faulty Supercube with Unbounded

Expansion,” Parallel Computing, Vo1. 8, pp. 471�

483 (2002).

[6] Lin, J. C. and Lo, S. K. C., “Embedding Complete Bi-

nary Trees into Faulty Flexible Hypercubes with Un-

bounded Expansion” Informatica, Vol. 27, pp. 75�80

(2003).

[7] Rennels, D. A., “On Implemanting Fault-tolerance in

Binary Hypercubes,” Proc. 16th Inter. Symp. on Fault-

tolerant Computing, pp. 344�349 (1986).

[8] Yang, P. J., Tien, S. B. and Raghavendra, C. S., “Em-

bedding of Rings and Meshes onto Faulty Hypercube

Using Free Dimensions,” IEEE Trans. on Computers,

Vol. 43, pp. 608�618 (1994).

[9] Hastad, J., Leighton, T. and Newman, M., “Reconfig-

uring a Hypercube in the Presence of Faults,” Proc. of

19th ACM Conf. on Theory of Computing, pp. 274�284

Embedding Rings in a Faulty IEH 127

(1987).

[10] Akers, S. B. and Krishnamurthy, B., “A Group-The-

oretic Model for Symmetric Interconnection Net-

works,” IEEE Trans. on Computers, Vol. 38, pp. 555�

565 (1989).

[11] Hayes, J. P. and Mudge, T. N., “Hypercube Supercom-

puting,” Proc. IEEE, Vol. 77, pp. 1829�1842 (1989).

[12] Saad, Y. and Schultz, M., “Topological Properties of

Hypercube,” IEEE Trans. on Computers, Vol. 37, pp.

867�871 (1988).

Manuscript Received: Jun. 10, 2005

Accepted: Sep. 30, 2005

128 Jen-Chih Lin et al.

