221,180 research outputs found

    Distributed Detection and Estimation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are typically formed by a large number of densely deployed, spatially distributed sensors with limited sensing, computing, and communication capabilities that cooperate with each other to achieve a common goal. In this dissertation, we investigate the problem of distributed detection, classification, estimation, and localization in WSNs. In this context, the sensors observe the conditions of their surrounding environment, locally process their noisy observations, and send the processed data to a central entity, known as the fusion center (FC), through parallel communication channels corrupted by fading and additive noise. The FC will then combine the received information from the sensors to make a global inference about the underlying phenomenon, which can be either the detection or classification of a discrete variable or the estimation of a continuous one.;In the domain of distributed detection and classification, we propose a novel scheme that enables the FC to make a multi-hypothesis classification of an underlying hypothesis using only binary detections of spatially distributed sensors. This goal is achieved by exploiting the relationship between the influence fields characterizing different hypotheses and the accumulated noisy versions of local binary decisions as received by the FC, where the influence field of a hypothesis is defined as the spatial region in its surrounding in which it can be sensed using some sensing modality. In the realm of distributed estimation and localization, we make four main contributions: (a) We first formulate a general framework that estimates a vector of parameters associated with a deterministic function using spatially distributed noisy samples of the function for both analog and digital local processing schemes. ( b) We consider the estimation of a scalar, random signal at the FC and derive an optimal power-allocation scheme that assigns the optimal local amplification gains to the sensors performing analog local processing. The objective of this optimized power allocation is to minimize the L 2-norm of the vector of local transmission powers, given a maximum estimation distortion at the FC. We also propose a variant of this scheme that uses a limited-feedback strategy to eliminate the requirement of perfect feedback of the instantaneous channel fading coefficients from the FC to local sensors through infinite-rate, error-free links. ( c) We propose a linear spatial collaboration scheme in which sensors collaborate with each other by sharing their local noisy observations. We derive the optimal set of coefficients used to form linear combinations of the shared noisy observations at local sensors to minimize the total estimation distortion at the FC, given a constraint on the maximum average cumulative transmission power in the entire network. (d) Using a novel performance measure called the estimation outage, we analyze the effects of the spatial randomness of the location of the sensors on the quality and performance of localization algorithms by considering an energy-based source-localization scheme under the assumption that the sensors are positioned according to a uniform clustering process

    Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection between SZ and ZFP

    Full text link
    With ever-increasing volumes of scientific data produced by HPC applications, significantly reducing data size is critical because of limited capacity of storage space and potential bottlenecks on I/O or networks in writing/reading or transferring data. SZ and ZFP are the two leading lossy compressors available to compress scientific data sets. However, their performance is not consistent across different data sets and across different fields of some data sets: for some fields SZ provides better compression performance, while other fields are better compressed with ZFP. This situation raises the need for an automatic online (during compression) selection between SZ and ZFP, with a minimal overhead. In this paper, the automatic selection optimizes the rate-distortion, an important statistical quality metric based on the signal-to-noise ratio. To optimize for rate-distortion, we investigate the principles of SZ and ZFP. We then propose an efficient online, low-overhead selection algorithm that predicts the compression quality accurately for two compressors in early processing stages and selects the best-fit compressor for each data field. We implement the selection algorithm into an open-source library, and we evaluate the effectiveness of our proposed solution against plain SZ and ZFP in a parallel environment with 1,024 cores. Evaluation results on three data sets representing about 100 fields show that our selection algorithm improves the compression ratio up to 70% with the same level of data distortion because of very accurate selection (around 99%) of the best-fit compressor, with little overhead (less than 7% in the experiments).Comment: 14 pages, 9 figures, first revisio

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Linear and Parallel Learning of Markov Random Fields

    Full text link
    We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields with untied parameters which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficient, requiring only the local sufficient statistics of the data to estimate parameters

    Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm

    Get PDF
    This paper addresses the problem of estimating the Potts parameter B jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on B requires computing the intractable normalizing constant of the Potts model. In the proposed MCMC method the estimation of B is conducted using a likelihood-free Metropolis-Hastings algorithm. Experimental results obtained for synthetic data show that estimating B jointly with the other unknown parameters leads to estimation results that are as good as those obtained with the actual value of B. On the other hand, assuming that the value of B is known can degrade estimation performance significantly if this value is incorrect. To illustrate the interest of this method, the proposed algorithm is successfully applied to real bidimensional SAR and tridimensional ultrasound images
    • 

    corecore