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Abstract

Distributed Detection and Estimation in Wireless Sensor Networks

by

Mohammad Fanaei
Doctor of Philosophy in Electrical Engineering

West Virginia University

Matthew C. Valenti, Ph.D., Chair

Wireless sensor networks (WSNs) are typically formed by a large number of densely de-
ployed, spatially distributed sensors with limited sensing, computing, and communication
capabilities that cooperate with each other to achieve a common goal. In this dissertation, we
investigate the problem of distributed detection, classification, estimation, and localization
in WSNs. In this context, the sensors observe the conditions of their surrounding envi-
ronment, locally process their noisy observations, and send the processed data to a central
entity, known as the fusion center (FC), through parallel communication channels corrupted
by fading and additive noise. The FC will then combine the received information from the
sensors to make a global inference about the underlying phenomenon, which can be either
the detection or classification of a discrete variable or the estimation of a continuous one.

In the domain of distributed detection and classification, we propose a novel scheme
that enables the FC to make a multi-hypothesis classification of an underlying hypothe-
sis using only binary detections of spatially distributed sensors. This goal is achieved by
exploiting the relationship between the influence fields characterizing different hypotheses
and the accumulated noisy versions of local binary decisions as received by the FC. In the
realm of distributed estimation and localization, we make four main contributions: (a) We
first formulate a general framework that estimates a vector of parameters associated with
a deterministic function using spatially distributed noisy samples of the function for both
analog and digital local processing schemes. (b) We consider the estimation of a scalar,
random signal at the FC and derive an optimal power-allocation scheme that assigns the
optimal local amplification gains to the sensors performing analog local processing. The
objective of this optimized power allocation is to minimize the L2-norm of the vector of local
transmission powers, given a maximum estimation distortion at the FC. We also propose a
variant of this scheme that uses a limited-feedback strategy to eliminate the requirement of
perfect feedback of the instantaneous channel fading coefficients from the FC to local sensors
through infinite-rate, error-free links. (c) We propose a linear spatial collaboration scheme
in which sensors collaborate with each other by sharing their local noisy observations. We
derive the optimal set of coefficients used to form linear combinations of the shared noisy
observations at local sensors to minimize the total estimation distortion at the FC, given a
constraint on the maximum average cumulative transmission power in the entire network.
(d) Using a novel performance measure called the estimation outage, we analyze the effects
of the spatial randomness of the location of the sensors on the quality and performance of
localization algorithms by considering an energy-based source-localization scheme under the
assumption that the sensors are positioned according to a uniform clustering process.
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∫ ∞
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Chapter 1

Introduction

Recent developments in integrated electronics, micro-electromechanical systems (MEMS),

microprocessors, radio-frequency (RF) technologies, and ad hoc networking protocols have

enabled low-power, low-cost sensors to collaborate with each other in order to perform com-

plicated tasks. Wireless sensor networks (WSNs) are typically formed by a large number of

densely deployed, spatially distributed sensors with limited sensing, computing, and commu-

nication capabilities that cooperate with each other to achieve a common goal [1, 2]. A few

of the typical applications of WSNs are military surveillance [3], space explorations, habitat

and environmental monitoring [4, 5], precision agriculture [6, 7], remote sensing, monitoring

of industrial processes, tele-medicine and healthcare [8–11], traffic flow analysis [12], and

underwater WSNs for marine environment monitoring and undersea explorations [13].

Among the most important functionalities of WSNs are distributed detection, classifi-

cation, and estimation, which enable a wide range of applications such as event detection,

classification, localization, system identification, and target tracking [14–26]. In a WSN

performing distributed detection, classification, or estimation, spatially distributed sensors

observe the conditions of their surrounding environment, where their noisy observations are

correlated with an unknown phenomenon. The noisy observations are then locally processed

and sent to a central entity, known as the fusion center (FC), for global processing and

ultimate inference. The transmission of the sensors’ processed data to the FC is performed

through communication channels corrupted by fading and additive noise.1 The FC will then

1Note that in practice, interference will also be available in the shared communication channel among sensors
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combine the received information from spatially distributed sensors to make the ultimate

global inference about the underlying phenomenon, which can be either the detection or

classification of a discrete variable or the estimation of a continuous one. The local process-

ing at the sensors can be in one of the following forms: (a) Analog local processing in which

each sensor uses an amplify-and-forward strategy and sends an amplified version of its local

analog noisy observations to the FC [17–20], and (b) digital local processing in which each

sensor sends a quantized version of its local noisy observations to the FC [20–26].

In this dissertation, we investigate the problem of distributed detection, classification, and

estimation in WSNs. In the domain of distributed detection and classification, we propose a

novel scheme that enables the FC to make a multi-hypothesis classification of an underlying

hypothesis using only binary decisions of spatially distributed sensors. This goal is achieved

by exploiting the relationship between the influence fields characterizing different hypotheses

and the accumulated noisy versions of local binary decisions as received by the FC, where

the influence field of a hypothesis is defined as the spatial region in its surrounding in which

it can be sensed using some sensing modality [27].

In the realm of distributed estimation, we make four main contributions:

(1) We first formulate a general framework that estimates a vector of parameters associated

with a deterministic function using spatially distributed noisy samples of the function.

We consider both analog and digital local processing schemes in our analyses.

(2) We consider the estimation of a scalar, random signal at the FC and derive an opti-

mal power-allocation scheme that assigns the optimal local amplification gains to the

sensors performing analog local processing. The objective of this optimized power al-

location is to minimize the L2-norm of the vector of local transmission powers, given

a maximum estimation distortion at the FC. We also propose a variant of this scheme

that uses a limited-feedback strategy to eliminate the requirement of perfect feedback

of the instantaneous channel fading coefficients from the FC to local sensors through

infinite-rate, error-free links.

unless the channels are orthogonal. Throughout this dissertation, the channels between local sensors and
the FC are assumed to be orthogonal and therefore, we do not consider the effects of the interference in our
analyses. If the channel is not orthogonal, the interference can be absorbed into the noise term.
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(3) We propose a linear spatial collaboration scheme in which sensors collaborate with

each other by sharing their local noisy observations. We derive the optimal set of

coefficients used to form linear combinations of the shared noisy observations at local

sensors to minimize the total estimation distortion at the FC, given a constraint on

the maximum average cumulative transmission power in the entire network.

(4) We analyze the effects of spatial randomness of sensor locations on the performance of

a recently proposed energy-based source-localization algorithm under the assumption

that the sensors are positioned according to a uniform clustering process.

In the remainder of this chapter, a generic system model of the WSN studied in this

dissertation is introduced in Section 1.1. This section defines the components of the network

and sets the scene for the next chapters. In Section 1.2, a list of the main contributions of

this dissertation and its organization are presented, and the results of different chapters are

separately summarized.

1.1 System Model

The system model described in this section is a generic functional model for the WSNs

studied in this dissertation. Unless otherwise stated, this system model is applicable to

all chapters, and its details specific to each chapter that are different from the following

specifications will be discussed in the corresponding chapter accordingly.

Consider a set of K spatially distributed sensors forming a WSN as shown in Figure 1.1.

The ultimate goal of the WSN is to make an inference about an underlying phenomenon

θ. In a detection or classification application, as considered in Chapter 2, the underlying

phenomenon θ is a binary or M -ary variable, respectively, which can be either random or

deterministic. In an estimation or localization application, as considered in Chapters 3–6, it

is a continuous random or deterministic variable, which can be either a scalar, as considered

in Chapter 4, or a vector, as considered in Chapters 3, 5, and 6. In the following subsections,

different components of the system model shown in Figure 1.1 will be introduced.
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Figure 1.1: System model of a typical WSN used to make an inference about an underlying

phenomenon θ.

1.1.1 Local Observation Model

Assume that each sensor makes a noisy observation that is correlated with the underlying

phenomenon θ as

ri = Ξi (θ) + wi, i = 1, 2, . . . , K, (1.1)

where ri is the local noisy observation at the ith sensor, Ξi (·) is a known function of the

underlying phenomenon observed at the ith sensor, and wi is the spatially uncorrelated

(except in Chapter 5 in which the observation noise at different sensors can be spatially

correlated), zero-mean additive white Gaussian noise with known variance σ2
i , i.e., wi ∼

N (0, σ2
i ).

Note that the observation model introduced in Equation (1.1) covers a large number of dif-

ferent applications. For example, it is a generalization of the well-studied linear observation

model of vector θ
def
= [θ1, θ2, . . . , θp]

T in which ri = gTi θ +wi, where gi
def
=
[
gi1 , gi2 , . . . , gip

]T
is

the vector of local observation gains at sensor i (considered, for example, by Ribeiro and Gi-

annakis [24]). Furthermore, it is also a generalized version of the observation model consid-

ered by Niu and Varshney [28] and Ozdemir et al. [29].

1.1.2 Local Sensor Processing

Throughout this dissertation, except in Chapter 5, it is assumed that there is no inter-

sensor communication and/or collaboration among spatially distributed sensors. Hence, each
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sensor i processes its local noisy observations based on its local processing rule γi(·). The

result of the local processing at sensor i, denoted by ui = γi(ri), is sent to a FC through an

impaired communication channel. In general, two local processing schemes can be considered

for distributed sensors:

Analog Local Processing: In the analog local processing scheme, each sensor acts as a

(pure) relay and uses an amplify-and-forward scheme to transmit an amplified version

of its analog local noisy observations to the FC as

ui = αiri = αiΞi (θ) + αiwi, i = 1, 2, . . . , K, (1.2)

where ui is the signal transmitted from sensor i to the FC, and αi is the local amplifi-

cation gain at sensor i. This scheme is considered in Chapters 3–5.

Digital Local Processing: In the digital local processing scheme, each sensor quantizes

its local observations and sends their quantized version to the FC using a digital mod-

ulation format. This scheme is considered in Chapters 2, 3, and 6.

Suppose that sensor i quantizes its local noisy observation ri to bi
def
= log2Mi bits, where

Mi is the number of quantization levels at sensor i. Let Li
def
= {βi(0), βi(1), . . . , βi(Mi)}

be the set of quantization thresholds at sensor i, where βi(`) is the `th quantiza-

tion threshold of the ith sensor, βi(0) = −∞, and βi(Mi) =∞ for i = 1, 2, . . . , K. The

local processing rule at sensor i is then defined as a function γi : R 7−→ {0, 1, . . . ,Mi − 1},

whose values are determined as

ui = `⇐⇒ βi(`) ≤ ri < βi(`+ 1), ` = 0, 1, . . . ,Mi − 1 and i = 1, 2, . . . , K. (1.3)

As it was mentioned, in all chapters except Chapter 5, the local processing is performed

on only the local observations, which implicitly means that there is no inter-sensor com-

munication and/or collaboration. However, the system model in Chapter 5 considers the

case in which subsets of sensors can collaborate with each other by sharing their local noisy

observations, where the local processing is performed on all of the observations available at

each sensor. More details will be provided in Chapter 5.
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1.1.3 Communication Channel Model

Suppose that all locally processed observations are transmitted to the FC over parallel,

independent (orthogonal) fading channels. The channel between each sensor and the FC is

assumed to be corrupted by fading and additive Gaussian noise. Assume that the received

signal from sensor i at the FC is

zi = hiui + ni, i = 1, 2, . . . , K, (1.4)

where hi is the spatially independent multiplicative fading coefficient of the parallel channel

between sensor i and the FC, and ni is the spatially uncorrelated (except in Chapter 5 in

which the noise at the communication channels between different sensors and the FC can

be spatially correlated), zero-mean additive white Gaussian noise with known variance τ 2
i ,

i.e., ni ∼ N (0, τ 2
i ) (or ni ∼ CN (0, τ 2

i ) in Chapter 6).

Note that the above channel model implicitly makes the following assumptions:

(1) Each sensor is only synchronized with the FC. There is no need for any kind of time

synchronization among spatially distributed sensors (as required in a coherent multiple-

access channel).

(2) The distance-dependent path-loss in the communication channels between local sensors

and the FC is fully compensated for all sensors using an appropriate power-control

scheme [30]. Such power control makes the location of the FC irrelevant to the analyses.

It should, however, be noted that sensors that are farther from the FC will deplete their

energy resources faster.

In Chapters 2–5, the channel fading coefficients are assumed to be completely known

at the FC. This assumption can be satisfied using any channel-estimation technique such

as the transmission of pilot sequences from local sensors to the FC. In Chapter 6, it is

assumed that the amplitude of the channel fading coefficients has a Rayleigh distribution

and therefore, the random variable hi is assumed to be spatially independent, zero-mean

complex Gaussian with unit power, i.e., hi ∼ CN (0, 1). However, it is assumed that the FC

does not have access to the instantaneous channel fading coefficients and that it only knows

their distribution along with their first- and second-order statistics.
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1.1.4 Fusion Center Processing

Upon receiving the vector of locally processed observations communicated through orthogo-

nal channels by distributed sensors z
def
= [z1, z2, . . . , zK ]T , the FC combines them to make an

inference about the underlying phenomenon θ, which is either its detection, classification,

or estimation. For example, in Chapter 2, the FC adds all of the received information from

the sensors to form a decision metric as the linear combination χ def
=

K∑
i=1

zi, based on which

it classifies the underlying hypothesis θ using Bayesian decision theory. In Chapter 3, the

FC finds the maximum likelihood (ML) estimate of a vector of deterministic parameters

using the vector of the received information form spatially distributed sensors. In Chap-

ters 4 and 5, the FC finds the best linear unbiased estimator (BLUE) of a scalar and vector,

random signal, respectively, using the vector of the received data from local sensors z.

1.2 Main Contributions and Dissertation Organization

In this section, a brief overview of the main contributions of this dissertation along with its

organization will be summarized. Details of each contribution will be covered in a separate

chapter.

Low-Complexity Channel-aware Distributed M-ary Classification Using Binary

Local Decisions [31]: In Chapter 2, we investigate the problem of distributed multi-

hypothesis classification of an underlying hypothesis at the FC of a WSN using local binary

decisions. The binary decisions at spatially distributed sensors are made based on their noisy

observations and sent to the FC through parallel additive white Gaussian noise (AWGN)

channels. The FC uses the received noisy versions of local decisions to perform a global

classification. In contrast with other approaches in the literature for multi-hypothesis clas-

sification based on combined binary decisions, our scheme exploits the relationship between

the influence fields characterizing different hypotheses and the accumulated noisy versions

of local binary decisions as received by the FC, where the influence field of a hypothesis

is defined as the spatial region in its surrounding in which it can be sensed using some

sensing modality [27]. The main contribution of Chapter 2 is the formulation of local and
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fusion decision rules that maximize the probability of correct global classification at the FC,

along with an algorithm for channel-aware global optimization of the decision thresholds at

local sensors and the FC. The performance of the proposed classification system is investi-

gated through studying practical scenarios. The results of numerical performance analyses

show that the proposed approach simplifies decision making at the sensors while achieving

acceptable performance in terms of the global probability of correct classification at the FC.

Main Publication

M. Fanaei, M.C. Valenti, N.A. Schmid, and V.K. Kulathumani, “Channel-aware dis-

tributed classification using binary local decisions,” in Proceedings of SPIE Signal Pro-

cessing, Sensor Fusion, and Target Recognition XX, (Orlando, FL), May 2011.

Distributed Parameter Estimation Using Non-Linear Observations [20]: In Chap-

ter 3, we investigate the problem of estimating a vector of unknown parameters associated

with a deterministic function at the fusion center of a wireless sensor network, based on the

noisy samples of the function. The samples are observed by spatially distributed sensors,

processed locally by each sensor, and communicated to the FC through parallel channels

corrupted by coherent fading and additive white Gaussian noise. In our analyses, two local

processing schemes at the sensors, namely analog and digital, will be considered. In the

analog local processing scheme, each sensor acts as a pure relay and transmits an amplified

version of its raw analog noisy observations to the FC. In the digital local processing method,

each sensor quantizes its local noisy observations and sends the quantized samples to the FC

using a digital modulation format. The FC combines all of the received locally processed

observations and estimates the vector of unknown parameters. The main contribution of

Chapter 3 is a generalized formulation of distributed parameter estimation in the context of

WSNs, where local observations are not (necessarily) linearly dependent on the underlying

parameters to be estimated and no specific observation model has been considered in the

analyses.

Main Publication

M. Fanaei, M.C. Valenti, N.A. Schmid, and M.M. Alkhweldi, “Distributed parameter

estimation in wireless sensor networks using fused local observations,” in Proceedings
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of SPIE Wireless Sensing, Localization, and Processing VII, vol. 8404, (Baltimore,

MD), May 2012.

Channel-aware Power Allocation for Distributed BLUE Estimation – Full and

Limited Feedback of CSI [32, 33]: In Chapter 4, we investigate the problem of finding

the optimal local amplification gains in a distributed estimation framework in which the

sensors use amplify-and-forward local processing. We propose an optimal, adaptive power-

allocation strategy that minimizes the L2-norm of the vector of local transmission powers,

given a maximum estimation distortion defined as the variance of the BLUE estimator of a

scalar, random signal at the FC. This approach prevents the assignment of high transmission

power to sensors by putting a higher penalty on them, which results in the increased lifetime

of the WSN compared to similar approaches that are based on the minimization of the sum

of the local transmission powers.

The limitation of the proposed power-allocation scheme is that the optimal local am-

plification gains found based on it depend on the instantaneous fading coefficients of the

channels between the sensors and FC. Therefore, the FC must feed the exact channel fading

coefficients back to sensors through infinite-rate, error-free links, which is not a practical

requirement in most applications of large-scale WSNs. In the remainder of Chapter 4, we

propose a limited-feedback strategy to eliminate this requirement. The proposed approach is

based on designing an optimal codebook using the generalized Lloyd algorithm with modi-

fied distortion metrics, which is used to quantize the space of the optimal power-allocation

vectors used by the sensors to set their local amplification gains. Based on this scheme,

each sensor amplifies its analog noisy observations using a quantized version of its optimal

amplification gain determined by the designed optimal codebook.

Main Publications

M. Fanaei, M.C. Valenti, and N.A. Schmid, “Limited-feedback-based channel-aware

power allocation for linear distributed estimation,” in Proceedings of Asilomar Confer-

ence on Signals, Systems, and Computers, (Pacific Grove, CA), November 2013.

M. Fanaei, M.C. Valenti, and N.A. Schmid, “Power allocation for distributed BLUE

estimation with full and limited feedback of CSI,” in Proceedings of IEEE Military



Mohammad Fanaei Chapter 1. Introduction 10

Communications Conference (MILCOM), (San Diego, CA), November 2013.

Linear Spatial Collaboration for Distributed BLUE Estimation [34]: In Chapter 5,

we investigate the problem of linear spatial collaboration for distributed estimation in a

context in which each sensor can collaborate with a subset of other sensors by sharing its

local noisy (and potentially spatially correlated) observations with them through error-free,

low-cost links. A binary adjacency matrix defines the connectivity of the network and the

pattern by which local sensors share their noisy observations with each other. The goal of the

WSN is for a FC to estimate the vector of unknown signals observed by individual sensors.

Each one of the sensors that is connected to the FC forms a linear combination of the noisy

observations to which it has access and sends the result of this analog local processing to

the FC through an orthogonal communication channel corrupted by fading and additive

Gaussian noise. The FC combines the received data from spatially distributed sensors to

find the BLUE estimator of the vector of unknown signals observed by individual sensors.

The main novelty of Chapter 5 is the derivation of an optimal power-allocation scheme in

which the set of coefficients or weights used to form linear combinations of shared noisy

observations at the sensors connected to the FC is optimized. Through this optimization,

the total estimation distortion at the FC (defined as the sum of the estimation variances of

the BLUE estimators for different signals observed by individual sensors) is minimized, given

a constraint on the maximum average cumulative transmission power in the entire network.

Numerical results show that even with a moderate connectivity across the network, spatial

collaboration among sensors significantly reduces the estimation distortion at the FC.

Main Publication

M. Fanaei, M.C. Valenti, A. Jamalipour, and N.A. Schmid, “Optimal power allocation

for distributed BLUE estimation with linear spatial collaboration,” in Proceedings of

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

(Florence, Italy), May 2014.

Effects of Spatial Randomness on Source Localization with Distributed Sen-

sors [35]: The problem of estimating the location of a point source in WSNs has exten-

sively been studied in the literature. Most of these studies assume that the source location
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is estimated using the energy measurements of a set of spatially distributed sensors, whose

locations are fixed. Because these sensors can randomly be distributed in the observation en-

vironment, both their observation quality and the performance of the localization algorithm

depend on the realization of their random locations. Motivated by this fact, Chapter 6 an-

alyzes the effects of spatial randomness of sensor locations on the performance of a recently

proposed, energy-based source-localization algorithm under the assumption that the sensors

are positioned according to a uniform clustering process. By introducing a novel performance

measure called the estimation outage, it is investigated how the localization performance is

affected by the parameters related to the network geometry such as the distance between

the source and the closest sensor to it, the number of sensors within a region surrounding

the source, as well as the existence and size of the exclusion zones around each sensor and

the source.

Main Publication

M. Fanaei, M.C. Valenti, and N.A. Schmid, “Effects of spatial randomness on lo-

cating a point source with distributed sensors,” in Proceedings of IEEE International

Conference on Communications Workshop on Advances in Network Localization and

Navigation (ICC–ANLN), (Sydney, Australia), June 2014.
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Chapter 2

Low-Complexity Channel-aware

Distributed M-ary Classification

Using Binary Local Decisions

2.1 Introduction

One of the most important applications of wireless sensor networks (WSNs) is distributed

detection and classification of an object, event, or phenomenon, also called an underlying

hypothesis, which is the first step in a wider range of applications such as estimation, iden-

tification, and tracking [14]. Note that the presence of an object must first be ascertained

before its attributes, such as location, movement pattern, heading, and velocity, can be esti-

mated. Moreover, for WSNs that monitor infrequent events, the detection and classification

of the event may be the main expected functionality. Furthermore, in some of the most

important and widespread applications of WSNs, such as wireless surveillance, the detection

of an intruder and its classification is the sole purpose.

The distributed detection and classification schemes usually consist of three main compo-

nents: local processing of noisy observations, wireless communication of the locally processed

data, and final data fusion. In a WSN performing distributed detection and classification,

local sensors observe the conditions of their surrounding environment, process their local

noisy observations, and send their processed data to a fusion center (FC), which makes the
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ultimate global decision. The detection and classification at the FC must be performed de-

spite the presence of faults in both sensor decisions and communication channels between

local sensors and the FC. Different aspects of this problem have attracted a lot of interest

in the research community throughout the last three decades.

In this chapter, we investigate the problem of distributed multi-hypothesis classification

of an underlying hypothesis at the FC of a WSN using local binary decisions. The binary

decisions at spatially distributed sensors are made based on their noisy observations and sent

to the FC through parallel additive white Gaussian noise (AWGN) channels. The FC uses

the received noisy versions of local decisions to perform a global classification. In contrast

with other approaches in the literature for multi-hypothesis classification based on combined

binary decisions, our scheme exploits the relationship between the influence fields charac-

terizing different hypotheses and the accumulated noisy versions of local binary decisions

as received by the FC, where the influence field of a hypothesis is defined as the spatial

region in its surrounding in which it can be sensed using some sensing modality [27]. The

main contribution of this chapter is the formulation of local and fusion decision rules that

maximize the probability of correct global classification at the FC, along with an algorithm

for channel-aware global optimization of the decision thresholds at local sensors and the

FC. The performance of the proposed classification system is investigated through studying

practical scenarios. The results of numerical performance analyses show that the proposed

approach simplifies decision making at the sensors while achieving acceptable performance

in terms of the global probability of correct classification at the FC.

The rest of this chapter is organized as follows: In Section 2.2, we present a detailed

literature review on the field of distributed binary hypothesis-testing problem in which the

number of underlying hypotheses is two. Section 2.3 concentrates on a through literature

review on the distributed M -ary hypothesis-testing problem in which the number of un-

derlying hypotheses is M . Having described the weaknesses of current distributed M -ary

classification schemes, we will then analyze this problem from a new perspective. Section 2.4

describes the model of the distributed parallel fusion WSN that is considered in our analyses.

In Section 2.5, the network is analyzed and the optimal parameters of a specifically defined

decision rule at the FC are derived. Moreover, different methods of local versus global opti-
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mization of sensor decision rules are discussed. Section 2.6 presents the numerical results of

the analytical performance evaluations of the proposed classification system and studies the

effects of different parameters of the classification network on its performance. Finally, we

conclude our discussions and summarize the main achievements of this work in Section 2.7.

2.2 Related Works to Distributed Binary Hypothesis-

Testing Problem

In the realm of distributed detection and classification in WSNs, most of the attention has

been given to the binary hypothesis-testing problem in which the FC is designed to detect

the presence or absence of an underlying hypothesis based on local binary (and potentially

faulty) decisions received from spatially distributed sensors. In recent years, this problem

has been considered for a practical case of non-ideal communication channels between local

sensors and the FC in which the decisions of the sensors may not be reliably received at the

FC (See [15, 36] and references therein for a survey on recent developments in this research

area).

Decentralized detection with fusion was an active research area during the 1980s and

early 1990s, following the ground-breaking work of Tenney and Sandell [37]. The main

application of this research was distributed radar. To be more precise, it was assumed that

K radars observing the same event were spatially distributed at different locations and that

their decisions needed to be fused at a command center. At the time, the high cost of raw

data transfer from local radars to the command center motivated researchers to propose

novel approaches for local quantization and compression of data before transmitting the

information to the FC; hence, the decentralized aspect of the problem arose. The goal of

this research was to design the sensors and FC to detect the event as accurately as possible,

subject to an alphabet-size constraint on the messages transmitted by each sensor. Note that

aside from (potentially faulty) local processing in the above-described framework, the local

decisions of distributed sensors are typically assumed to be reliably available at the FC in a

decentralized scheme (in contrast with a distributed framework in which the locally processed
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data is sent to the FC through impaired communication channels). A survey on the early

works in the area of decentralized detection and classification can be found in [38–40] and

references therein.

More recently, the applications of distributed detection and classification in WSNs have

gained a lot of attention. Due to stringent resource constraints of wireless sensors, one should

have a deep understanding of the interplay between local data processing, data compression,

resource allocation, communication cost and reliability, and overall performance of the wire-

less sensor networks to be able to design an efficient distributed detection and classification

approach. Classical results on inference problems in general, and on decentralized detection

and classification in particular, can be extended to gain insight into and to form a basis for

the efficient design of WSNs used in solving the distributed version of these problems.

In a centralized detection and classification system, all of the sensor observations are avail-

able at the FC without any distortion [15]. In the Bayesian problem formulation, the probabil-

ity of error or misclassification at the FC is to be minimized, whereas in the Neyman–Pearson

problem formulation for a binary detection system, the probability of miss (type–II error) is

to be minimized, subject to a constraint on the maximum probability of false alarm (type–

I error) [41, Chapter 2].

In classical decentralized detection and classification systems, spatially distributed sen-

sors observe the state of their surrounding environment, represented by random variable θ.

Based on its local noisy observation, sensor i selects one of Di possible messages and sends it

to the FC via a dedicated channel. Perfect reception of sensor outputs at the FC is typically

assumed in a decentralized framework. The FC then produces an estimate of the state of the

observation environment by selecting one of the possible hypotheses after reliably receiving

all local data. Resource constraints in the classical decentralized detection and classification

framework are addressed by fixing the number of sensors and imposing a finite-alphabet

constraint on the output of each sensor. These constraints limit the amount of information

available at the FC. It can be concluded that a decentralized sensor network in which every

sensor sends a partial summary of its own observations to the FC is suboptimal compared

to a centralized sensor network in which the FC has access to the observations of all sensors

without any distortion [15]. Nevertheless, practical factors such as cost, spectral bandwidth
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limitations, and complexity may justify the use of compression algorithms at distributed sen-

sors. Furthermore, in systems with a large number of sensors, unprocessed information can

flood and overwhelm the FC, and a centralized implementation of the optimal detection rule

may simply be infeasible [15]. It should be noted that once the structure of the informa-

tion provided by each sensor is fixed and known, the FC should solve a standard problem

of statistical inference [38, 42]. Therefore, a likelihood-ratio test on the received data from

the sensors will minimize the probability of error at the FC for a binary hypothesis-testing

problem, and a minimum mean-square estimator will minimize the mean-squared error for

an estimation problem [15].

One of the most important accomplishments in classical decentralized detection for binary

hypothesis-testing problem is the demonstration that likelihood-ratio tests at the sensors are

optimal when spatially distributed observations are conditionally independent, given each

hypothesis [38]. This property drastically reduces the search space for an optimal collection

of local quantizers and makes the resulting problem analytically tractable. The significance

of this result is appreciated by the fact that the majority of research on classical decentral-

ized detection assumes that local observations are conditionally independent and identically

distributed (i.i.d.), given any hypothesis. In general, it is reasonable to assume conditional

independence across sensors only if inaccuracies at local sensors are responsible for the noisy

observations. However, if the observed process is itself stochastic or if the sensors are sub-

ject to external noise, this assumption may fail. Without the assumption of conditional

independence, the task of finding an optimal solution to the classical decentralized detection

problem is computationally intractable [43]. Even under the assumption of conditional in-

dependence, finding optimal quantization levels for distributed sensors is, in most cases, a

difficult task [43]. This optimization problem is known to be tractable only under restrictive

assumptions regarding the observation space and the topology of the underlying network.

The solution does not scale well with the number of sensors except in some special cases,

and it is not robust with respect to prior probabilities of the observation statistics.

A popular heuristic method to design decentralized detection systems is the person-

by-person optimization (PBPO) technique [39]. In this approach, the decision rules are

optimized for one sensor at a time while the local decision rules of the remaining sensors are
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kept fixed. The index of the sensor being optimized is changed at every step. It is guaranteed

that the overall performance of the detection rule at the FC is improved, or at least is not

worsen, with every iteration of the PBPO algorithm. To be more precise, in a Bayesian

setting for example, the probability of error at the FC will be a monotonically decreasing

function of the number of PBPO iterations. One of the main disadvantages of this algorithm

is that it does not necessarily result in a globally optimal solution and may only lead to a

locally optimal one. There are several other important heuristic techniques for designing

a decentralized detection system such as the saddle-point approximation method [44] and

techniques based on empirical risk minimization and marginalized kernels [45]. In contrast

with the majority of the works on decentralized detection and classification, the kernel

method addresses system design for situations in which only a collection of empirical samples

is available, i.e., the conditional joint distributions of the the sensor observations, given

different hypotheses, are not needed to be known.

For networks with a small number of sensors used in decentralized detection and classi-

fication applications, the intuition regarding an optimal solution may be misleading. Con-

sider a scenario in which local observations of different sensors are conditionally i.i.d. The

symmetry in the problem suggests that the decision rules at the sensors should be identi-

cal, and identical local decision rules are, indeed, frequently assumed in many situations.

However, counterexamples for which non-identical decision rules are optimal have been iden-

tified [38, 46, 47]. It is worth mentioning that identical decision rules are optimal, in terms

of error exponent, for decentralized binary hypothesis-testing problem in the asymptotic

regime, i.e., when the number of active sensors and (possibly) the area covered by these sen-

sors increase to infinity [48]. In other words, it is proved that for any reasonable collection

of transmission strategies of local decisions to the FC, the probability of error at the FC

goes to zero exponentially fast as the number of the sensors K goes to infinity. Therefore, it

is sufficient to compare different transmission strategies based on their exponential rate of

convergence to zero, which is defined as follows [15]:

lim
K→∞

logPe (GK)

K
,

where GK is a system configuration that containsK sensors, and Pe (·) denotes the probability



Mohammad Fanaei Chapter 2. Distributed Classification Using Binary Local Decisions 18

of error for a given system configuration.

The classical decentralized detection and classification framework cannot directly be ap-

plied to modern WSNs since it does not adequately take into account important features of

sensor technology and of wireless links between local sensors and the FC. Particularly, as

explained in [15]:

• Finite-alphabet restrictions on the sensor outputs do not adequately capture the re-

source constraints on spectral bandwidth and energy in WSNs.

• The assumption that sensor decisions are received reliably at the FC ignores the in-

trinsic characteristics of wireless links, particularly the fading effects.

• The emphasis of the research on the classical decentralized detection and classification

problem has been on optimal solutions rather than scalable ones.

Many recent developments in the field of decentralized detection and classification in

WSNs have been obtained by studying the classical problem while incorporating more real-

istic system assumptions in the problem definition. In particular, the following main assump-

tions have been considered in the problem formulation: network topology, local processing

schemes, resource constraints of WSNs, channel capacity constraints, wireless fading chan-

nels between local sensors and the FC, and correlated local observations. The remainder of

this section is devoted to describing the consequences of incorporating these assumptions in

the problem of distributed detection and classification in WSNs.

2.2.1 Network Topology

Different network architectures for distributed sensor networks have been considered includ-

ing the following main topologies:

• Carefully deployed WSNs usually form a tree, i.e., a network where nodes form a

connected graph with no cycles [38]. In a tree structure, the information propagates

from sensors to the FC in a straightforward manner, following a unique deterministic

path. Therefore, the communication overhead is minimal.
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• Parallel architecture is a subclass of the tree structure in which each sensor commu-

nicates directly with the FC. This configuration has received much of the attention

in the distributed detection and classification literature since it is more analytically

tractable. All WSNs considered throughout this dissertation are formed in the parallel

structure.

• Distributed sensor systems can also form a self-configuring WSN in which the sen-

sors are positioned in an observation environment randomly and then cooperate with

each other to form a dynamic communication infrastructure. The price paid for the

greater flexibility of self-configuring networks is a much more complicated communica-

tion mechanism with substantial overhead. The challenges that should be addressed in

self-configuring WSNs include topology management, clustering, node identification,

distributed synchronization, and the choice of routing policies. In these networks,

nodes successively play the roles of sensors, relays, and routers. A reasonable assump-

tion for distributed detection and classification using WSNs is that the sensors local

to an event of interest are used for sensing and transmit their information to the FC

using a single hop or multiple hops. The other sensors in the system may be used as

relays or routers. The FC is responsible for final decision making and further relaying

of the information across the network if necessary [15].

2.2.2 Local Processing Schemes

In-network signal processing can combine the information from neighboring sensors to im-

prove the reliability of the local observations and reduce the amount of traffic in the network.

On the other hand, the exchange of additional information among local sensors can poten-

tially result in better decisions [49, 50]. For example, D’Costa et al. [50] have assumed that

the local observations possess a correlating structure that extends only to a limited distance.

If this assumption holds, the WSN can be partitioned into disjoint spatial coherence regions

over which the signals remain strongly correlated. Local observations from different regions

are assumed to be approximately conditionally independent. The resulting partitioning im-

poses a structure on the optimal decision rule that is suited to the communication constraints
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of the network. Information is exchanged locally to improve the reliability of the measure-

ments while compressed data is exchanged among coherence regions. Under mild conditions,

the probability of error for the proposed classification scheme is found to decay exponentially

to zero as the number of independent sensor measurements increases to infinity.

2.2.3 Resource Constraints

A problem formulation that better accounts for the physical resource constraints of a typical

WSN is needed for accurate performance evaluations. As discussed earlier, wireless sensors

often have very stringent power requirements. A limited spectral bandwidth and a bound on

the total cost of the system may impose further constraints on system design. A flexible and

appropriate solution to distributed sensing should account for these important factors. It

can be proved that under the assumption of conditionally i.i.d. observations, using identical

local processing rules for all sensors becomes asymptotically optimal as a global resource

budget for the WSN goes to infinity, when the resource budget (instead of the number of

sensors in classical detection and classification systems) is the fundamental design limita-

tion [51]. Examples of the resource budget for a WSN include sum-rate constraint, total

power requirement, a bound on the system cost, or a combination of them. A necessary

condition for this result to hold is that the number of sensors must approach infinity as the

actual resource budget goes to infinity. In this formulation, the resource budget (instead of

the number of sensors) forms the fundamental constraint on the sensor system. Asymptotic

analysis is performed based on an appropriate local metric, which decouples the optimiza-

tion across sensors. The appropriate local metric is the normalized Chernoff information1 in

1Suppose that r is a random (and potentially noisy) observation at a sensor that is to be classified into one

of the two possible hypotheses θ0 and θ1. Let f0(r)
def
= fR|θ0 (r|θ0) and f1(r)

def
= fR|θ1 (r|θ1) be the conditional

probability distributions of the local observation r, given hypothesis θ0 and θ1, respectively. The Chernoff
information between the two probability distributions f0 and f1 is defined as [52, Section 11.9]

C (f0; f1)
def
= − min

0≤λ≤1
log2

∫ ∞
−∞

(f0(r))
λ

(f1(r))
1−λ

dr.

Note that the Chernoff information is not symmetric, i.e., C (f0; f1) 6= C (f1; f0). The normalization factor
to find the normalized Chernoff information is the average transmission power of the sensor.
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the Bayesian problem formulation and the normalized relative entropy2 in Neyman–Pearson

variant of the detection problem [51]. When the local observations are not conditionally

i.i.d., these metrics can no longer be shown to be the right metrics for optimizing the local

processing rules. However, even in this case, the asymptotic results can be used as some jus-

tification to decouple the optimization across sensors and to choose the local processing rule

at each sensor to maximize the normalized Chernoff information (for the Bayesian problem

formulation) or the relative entropy (for the Neyman–Pearson problem formulation).

2.2.4 Channel Capacity Constraints

The information-theoretic capacity or more generally, the admissible rate-region of a multiple-

access channel is determined by its bandwidth, the signal power, and the noise power spectral

density. Specifying these quantities is equivalent to fixing the sum-rate of the corresponding

multiple-access channel. An initial approach to the capacity-constrained distributed detec-

tion and classification problem is to limit the sum-capacity of the multiple-access channel

available to the sensors. More specifically, suppose that a multiple-access channel is only able

to carry R bits of information per channel use. Then, the new design problem is converted

to the selection of the number of active sensors K and the number of quantization levels at

each sensor Di, i = 1, 2, . . . , K, with an objective to optimize the system performance at the

FC, subject to the following capacity constraint:

K∑
i=1

dlog2Die ≤ R,

where d·e denotes the ceiling operation. It can be shown that for a binary hypothesis-testing

problem in this framework, an identical binary quantization scheme at sensors is asymp-

totically optimal if there exists a binary quantization function whose Chernoff information

exceeds half of the information contained in an unquantized observation [51]. This result

2The relative entropy or Kullback–Leibler distance between two probability distributions f0(r) and f1(r) is
defined as [52, Section 2.3]

D (f0(r) ‖ f1(r))
def
=

∫ ∞
−∞

f0(r) log2

(
f0(r)

f1(r)

)
dr.

Note that the relative entropy is not symmetric, i.e., D (f0(r) ‖ f1(r)) 6= D (f1(r) ‖ f0(r)). The normalization
factor to find the normalized relative entropy is the average transmission power of the sensor.
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explains the intuitive expectation that if the contribution of the first bit of the quantized

data to the Chernoff information exceeds half of the Chernoff information offered by an

unquantized observation, then using binary sensors is optimal. Note that the immediate

consequence of this result is that having K = R identical binary sensors is asymptotically

optimal, i.e., the gain offered by having more sensors outperforms the benefits of getting

detailed information from each sensor.

The above conclusion can be generalized to very important results that seem to be valid

for a wide range of detection and classification problems. First, in most detection and

classification configurations, the number of bits necessary to capture most of the information

contained in each observation of each sensor appears to be very small [51]. In other words, for

detection and classification purposes, most of the information provided by an observation can

be found in the first few bits of the compressed data [53–56]. However, it is shown that the

performance loss due to quantization decays very rapidly as the number of quantization levels

increases. Therefore, message compression only plays a limited role in the overall system

performance. A second result is that for conditionally i.i.d. observations, the diversity

obtained by using multiple sensors more than offsets the performance degradation associated

with receiving only coarse (one-bit) quantized data from each sensor [51].

2.2.5 Wireless Channels Between Sensors and Fusion Center

Most of the early results on classical decentralized detection and classification assume that

each sensor produces a finite-valued function of its noisy observation, which is reliably re-

ceived by the FC. In a WSN, this latter assumption of reliable transmission may fail since

the information is transmitted over noisy channels corrupted by attenuation and fading. If

sensors are randomly scattered in an observation environment, it can be assumed that their

communication channels experience different mean path losses, with certain sensors possi-

bly having much better connections than others. Furthermore, changes in the environment,

interference, and motion of the sensors can produce time-dependent variations in the in-

stantaneous quality of the wireless channels. The limitations posed by the wireless fading

channels are made even worse by the fact that most detection and classification problems are
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subject to stringent delay constraints. Therefore, the use of powerful error-correcting codes

at the physical layer is prevented.

Most recent works on distributed detection incorporate the effects of the wireless channel

on the transmission of local decisions to the FC. At least two distinct cases can be considered:

The channel state information may or may not be available at local sensors.

If the channel state information is available at sensors, they can use adaptive transmis-

sion strategies, where a sensor decides what type of information to send to the FC based on

the current quality of the communication channel. If the wireless channel is unreliable, then

most of the available resources should be devoted to transmitting critical information. On

the other hand, when the channel is in a good state, the sensor can potentially use a more

complicated transmission scheme. In [55], Chen et al. have modified the classical decen-

tralized detection problem by incorporating a fading channel between each sensor and the

FC. They have derived a likelihood-ratio-based fusion rule for fixed decisions of the sensors.

This optimal fusion rule requires perfect knowledge of the local performance metrics (e.g.,

the probability of detection and the probability of false alarm at each sensor) and the state

of the communication channels over which messages are sent. Alternative fusion schemes

that do not require as much side information are also proposed. A decision rule based on

maximum-ratio combining (MRC) and a two-stage approach inspired by the Chair-Varshney

decision rule [42] are analyzed. These concepts are further investigated by Niu et al. [57]

for the scenario in which instantaneous channel state information is not available at the FC.

They have proposed a fusion rule that requires only the knowledge of the channel statistics.

At low signal-to-noise ratios (SNRs), the proposed fusion rule reduces to a statistic in the

form of an equal-gain combiner (EGC), whereas at high SNRs, the proposed fusion rule is

equivalent to the Chair-Varshney decision procedure.

As it was mentioned earlier, in distributed detection and classification, the most signifi-

cant bit of a quantized observation seems to carry most of the information for the purpose

of decision making. Therefore, it should be given more protection against noise and errors.

This intuition is supported by the fact that sending a one-bit message outperforms schemes

in which two bits of information are transmitted at a low SNR [51]. Conversely, multiple

bits of quantized data can be transferred to the FC at high SNRs. The energy allocated
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to each bit of the quantized observation is different for different channel conditions. At low

SNRs, most of the energy is given to the most significant bit, whereas at higher SNRs, en-

ergy is split between the bits. For encoded systems, this requirement is equivalent to using

error-correcting codes with unequal bit protection. Therefore, channel state information at

the sensors increases the overall performance of the distributed detection and classification

by allowing for the adaptation of the signaling schemes at individual sensors based on the

fading level of their wireless communication channels.

Although specific system assumptions must be made to analyze WSNs with fading chan-

nels, several universal guidelines can be derived from their analyses. For example, it can be

shown that the overall performance of the detection and classification system is optimized

when the system uses as many independent sensors as possible, giving each sensor a minimal

amount of system resources [51]. Furthermore, it can be observed that analog local process-

ing schemes in which sensors transmit an amplified version of their local noisy observations

to the FC perform better at low observation SNRs. However, digital local processing schemes

in which sensors send a quantized version of their local noisy observations to the FC exhibit

a superior performance above a certain threshold on the observation SNR [51].

2.2.6 Correlated Local Observations

When sensors in a WSN are densely packed in a finite area, their observations are likely to be

correlated. Therefore, the results derived based on the popular assumption of conditionally

independent local observations at the sensors do not necessarily hold. Different approaches

have been employed to study the problem of distributed detection and classification under

the assumption of correlated observations at sensors [58,59]. In [60], the binary quantization

of a pair of dependent Gaussian random variables is analyzed. The results of this analysis

indicate that even in this simple setting, an optimal detector may exhibit very complicated

behavior. In [61], the structure of an optimal fusion rule is analyzed for a more general

scenario of multiple binary sensors that observe conditionally dependent random variables.

The structure of an optimal detector of weak signals from dependent observations is in-

vestigated in [46] by Blum and Kassam. They have also considered distributed detection
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from dependent observations under a constant false-alarm rate in [62]. An adaptive fusion

algorithm is proposed in [63] for an environment in which the observations and local deci-

sions are dependent from one sensor to another. Blum [64] has presented a discussion on

locally optimal detectors for correlated observations based on ranks. The numerical results

contained in this work suggest that distributed detection schemes based on ranks and signs

are less sensitive to the exact noise statistics compared to optimal schemes based directly

on local observations. The theory of large deviations can also be employed to assess the

performance of WSNs with correlated observations [65,66].

Generally speaking, it can be noted that the correlation between local observations de-

grades the overall performance of the distributed detection and classification systems. It is

interesting to note that the performance of the system with correlated observations improves

with an increase in the sensor density. Note that in general, there are situations in which

the performance does not necessarily improve with an increase in the sensor density. For

example, in a scenario in which sensors try to detect the presence of a stochastic signal in

Gaussian noise, the performance improves with sensor density only up to a certain point.

Beyond this threshold, the performance starts to decay [65].

2.3 Related Works to Distributed M-ary Hypothesis-

Testing Problem

The problem of testing M hypotheses using sensory data in WSNs has been investigated

in some capacity (for instance, see [67]). In general, decisions made by the sensors in this

case are sent to the FC using at least dlog2Me information bits, where M is the number

of hypotheses to be classified. However, two main constraints of WSNs make this approach

undesirable: First, the processing power of the sensors is limited. Therefore, they may not

be able to distinguish between different hypotheses. Second, the bandwidth and energy

resources of WSNs are limited. Therefore, it is desired to send the sensor decisions to the

FC with as few bits as possible. These requirements motivated us to design a distributed

M -ary classification WSN in which the sensors make binary (rather than M -ary) decisions
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and send them to the FC. The FC uses the local decisions collectively and makes a global

inference about the underlying hypothesis based on the known influence fields of different

hypotheses.

Few recent studies in the literature have investigated distributedM -ary hypothesis testing

in WSNs using local binary decisions. In [68], a fault-tolerant distributed multi-hypothesis

classification fusion approach is proposed based on binary error-correcting codes. In this

approach, an error-correcting code matrix is designed in which each row forms a codeword

that corresponds to one of the M hypotheses to be classified. Moreover, each column of

the code matrix corresponds to the binary decision rule of a sensor. When sensor i detects

hypothesis θj, it sends the binary element in the jth row and ith column of the code ma-

trix to the FC through an orthogonal channel. The FC makes a final M -ary decision on

the underlying hypothesis based on the received local binary decisions using the decoding

criterion of minimum Hamming distance, where the Hamming distance between two binary

vectors is defined as the number of distinct positions between the vectors. The performance

of this multi-hypothesis classification WSN depends on the minimum Hamming distance of

the designed binary code matrix. Note that in the classification algorithm proposed by [68],

sensors still need to make an M -ary classification. Having made that classification, each

sensor sends a binary decision to the FC. Therefore, this approach addresses the constraints

of WSNs related to limited bandwidth and energy resources. However, it does not alleviate

the requirement of high processing capability at local sensors.

The approach proposed in [68] does not consider the impact of fading channels between

distributed sensors and the FC. In fact, this approach has assumed that the communication

channels are binary symmetric channels. This weakness has been addressed in [69], which

has a similar problem statement with a different decoding rule that is robust to flat-fading

channels with phase coherent reception at the FC. Another proposed enhancement in [69]

compared to [68] is that it allows the sensors to send multi-level D-ary (rather than binary)

decisions to the FC, if needed, while the FC still uses a fixed binary code matrix for all

values of D. The FC in this architecture uses a soft-decision decoding rule to measure the

distance between a received multi-level local decision vector and a codeword in the given

binary code matrix. It is shown in [69] that when more bits of local decision information
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are sent to the FC, the classification performance can be improved while the total energy

consumed by each sensor is fixed. In [70], the ideas presented in [69] for a binary code matrix

are extended by using a D-ary code matrix with D > 2, when log2D bits of local decision

information are used at the FC. In [71], the approach presented in [69] is further refined

in a multiple-observation scenario while the sensor complexity is kept low. In this three-

dimensional M -ary coded classification scheme, each sensor makes D (rather than one)

independent observations and then sends D bits to the FC as the result of its local decisions

for D observations, i.e., one bit for each observation rather than D bits for one observation

as in [69]. Each hypothesis is, therefore, represented by a two-dimensional codeword, and

the binary code matrix becomes three dimensional.

In [72], the problem of M -ary hypothesis classification in WSNs using local binary de-

cisions is solved through modeling each sensor by a set of M transition probabilities that

specify the probability that the sensor sends a binary message to the FC for different under-

lying hypotheses. Moreover, the FC is modeled by a set of M conditional misclassification

probabilities, given any hypothesis. The authors of [72] have developed conditions for which

the average probability of misclassification at the FC asymptotically goes to zero as the num-

ber of sensors goes to infinity. Moreover, they have used a genetic-algorithm-based approach

to find the optimal local decision thresholds.

Zhang and Varshney [73] have considered the fusion of binary tree classifiers in a multi-

hypothesis classification WSN. Binary decision trees make a sequence of binary decisions in

a hierarchical manner, are easy to design, and are very efficient. In [73], this hierarchical

tree structure is used to break the complex M -ary hypothesis-testing problem into a set of

much simpler problems of binary decision fusion. Each sensor uses a binary decision tree to

make its decision and sends it to the FC through an ideal communication channel. The FC

combines the local decisions to make the global inference about the underlying hypothesis.

Since each set of the received local decisions corresponds to a unique path from the root node

to a terminal node of the binary decision tree, it can be encoded as a sequence of binary

decisions made by all the sensors in the corresponding path. Detailed analysis of designing

the binary decision trees for the sensors and for the FC, designing the decision rules at the

internal nodes of the binary decision trees at the sensors, designing the optimal fusion rule,
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and designing the system topology including communication structure of the WSN has been

presented in [73].

In all of the aforementioned references, the conditional observations at different sensors,

given any underlying hypothesis, are assumed to be independent. In [74], the problem of dis-

tributed Bayesian detection in WSNs with M hypotheses is considered, when sensors make

conditionally dependent observations. Each sensor is modeled as a quantizer that makes a

D-ary decision based on its observation and sends it to a FC through an ideal communication

channel. The FC makes a decision on the actual hypothesis based on the local decisions it re-

ceives from spatially distributed sensors so that the average probability of misclassification is

minimized. It is shown that due to the conditional dependence between sensor observations,

the threshold-based decision rules (or likelihood ratios) at sensors are no longer optimal.

The same problem has been considered in a more general form in [75] with conditionally

correlated observations, given any underlying hypothesis, perfect communication channels

between local sensors and the FC, and D-ary local decisions. The PBPO algorithm has been

used to optimize the decision rules of local sensors and the FC, iteratively.

In some applications involving distributed M -ary hypothesis testing in WSNs, local

knowledge of sensors may not be sufficient for making an M -ary decision, or it may be

very costly to have sensors capable of doing such a classification. As an example, consider a

surveillance system consisting of a densely deployed WSN whose ultimate goal is to detect

and classify an intruder, which can be an person carrying a magnetic object, a motorcycle,

or a vehicle. Suppose that the sensors are simple magnetometers that can only measure the

strength of a magnetic field in their limited surrounding region. Since all three hypotheses

may have the same magnetic field at a sensor location, the sensors may not be able to dis-

tinguish between these hypotheses based only on their local observations. In other words,

they can only detect the absence or existence of a magnetic field in their surrounding, i.e., a

local binary hypothesis problem. On the other hand, if the FC has access to local binary

decisions made at all of the distributed sensors, it can make a global inference about the

underlying hypothesis based on, for example, the number of sensors that have detected a

magnetic field of one of the three hypotheses. More precisely, the number (and possibly

location) of sensors that detect the presence of the magnetic field of an object determines
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Figure 2.1: System model of the proposed multi-hypothesis classification system.

the coverage area of the object’s influence field. This intuition motivated our work to de-

sign a distributed multi-hypothesis classification strategy for WSNs that uses local binary

inferences to make its final optimal decision based on the knowledge of the influence fields

of different underlying hypotheses.

Bapat et al. [76] have previously used the idea of influence fields for classification of objects

in a large-scale WSN. The objective of [76] was to obtain requirements on the density of the

underlying WSN to ensure accurate classification in the presence of false decisions at sensors,

channel fading, and channel contention. However, our objective in this chapter is to obtain

conditions on the decision thresholds at both local sensors and the FC for a given density of

sensor deployment in order to maximize the classification accuracy at the FC.

2.4 System Model

Consider a WSN deployed as a parallel distributed classification system as shown in Fig-

ure 2.1. As described in Section 1.1, the system is formed by a FC and K sensors spatially

distributed in an environment with area S. There are M independent and mutually exclusive

hypotheses θ0, θ1, . . . , and θM−1, M ≥ 2, with the following known prior probabilities:

pj
def
= P [θ = θj] , j = 0, 1, . . . ,M − 1,
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where θ is a discrete random variable representing the underlying hypothesis. Note that θ0

is the null or rejection hypothesis, and its existence means that none of the other M − 1 hy-

potheses has occurred. Each non-null hypothesis is associated with a known influence field

defined as the spatial region in its surrounding in which it can be sensed using some sensing

modality [27]. As an example, suppose that the sensors are simple magnetometers and that

the non-null hypotheses define the presence of a motorcycle or a vehicle. The regions in

which the motorcycle or a vehicle can be sensed by the magnetometers are called their influ-

ence fields. The influence field of hypothesis θj is denoted by Aj, j = 1, 2, . . . ,M − 1. It is

assumed that the entire influence field of the underlying hypothesis is inside the observation

area S. If the sensors are distributed uniformly within the observation area, the average num-

ber of sensors that can be placed in the influence field of hypothesis θj will be Kj
def
= bAj

S
Kc,

where b·c denotes the floor operation. Throughout this chapter, we assume that the center

of the influence field of the underlying hypothesis is known or has reliably been estimated.3

Assuming that the center of the underlying influence field is known, the set of hypotheses

is divided into two disjoint subsets for each sensor i: the set of hypotheses that sensor i

cannot be inside their influence fields, denoted by C0
i , and the set of hypotheses that sensor i

can be inside their influence fields, denoted by C1
i . On the other hand, assuming uniform

sensor distribution within the observation environment, for each underlying hypothesis θj,

on average there are Kj sensors that can be inside its influence field and K − Kj sensors

that cannot.

Let r
def
= [r1, r2, . . . , rK ]T be the vector of sensor observations. It is assumed that the

conditional observations of different sensors, given any specific underlying hypothesis, are

independent. In other words,

fR|θj(r|θj) =
K∏
i=1

fri|θj(ri|θj), j = 0, 1, . . . ,M − 1, (2.1)

where fR|θj(r|θj) denotes the conditional probability density function (pdf) of random vari-

able R, given hypothesis θj. Given an underlying hypothesis θj, assume that each sensor i

observes only noise if it cannot be inside the influence field characterizing hypothesis θj

3For more information on distributed estimation in WSNs, an interested reader is referred to the next
chapters, [77], and references therein.
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(i.e., θj ∈ C0
i ) and a noisy version of a constant intensity or strength of the influence field if

it can be inside the influence field characterizing hypothesis θj (i.e., θj ∈ C1
i ). Therefore, the

conditional observation function Ξi (·) in Equation (1.1) is defined as

Ξi (θj)
def
=

 0, if θj ∈ C0
i

ϑ, if θj ∈ C1
i

i = 1, 2, . . . , K and j = 0, 1, . . . ,M − 1,

and the conditional noisy observation at the ith sensor, given any hypothesis θj, is found as

ri|θj =

wi, if θj ∈ C0
i

ϑ+ wi, if θj ∈ C1
i

i = 1, 2, . . . , K and j = 0, 1, . . . ,M − 1, (2.2)

where ϑ is the constant intensity or strength of the influence field of any non-null hypothesis

that can be sensed by sensors inside its influence field. Note that irrespective of the under-

lying hypothesis, the sensors observe the same constant intensity and cannot differentiate

between different hypotheses that can create such an influence field. In other words, this

model implies that the strength of the influence field of all non-null hypotheses is assumed to

be the same and constant over the entire influence field. This assumption makes our analysis

tractable. Furthermore, it is valid in a lot of applications such as the one mentioned at the

beginning of this section.

Each sensor makes a binary decision based on its sensory data. To be specific, assume

that the local decision of any sensor ui is made based on a local binary decision rule as

ui = γi(ri) =

 0, if ri < βi

1, if ri > βi
, (2.3)

where βi is the optimal local decision threshold for sensor i. Note that this decision rule might

not be the optimal local decision rule for our distributed classification system. However, it is

very simple and allows us to achieve an acceptable performance in terms of the probability

of correct classification at the FC without requiring the sensors to be able to distinguish

between different hypotheses. In other words, the sensors are able to distinguish only the

occurrence or not occurrence of any of the M − 1 non-null hypotheses, and it is the FC

that makes the final M -ary decision based on the accumulated local binary decisions. This

local decision rule has two main advantages in satisfying the stringent processing capability
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and bandwidth limitations of WSNs. The first advantage is that the sensors do not need to

differentiate between M−1 non-null hypotheses and hence, their required local processing is

very limited. The second advantage is that the transmission of the local decisions to the FC

can be done using a binary scheme and hence, the bandwidth required for this communication

is limited.

Let u
def
= [u1, u2, . . . , uK ]T be the vector of binary decisions made by the sensors. The

model of the communication channels between local sensors and the FC is a special case of

the one introduced in Subsection 1.1.3, where an AWGN channel is considered with a unit

channel gain, i.e., hi ≡ 1. Therefore, each entry of the vector of the received signals from

the sensors at the FC (i.e., z
def
= [z1, z2, . . . , zK ]T ) can be found as

zi = ui + ni, i = 1, 2, . . . , K, (2.4)

where ni is spatially independent and identically distributed, zero-mean additive white Gaus-

sian noise with known variance τ 2, i.e., ni ∼ N (0, τ 2), i = 1, 2, . . . , K. Note that unlike the

channel model introduced in Subsection 1.1.3, the channel noise in this chapter is assumed

to be identically distributed across sensors.

The FC has to make the final M -ary decision u0 about the underlying hypothesis by

using noisy versions of the local binary decisions received from spatially distributed sensors.

In other words,

u0 = γ0(z) ∈ {0, 1, . . . ,M − 1} ,

where γ0(·) is a multi-variate function. In the next section, we propose a simple yet powerful

decision rule at the FC and analyze the performance of the proposed M -ary classification

system.

2.5 Derivation of the Optimal Fusion Rule

Suppose that the receiver at the FC is designed to add all of the received signals from the

sensors (i.e., zi) and to form a decision metric (or test statistic) as χ
def
=

K∑
i=1

zi based on which

the final M -ary decision is made. Note that the final decision metric is sought in the form of

a linear combination of local noisy decisions. Other more complicated decision metrics can
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be considered, but the linear form has the advantages of being simple and computationally

efficient. It can be observed that χ is an appropriate yet simple decision metric, which

captures differences in the influence fields of different hypotheses. In other words, it is

intuitive to assume that χ tends to have a large value if the influence field of the underlying

hypothesis is large. This conclusion is based on the fact that when the underlying influence

field is large, more sensors can be located inside it and therefore, more sensors make ui = 1

as their decisions. If the areas of the influence fields characterizing different hypotheses

are distinct enough and if appropriate thresholds are found for the values of χ associated

with different hypotheses, the system can achieve an acceptable performance in terms of the

probability of correct classification at the FC.

Let Λ
def
= {λ1, λ2, . . . , λM−1} be the set of decision thresholds based on which the FC

classifies the underlying hypothesis using χ as its decision metric. In other words, assume

that the decision rule at the FC is

u0 = j if and only if λj ≤ χ < λj+1, j = 0, 1, . . . ,M − 1, (2.5)

where λ0 = −∞ and λM =∞. The optimal values for this set of decision thresholds at the

FC are derived in this section so that the maximum probability of correct classification at

the FC can be achieved. Moreover, the effect of channel-aware global optimization of the

set of sensors’ binary decision thresholds {βi}Ki=1 on the probability of correct classification

at the FC is examined.

Based on Equation (2.2) as the model for the conditional local noisy observation of

sensor i (i.e., ri) and Equation (2.3) as the sensor’s local binary decision rule, it can be

shown that the conditional pdf of the ith sensor’s decision ui, given hypothesis θj, is

fUi|θj (ui|θj) =

Q
(
−βi
σi

)
δ [ui] +Q

(
βi
σi

)
δ [ui − 1] , if θj ∈ C0

i i = 1, 2, . . . , K

Q
(
−βi−ϑ

σi

)
δ [ui] +Q

(
βi−ϑ
σi

)
δ [ui − 1] , if θj ∈ C1

i j = 0, 1, . . . ,M − 1

(2.6)

where δ [·] is the discrete Dirac delta function, Q(·) is the complementary distribution func-

tion of the standard Gaussian random variable defined as

Q(x)
def
=

1√
2π

∫ ∞
x

e−
t2

2 dt,
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and Q(−x) ≡ 1−Q(x).

From Equation (2.4), it can be seen that given any decision at sensor i (i.e., ui), the

corresponding received signal at the FC zi has a Gaussian distribution with mean ui and

variance τ 2, i.e., zi|ui ∼ N (ui, τ
2), i = 1, 2, . . . , K. Therefore, the conditional pdf of the

received signal at the FC, given the corresponding decision at the sensor, is given by

fZi|Ui (zi|ui) =
1√
2πτ 2

e
− (zi−ui)

2

2τ2 , i = 1, 2, . . . , K. (2.7)

Since K parallel communication channels are spatially independent, the received signals from

different sensors at the FC (i.e., {zi}Ki=1) are also independent.

The conditional pdf of zi, i = 1, 2, . . . , K, given hypothesis θj, j = 0, 1, . . . ,M − 1, is

found as

fZi|θj (zi|θj) =

∫ ∞
−∞

fZi|Ui (zi|ui)× fUi|θj (ui|θj) dui. (2.8)

Substituting fUi|θj (ui|θj) and fZi|Ui (zi|ui) from Equations (2.6) and (2.7) into Equation (2.8)

results in

fZi|θj (zi|θj) =


1√
2πτ2

(
e
− z2i

2τ2Q
(
−βi
σi

)
+ e

− (zi−1)2

2τ2 Q
(
βi
σi

))
, if θj ∈ C0

i

1√
2πτ2

(
e
− z2i

2τ2Q
(
−βi−ϑ

σi

)
+ e

− (zi−1)2

2τ2 Q
(
βi−ϑ
σi

))
, if θj ∈ C1

i

(2.9)

where the sifting property of the discrete Dirac delta function is applied. Using the conditional

pdf of the received decision from each sensor i at the FC (i.e., zi) under any underlying

hypothesis θj, its conditional moment-generating function (MGF) is evaluated as

ΦZi|θj (ν)
def
= E

[
eνZi

∣∣∣θj] =

∫ ∞
−∞
eνzifZi|θj (zi|θj) dzi = L

{
fZi|θj (zi|θj)

} ∣∣∣∣
s→−ν

, (2.10)

where E [·] and L{·} denote the expectation operation and the Laplace transform of a func-

tion, respectively. Note that at the last step, the variable of the Laplace transform s is

changed to −ν. Substituting fZi|θj (zi|θj) from Equation (2.9) into Equation (2.10) results

in the conditional MGF of zi, given the underlying hypothesis θj, as follows:

ΦZi|θj (ν) =

 e
τ2ν2

2

[
Q
(
−βi
σi

)
+Q

(
βi
σi

)
eν
]
, if θj ∈ C0

i

e
τ2ν2

2

[
Q
(
−βi−ϑ

σi

)
+Q

(
βi−ϑ
σi

)
eν
]
, if θj ∈ C1

i

(2.11)
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Using the MGF of zi, i = 1, 2, . . . , K, conditioned on hypothesis θj, j = 0, 1, . . . ,M − 1,

we can calculate the conditional MGF of the decision metric of the FC (i.e., χ
def
=

K∑
i=1

zi),

given hypothesis θj, as

Φχ|θj (ν)
def
= E

[
eν
χ
∣∣∣θj] = E

[
e
ν
K∑
i=1

Zi
∣∣∣∣θj
]

= E

[
K∏
i=1

eνZi
∣∣∣∣θj
]

(a)
=

K∏
i=1

E
[
eνZi

∣∣∣θj] =
K∏
i=1

ΦZi|θj (ν) ,

(2.12)

where (a) is due to the independence of zi’s under a given hypothesis θj.

As mentioned in Section 2.4, assuming uniform sensor distribution within the observation

environment, for any hypothesis θj, j = 0, 1, . . . ,M − 1, there are on average Kj sensors for

which θj ∈ C1
i and K −Kj sensors for which θj ∈ C0

i . Therefore, substituting ΦZi|θj (ν) from

Equation (2.11) into Equation (2.12), the conditional MGF of the decision metric of the FC,

given hypothesis θj, can be written as

Φχ|θj (ν) = exp

(
Kτ 2ν2

2

) Kj∏
i=1

Q

(
−βi − ϑ

σi

)
+Q

(
βi − ϑ
σi

)
eν


×

 K∏
i=Kj+1

Q

(
−βi
σi

)
+Q

(
βi
σi

)
eν

 , (2.13)

where it is assumed that the sensors are ordered appropriately so that the first Kj sensors

are inside the influence field characterizing hypothesis θj and the rest of them are outside of

it. Note that Φχ|θj (ν) can be simplified using algebraic manipulations to the final form of

Φχ|θj (ν) = exp

(
Kτ 2ν2

2

) K∑
`=0

a` exp (`ν), (2.14)

where a`, ` = 0, 1, . . . , K is the coefficient of the `th term in the above summation that can

be expressed as a function of appropriate subsets of Q
(
βi−ϑ
σi

)
, i = 1, 2, . . . , Kj and Q

(
βi
σi

)
,

i = Kj + 1, Kj + 2, . . . , K.

Based on the result of Equation (2.10), the conditional pdf of the decision metric of the

FC χ, given hypothesis θj, is calculated from its MGF as

fχ|θj (χ|θj) = L−1
{

Φχ|θj (−s)
}
, j = 0, 1, . . . ,M − 1, (2.15)
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where L−1{·} denotes the inverse Laplace transform of a function. Substituting Φχ|θj (ν) from

Equation (2.14) into Equation (2.15) results in the conditional pdf of the decision metric of

the FC, given hypothesis θj, as follows:

fχ|θj (χ|θj) =
1√

2πKτ 2

K∑
`=0

a` exp

[
−(χ− `)2

2Kτ 2

]
. (2.16)

Based on the results of Bayesian decision theory, the minimum error probability deci-

sion rule for the M -ary classification of the underlying hypothesis using the decision metric

of the FC χ is

θ̂j = arg max
j∈{0,1,...,M−1}

fθj |χ (θj|χ)

= arg max
j∈{0,1,...,M−1}

pjfχ|θj (χ|θj) .
(2.17)

Therefore, substituting fχ|θj (χ|θj) from Equation (2.16) into Equation (2.17) results in the

minimum error probability decision rule at the FC, which achieves the maximum probability

of correct classification. Moreover, the optimal decision thresholds at the FC (i.e., Λ
def
=

{λ1, λ2, . . . , λM−1}) can be found as the intersection of different conditional a posteriori pdfs

fθj |χ (θj|χ), j = 0, 1, . . . ,M − 1. The FC will then classify the underlying hypothesis based

on its decision rule summarized in Equation (2.5) by using its decision metric χ
def
=

K∑
i=1

zi.

It can be seen from Equation (2.13) that the coefficients a`, ` = 0, 1, . . . , K in fχ|θj (χ|θj)

are functions of the local binary decision thresholds βi, i = 1, 2, . . . , K. Based on Bayesian

decision theory, the locally optimal decision rule of sensor i for a binary decision making on

whether or not a non-null hypothesis has occurred is in the following form:

P
[
θj ∈ C1

i |ri
] ui=1

≷
ui=0

P
[
θj ∈ C0

i |ri
]
, (2.18)

which can be rewritten as

fRi|{θj∈C1i } (ri|θj ∈ C1
i )

fRi|{θj∈C0i } (ri|θj ∈ C0
i )

ui=1

≷
ui=0

P [θj ∈ C0
i ]

P [θj ∈ C1
i ]
. (2.19)

Considering the conditional observation model of sensor i, given hypothesis θj, defined in

Equation (2.2), locally optimal decision rule of sensor i derived in Equation (2.19) can be
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written as
exp

(
− (ri−ϑ)2

2σ2
i

)
exp

(
− r2i

2σ2
i

) ui=1

≷
ui=0

P [θj ∈ C0
i ]

P [θj ∈ C1
i ]
,

which can be simplified to the following form:

ri
ui=1

≷
ui=0

ϑ

2
+
σ2
i

ϑ
ln

(
P [θj ∈ C0

i ]

P [θj ∈ C1
i ]

)
. (2.20)

If we compare the above local decision rule with the one defined in Equation (2.3), the locally

optimal binary decision threshold of sensor i can be defined as

βi,Local =
ϑ

2
+
σ2
i

ϑ
ln

(
P [θj ∈ C0

i ]

P [θj ∈ C1
i ]

)
. (2.21)

It can be observed from Equation (2.21) that βi,Local depends only on the constant intensity

of the influence field of any non-null hypothesis ϑ and the variance of the additive observa-

tion noise σ2
i . However, this decision threshold might not result in the globally optimized

probability of correct classification at the FC. In this work, our goal is to find the globally

optimal local decision thresholds that result in the maximum probability of correct classi-

fication at the FC. It should be noted that these globally optimal local decision thresholds

depend on the variances of both observation noise and channel noise (i.e., σ2
i and τ 2). In

the next section, we present the results of our analysis using a numerical scenario and dis-

cuss the effects of such a global optimization of the local binary decision thresholds on the

performance of the M -ary classification system compared to their local optimization.

2.6 Numerical Analysis

In this section, the performance of the proposed channel-aware multi-hypothesis classification

architecture is evaluated for a typical numerical scenario. First, the parameters of the WSN

under analysis are specified. Then, the effects of the observation SNR and channel SNR on

the performance of the classification system are investigated. Moreover, the performance

enhancement that can be achieved by optimizing sensors’ decision thresholds globally rather

than locally is discussed. Finally, the effects of the number of distributed sensors on the

performance of the proposed classification system are evaluated.
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Figure 2.2: An example network setup used in the numerical analysis. K = 15 sensors are

distributed over an area with size S = 15. The sizes of the influence fields characterizing

the non-null hypotheses are A1 = 5 (shown by a dotted-line ellipse) and A2 = 15 (shown by

a solid-line rectangle). Assuming uniform distribution of the sensors within the observation

environment, K1 = 5 and K2 = 15 are the average number of sensors that can be in

the influence field of θ1 and θ2, respectively. The first K1 = 5 sensors can be inside the

influence field of either of the non-null hypotheses. The other K −K1 = 10 sensors can only

be inside the influence field of hypothesis θ2.

2.6.1 Network Setup

Figure 2.2 shows a typical WSN formed by K = 15 sensors distributed over an area with

size S = 15 that is used to analyze the performance of the proposed multi-hypothesis clas-

sification system. The goal is to classify an underlying hypothesis using the distributed

observed data generated by M = 3 hypotheses, θ0, θ1, and θ2, with known prior probabilities

p0
def
= P[θ = θ0] = 0.6, p1

def
= P[θ = θ1] = 0.3, and p2

def
= P[θ = θ2] = 0.1. The influence fields

of the non-null hypotheses are of size A1 = 5 and A2 = 15. Therefore, assuming uniform

distribution of the sensors within the observation environment, K1 = 5 and K2 = 15 are

the average number of sensors that can be in the influence field of θ1 and θ2, respectively.

Assume that ϑ = 1 is the normalized strength of the observable influence field of non-null

hypotheses. Without loss of generality, suppose that the observation noises are identically

distributed across sensors, i.e., σ2 def
= σ2

i , i = 1, 2, . . . , K.

Since there are two non-null hypotheses θ1 and θ2 in this example, the sensors are divided

into two disjoint groups. The first group is composed of K1 = 5 sensors that can be inside
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Figure 2.3: Optimized average probability of correct classification at the FC versus observa-

tion SNR (ψ) for different values of channel SNR (η). There are K = 15 sensors randomly

distributed in the observation environment. The local decision thresholds are optimized

either globally (solid lines) or locally (dotted lines).

the influence field of either of the non-null hypotheses. The second group is formed by the

other K −K1 = 10 sensors that can only be inside the influence field of hypothesis θ2. It is

intuitive to assume that the decision thresholds of the sensors in each one of these two groups

are the same. Therefore, the set of local decision thresholds is composed of 15 elements each

one of them is associated with one sensor. The first five elements of this set are all equal.

Similarly, the last ten elements of this set are all equal. In the rest of this section, we refer

to these two local decision thresholds as β1 and β2, respectively.

2.6.2 Effects of Observation and Channel SNR on Classification

Performance

The average optimized probability of correct classification at the FC, denoted by Pc, versus

observation SNR (ψ) is shown in Figure 2.3 for different values of channel SNR (η). The
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observation and channel SNRs are defined as

ψ
def
=

1

2σ2
and η

def
=

1

2τ 2
,

where σ2 and τ 2 are variances of the observation noise and channel noise, respectively.

Figure 2.4 shows the optimized average probability of correct classification at the FC versus

channel SNR for different values of observation SNR. SNR values are given in dB. Solid lines

show Pc when the local decision thresholds are optimized globally through an exhaustive

search over all possible local threshold values between zero and two with step size 0.05.

Dotted lines show Pc when the local decision thresholds are optimized locally and derived

based on Equation (2.21). For the WSN under consideration, β1,Local and β2,Local can be

written as

β1,Local =
1

2
+ σ2 ln

(
p0

p1 + p2

)
β2,Local =

1

2
+ σ2 ln

(
p0 + p1

p2

)
.

(2.22)

As it can be seen from Figures 2.3 and 2.4, the average probability of correct classification

approaches one as SNR increases. Moreover, under all SNR regimes, channel-aware classifi-

cation system, which is based on the globally optimal local decision thresholds, outperforms

conventional classification system, which is based on locally optimal local decision thresholds.

This crucial point is further demonstrated in detail in Table 2.1. In this table, the values of

local decision thresholds derived from both local optimization and global optimization are

shown in different columns. Moreover, the corresponding optimized average probability of

correct classification at the FC is shown for each case. When the observation SNR ψ is fixed,

the locally optimal decision thresholds are also fixed based on Equation (2.22). However,

globally optimal decision thresholds change with both observation SNR ψ and channel SNR η.

In the last column of the Table 2.1, the percentage improvement in the average probability

of correct classification at the FC due to the global optimization of decision thresholds is

shown. Note that as SNR increases, the achievable percentage improvement decreases. In

other words, global optimization of decision thresholds does not improve the average prob-

ability of correct classification at high SNRs. A justification for this conclusion is that for
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Figure 2.4: Optimized average probability of correct classification at the FC versus chan-

nel SNR (η) for different values of observation SNR (ψ). There are K = 15 sensors randomly

distributed in the observation environment. The local decision thresholds are optimized ei-

ther globally (solid lines) or locally (dotted lines).

high SNRs, the probability of correct classification at the FC is very high (near one) by itself

and cannot be increased further.

2.6.3 Effect of the Number of Sensors K on Classification Perfor-

mance

The performance of the proposed multi-hypothesis classification system is a function of the

number of distributed sensors in the observation environment. In Figure 2.5, the optimized

average probability of correct classification at the FC Pc is shown versus the number of

distributed sensors in the observation environment K for different values of the observation

and channel SNRs. Solid lines are used to indicate that the local decision thresholds are

optimized globally through an exhaustive search over all possible threshold values between

zero and two with step size 0.05. Dotted lines show Pc when the local decision thresholds

are optimized locally and derived based on Equation (2.22). As it can be seen in Figure 2.5,



Mohammad Fanaei Chapter 2. Distributed Classification Using Binary Local Decisions 42

Table 2.1: Performance improvement due to globally optimizing local decision thresholds.

ψ η
β

def
= {β1, β2} Pc Percentage

Improvement
Local Global Local Global

0

0

{0.70, 1.6}

{0.55, 0.65} 0.647 0.672 3.82%

5 {0.55, 0.75} 0.719 0.740 2.92%

10 {0.5, 1.15} 0.787 0.803 1.97%

15 {0.4, 1.3} 0.824 0.837 1.59%

5

0

{0.56, 0.85}

{0.5, 0.6} 0.757 0.767 1.33%

5 {0.5, 0.8} 0.876 0.878 0.27%

10 {0.5, 0.9} 0.949 0.951 0.16%

15 {0.5, 0.85} 0.972 0.973 0.11%

10

0

{0.52, 0.61}

{0.5, 0.55} 0.831 0.832 0.06%

5 {0.5, 0.65} 0.948 0.949 0.03%

10 {0.5, 0.75} 0.995 0.996 0.06%

15 {0.5, 0.8} 0.9996 0.9997 0.02%

15

0

{0.51, 0.54}

{0.5, 0.5} 0.840 0.841 ' 0%

5 {0.5, 0.55} 0.955 0.956 ' 0%

10 {0.5, 0.65} 0.997 0.998 ' 0%

15 {0.5, 0.7} 0.999 0.999 ' 0%

as the number of the sensors increases, the optimized average probability of correct classifi-

cation at the FC also increases. Furthermore, our classification system shows an acceptable

performance in terms of the average probability of correct classification for moderate number

of sensors. Notice that since the proposed classification system works based on the num-

ber of sensors that are in the influence field of each hypothesis, if the number of sensors is

very small, the number of sensors that can be in the influence field of different hypotheses

is almost the same. Therefore, the value of the conditional decision metric under different

hypotheses is not distinct enough for the FC to be able to distinguish between them. This

problem is more important for low-SNR regimes.
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Figure 2.5: Optimized average probability of correct classification at the FC versus the

number of distributed sensors in the observation environment (K) for different values of the

observation and channel SNRs. The local decision thresholds are optimized either globally

(solid lines) or locally (dotted lines).

2.7 Conclusions

In this chapter, we had an extensive literature review on the distributed detection and

classification in WSNs and summarized the results of major research accomplishments in

this area up to date. In particular, we specified major results in the fields of both binary

and M -ary distributed classification in WSNs and identified major solutions and challenges

for each class of problems. Furthermore, we designed a method to optimize the performance

of a distributed WSN deployed as a multi-hypothesis classification system. The sensors

employ a simple binary decision rule and make decisions based on their noisy observations.

These binary decisions are sent to the FC through parallel AWGN channels. The FC then

forms a decision metric as the linear combination of these local noisy decisions, which will be

used to perform a global multi-hypothesis classification based on the known influence fields

of different hypotheses. Fusion decision rule was formulated and numerical performance

analysis of an example WSN was presented to investigate the effects of the observation and
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channel SNR, and the number of distributed sensors, on the classification performance. The

results of numerical analyses showed that the proposed approach simplifies decision making

at the sensors while achieving an acceptable performance in terms of the global average

probability of correct classification at the FC. Furthermore, it was shown that a global

optimization of the local decision thresholds improves the probability of correct classification

at the FC compared to the case in which local thresholds are only locally optimized.
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Chapter 3

Distributed Parameter Estimation

Using Non-Linear Observations

3.1 Introduction

In this chapter, we investigate the problem of estimating a vector of unknown parameters

associated with a deterministic function at the fusion center of a wireless sensor network,

based on the noisy samples of the function. The samples are observed by spatially dis-

tributed sensors, processed locally by each sensor, and communicated to the fusion center

(FC) through parallel channels corrupted by coherent fading and additive white Gaussian

noise. Examples of the parameters to be estimated include attributes associated with the

underlying function such as its height, center, variances in different directions, or the weights

of its components over a predefined basis set.

Each sensor processes its local noisy observations. In our analyses, two local processing

schemes, namely analog and digital, will be considered. In the analog local processing scheme,

each sensor acts as a pure relay and transmits an amplified version of its raw analog noisy

observations to the FC. In the digital local processing method, each sensor quantizes its local

noisy observations and sends the quantized samples to the FC using a digital modulation

format. The FC combines all of the received locally processed observations and estimates

the vector of unknown parameters. A major application of this work is in cases where the

estimated parameters are then used in detection, classification, localization, and tracking
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of the underlying object that has created the observed influence-field intensity function.

The main contribution of this chapter is a generalized formulation of distributed parameter

estimation in the context of wireless sensor networks (WSNs), where local observations are

not (necessarily) linearly dependent on the underlying parameters to be estimated and no

specific observation model has been considered in the analyses.

The rest of this chapter is organized as follows: In Section 3.2, we will summarize the

state of the art on the problem of field estimation and non-linear parameter estimation in

general. Section 3.3 describes the model of the distributed parallel fusion WSN that will be

considered in our analysis and defines the precise problem that we are considering in this

chapter. In Section 3.4, the maximum likelihood (ML) estimate of a vector of unknown

parameters associated with a deterministic two-dimensional function is derived for the case

of analog local processing scheme. Section 3.5 considers the same problem for the case of

digital signal-processing method. As it will be shown in this section, it is not computationally

feasible to find the ML estimate in this case. Therefore, a linearized version of the expectation

maximization (EM) algorithm will be proposed in Section 3.6 to numerically find the ML

estimate of the vector of unknown parameters in the case of digital local processing scheme.

Section 3.7 presents the numerical results of our simulations to study the performance of the

proposed distributed-estimation framework for a special two-dimensional Gaussian-shaped

function, whose associated parameters to be estimated are its height and center. The effects

of different parameters of the WSN on the performance of the proposed system will be studied

in this section. Finally, we conclude our discussions and summarize the main achievements

of this chapter in Section 3.8.

3.2 Related Works

Xiao et al. [18] have considered the linear coherent distributed mean-squared error (MSE)

estimation of an unknown vector under stringent bandwidth and power constraints, where

the local observation model, the compression function at local sensors, and the fusion rule at

the FC are all linear. As a result of the bandwidth constraint, each sensor in their proposed

framework transmits to the FC a fixed number of real-valued messages per observation.
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The power constraint in their model limits the strength of the transmitted signals. Based

on their proposed algorithm, each sensor linearly encodes its observations using a linear

amplify-and-forward coding strategy. The FC then applies a linear mapping to estimate

the unknown vector based on the received messages from local sensors through a coherent

multiple-access channel, assuming a perfect synchronization between sensors and the FC so

that the transmitted messages from local sensors are coherently combined at the FC. It is

shown in [78] that if the sensor statistics are Gaussian (i.e., the parameter to be estimated and

the independent observation noises are Gaussian) and the communication channels between

local sensors and the FC are standard Gaussian multiple-access channels, a simple uncoded

amplify-and-forward scheme in which each sensor’s channel input is merely a scaled version

of its noisy observation, drastically outperforms the separate source-channel coding approach

in the sense of mean-squared error. Therefore, the proposed distributed-estimation algorithm

in [18] performs optimally in applications that satisfy the requirements summarized in [78].

In this chapter, a general non-linear model for the distributed local observations is considered

and analyzed.

Ishvar et al. [26] have considered the problem of estimation with unreliable commu-

nication links and have derived an information-theoretic achievable rate-distortion region

characterizing the per-sample sensor bit-rate versus the estimation error. In particular, they

have considered two specific cases in their analyses: (a) The case of fully distributed estima-

tion schemes with no inter-sensor collaboration, and (b) the case of localized or collaborative

estimation schemes in which it is assumed that the network is divided into a number of clus-

ters, where collaboration is allowed among sensors within the same cluster but not across

clusters. Nowak et al. [79] have studied the tradeoffs between the estimation error and en-

ergy consumption in a WSN as functions of sensor density. They have proposed practical

in-network processing approaches based on hierarchical data handling and multi-scale par-

titioning methods for the estimation of two-dimensional inhomogeneous fields composed of

two or more homogeneous, smoothly varying regions separated by smooth boundaries.

Ribeiro and Giannakis [24] have proposed a distributed bandwidth-constrained ML-

estimation method for estimating a scaler deterministic signal in the presence of zero-mean

additive white Gaussian observation noise using only quantized versions of the original local
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observations, perfectly received at the FC. In a sequel work, they have considered more re-

alistic signal models such as known univariate but generally non-Gaussian noise probability

density functions (pdfs), known noise pdfs with a finite number of unknown parameters, com-

pletely unknown noise pdfs, and practical generalizations to vector signals and multivariate

and possibly correlated noise pdfs [25]. The observation model in this work can in general

be a non-linear function of the vector signal to be estimated, but it still ignores the effects of

imperfect wireless channels between local sensors and the FC. It is shown in these works that

transmitting a few bits (or even a single bit) per sensor can approach the performance of the

estimator based on unquantized data under realistic conditions. In this chapter, we consider

a general observation model in which local observations are not necessarily linear functions

of the vector of parameters to be estimated. Furthermore, impaired fading channels between

local sensors and the FC will be considered in the analysis.

Niu and Varshney [28] have proposed an intensity- (or energy-) based ML location-

estimation scheme to estimate the coordinates of an energy-emitting source using quantized

versions of the local noisy observations, which are assumed to be perfectly received by the

FC. They have considered an isotropic intensity-attenuation model in which the energy of

the signal is assumed to be inversely proportional to the nth exponent of the Euclidean

distance from its source. An optimal (but infeasible) as well as two heuristic practical design

methods have been proposed to find the local quantization thresholds by minimizing the

summation of the estimator variances for the target’s two coordinates. In a sequel work,

Ozdemir et al. [29] have added the effects of fading and noisy wireless communication chan-

nels between local sensors and the FC to their problem formulation and have developed

similar results. Maşazade et al. [80] have considered a similar problem in which the quan-

tized version of sensor measurements are transmitted to the FC over error-free channels.

They have proposed an iterative, energy-efficient source-localization scheme in which the

algorithm begins with a coarse location estimate obtained from measurement data of a set

of anchor sensors. Based on the accumulated information at each iteration, the posterior

pdf of the source location is approximated using an importance-sampling-based Monte-Carlo

method, which is then used to activate a number of non-anchor sensors selected to improve

the accuracy of the source-location estimate the most. Distributed compression of mea-
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surement data prior to transmission is also employed at the non-anchor sensors to further

reduce the energy consumption. It is shown that this iterative scheme reduces the commu-

nication requirements by selecting only the most informative sensors and compressing their

data prior to transmission to the FC. An iterative, non-linear, least-square received-signal-

strength-based location-estimation technique is also proposed in [81] for the joint estimation

of unknown location coordinates and distance-power gradient, which is a parameter of radio

propagation path-loss model. Salman et al. [82] have proposed a low-complexity version of

this approach. Although the illustrative case study for the numerical simulation results in

this chapter considers estimating the location of the center of a generic Gaussian function,

among its other parameters, the scope of our work is not limited to estimating only the

location. In other words, we consider a more general framework in this chapter than the

ones considered in the aforementioned works, and our analyses are not based on the signal

propagation model in the observation environment.

3.3 System Model and Problem Statement

The system model of the WSN considered in this chapter, which is depicted in Figure 3.1,

is the same as the one described in Section 1.1. It is assumed that the spatially distributed

sensors forming the WSN are located within the domain of a two-dimensional function g(x, y)

that is completely known except for a set of unknown deterministic parameters denoted by

θ
def
= [θ1, θ2, . . . , θp]

T . The ultimate goal of the underlying WSN is to reliably estimate the

vector of unknown parameters θ using distributed noisy samples of function g(x, y) provided

by local sensors to a FC through parallel, coherent fading channels.

Assume that the ith sensor observes a noisy version of the sample of function g(x, y) at

its location. Therefore, the observation function Ξi (·) in Equation (1.1) is defined as

Ξi (θ)
def
= g(xi, yi),

and the local noisy observation at the ith sensor is found as

ri = g(xi, yi) + wi, i = 1, 2, . . . , K, (3.1)
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Figure 3.1: System model of a typical WSN for distributed estimation of a vector parame-

ter θ.

where (xi, yi) is the location of the ith sensor in the network, and gi
def
= g(xi, yi) is the sample

of function g(x, y) at location (xi, yi). Sensors can be placed on a uniform lattice or can

be distributed at random over the observation area covered by the WSN. Throughout the

discussions in this chapter, we assume that the locations of distributed sensors are known at

the FC.

In this chapter, we consider both analog and digital local processing schemes described in

Subsection 1.1.2. We will formulate detailed analysis of the local analog-processing scheme

in Section 3.4 and that of the local digital-processing scheme in Sections 3.5 and 3.6. The

model of the communication channels between local sensors and the FC is the same as the

one introduced in Subsection 1.1.3. It is assumed that the channel fading coefficients are

spatially uncorrelated and completely known at the FC.

The FC combines the vector of locally processed observations, communicated through

orthogonal channels by distributed sensors (i.e., z
def
= [z1, z2, . . . , zK ]T ) to estimate the vector

of unknown deterministic parameters θ. In the following three sections, we will formulate

the ML estimation of θ at the FC for the two cases of analog and digital local processing

schemes and the EM algorithm to numerically find the ML estimate of θ at the FC for the

digital local processing scheme.
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3.4 ML Estimation of θ with Analog Local Processing

Suppose that the local processing rule at each sensor is the same as the one introduced in

Equation (1.2), where the local amplification gain αi is assumed to be known at the FC.

Note that in this work, we do not try to optimize the local amplification gains as considered

by Banavar et al. [19] for the problem of distributed estimation of a scalar, random signal.

The received signal from sensor i at the FC can then be represented as

zi = hiαiri + ni = hiαigi + hiαiwi + ni, i = 1, 2, . . . , K. (3.2)

Assuming complete knowledge of the local amplification gain αi and channel fading coef-

ficient hi, the FC makes a linear transformation on the received signal from each sensor to

find

z′i = (hiαi)
−1 zi

= gi + wi + (hiαi)
−1 ni i = 1, 2, . . . , K,

= gi + vi

(3.3)

where the cumulative noise is defined as vi
def
= wi+

1
hiαi

ni, which is a zero-mean white Gaussian

random variable with variance ξ2
i

def
= σ2

i +
τ2i
|hiαi|2

. The estimation process at the FC can then

be performed based on the vector of transformed variables z′
def
= [z′1, z

′
2, . . . , z

′
K ]T .

The probability density function of the linearly processed received vector of local obser-

vations from distributed sensors at the FC is given by

fz′ (z
′ : θ) =

1√
(2π)K det Σ

exp

(
−1

2
(z′ − g)

T
Σ−1 (z′ − g)

)
, (3.4)

where Σ
def
= diag (ξ2

1 , ξ
2
2 , . . . , ξ

2
K) is the diagonal matrix of cumulative noise variances and

g
def
= [g1, g2, . . . , gK ]T is the vector of the samples of function g(x, y) at sensor locations. The

joint log-likelihood function of the vector of unknown parameters θ is then found as

l (θ)
def
= ln fz′ (z

′ : θ)

≡ −
[
ln (det Σ) + (z′ − g)

T
Σ−1 (z′ − g)

]
(a)
≡ − (z′ − g)

T
Σ−1 (z′ − g)

= −
K∑
i=1

1

ξ2
i

(z′i − gi)
2
,

(3.5)
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where (a) is based on the fact that det Σ is independent of θ.

The ML estimate of the vector of unknown parameters θ is the maximizer of its log-

likelihood function given in Equation (3.5). In other words,

θ̂ML = arg max
θ

l (θ)

= arg min
θ

(z′ − g)
T

Σ−1 (z′ − g)

= arg min
θ

K∑
i=1

1

ξ2
i

(z′i − gi)
2
.

(3.6)

Based on Equation (3.6), the ML estimate of the vector of unknown parameters θ̂ML is found

as the solution of the following system of equations:

∇θ l (θ)
∣∣∣
θ̂ML

= 0,

where ∇θ
def
=
[
∂
∂θ1
, ∂
∂θ2
, . . . , ∂

∂θp

]T
is the gradient operator with respect to parameter θ. This

system of equations can be simplified in the vector form by substituting l (θ) from Equa-

tion (3.5) as
∂g

∂θ
Σ−1 (z′ − g) = 0, (3.7)

where ∂g
∂θ

is a p-by-K matrix of partial derivatives of the components of vector g with respect

to the components of parameter θ defined as

∂g

∂θ
def
=



∂g1
∂θ1

∂g2
∂θ1

· · · ∂gK
∂θ1

∂g1
∂θ2

∂g2
∂θ2

· · · ∂gK
∂θ2

...
...

. . .
...

∂g1
∂θp

∂g2
∂θp

· · · ∂gK
∂θp


.

The system of equations derived in (3.7) can be rewritten in the scalar format as

K∑
i=1

[
1

ξ2
i

(
∂gi
∂θj

)
(z′i − gi)

]
= 0, j = 1, 2, . . . , p. (3.8)

This system of equations is highly non-linear with respect to the unknown parameters for

most practical applications and does not have a closed-form solution. In Section 3.7, this

system will be linearized and solved using Newton’s method to estimate a vector of unknown

parameters associated with a specific two-dimensional Gaussian-shaped function of interest.
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3.5 ML Estimation of θ with Digital Local Processing

Suppose that the local processing rule at each sensor is the same as the one introduced in

Subsection 1.1.2 under “digital local processing” and Equation (1.3), where each sensor sends

the index of its quantized multi-bit sample to the FC. Based on the local observation model

introduced in Equation (3.1), the probability density function of each sensor’s quantized

output sample is found as

fUi (ui : θ) =

Mi−1∑
`=0

∆Qi (`) δ [ui − `] , ui = 0, 1, . . . ,Mi − 1 and i = 1, 2, . . . , K, (3.9)

where δ [·] denotes the discrete Dirac delta function, ∆Qi (`) is defined as

∆Qi (`)
def
= Q

(
βi(`)− gi

σi

)
−Q

(
βi(`+ 1)− gi

σi

)
, ` = 0, 1, . . . ,Mi − 1 and i = 1, 2, . . . , K,

(3.10)

and Q(·) is the complementary distribution function of the standard Gaussian random vari-

able defined as

Q(x)
def
=

1√
2π

∫ ∞

x

exp

(
−1

2
t2
)

dt.

Similar to the case of analog local processing, assuming complete knowledge of the channel

fading coefficient hi, the FC makes a linear transformation on the received signal from each

sensor to find

z′i = hi
−1 zi

= ui +
1

hi
ni i = 1, 2, . . . , K,

= ui + vi

(3.11)

where the transformed noise is defined as vi
def
= 1

hi
ni, which is a zero-mean Gaussian random

variable with variance ξ2
i

def
=

τ2i
|hi|2 . The estimation process at the FC can then be performed

based on the vector of transformed variables z′
def
= [z′1, z

′
2, . . . , z

′
K ]T .

The probability density function of the linearly processed received vector of local obser-



Mohammad Fanaei Chapter 3. Distributed Estimation Using Non-Linear Observations 54

vations from distributed sensors at the FC is given by

fz′ (z
′ : θ)

(a)
=

K∏
i=1

fZ′i (z′i : θ)

(b)
=

K∏
i=1

Mi−1∑
ui=0

fZ′i|Ui (z′i|ui) fUi (ui : θ)

(c)
=

K∏
i=1

Mi−1∑
ui=0

[
1√
2πξ2

i

exp

{
−(z′i − ui)

2

2ξ2
i

}][
Mi−1∑
`=0

∆Qi (`) δ [ui − `]

]

=

K∏
i=1

Mi−1∑
`=0

Mi−1∑
ui=0

1√
2πξ2

i

exp

[
−(z′i − ui)

2

2ξ2
i

]
∆Qi (`) δ [ui − `]

(d)
=

K∏
i=1

1√
2πξ2

i

Mi−1∑
`=0

∆Qi (`) exp

[
−(z′i − `)

2

2ξ2
i

]
,

(3.12)

where (a) is based on the fact that the received local observations from distributed sensors

are spatially uncorrelated, the summation in (b) is based on the theorem of total probability

and over all Mi possible realizations of ui, (c) is found by replacing the probability density

function fUi (ui : θ) from Equation (3.9), and (d) is based on the fact that the inner sum-

mation over ui can be simplified using the properties of the discrete Dirac delta function

as
Mi−1∑
ui=0

exp

[
−(z′i − ui)

2

2ξ2
i

]
∆Qi (`) δ [ui − `] = exp

[
−(z′i − `)

2

2ξ2
i

]
∆Qi (`) .

Therefore, the joint log-likelihood function of the vector of unknown parameters θ is found

as

l (θ)
def
= ln fz′ (z

′ : θ)

≡
K∑
i=1

ln

(
Mi−1∑
`=0

∆Qi (`) exp

[
−(z′i − `)

2

2ξ2
i

])
.

(3.13)

The ML estimate of the vector of unknown parameters θ is the maximizer of its log-

likelihood function given in Equation (3.13). In other words,

θ̂ML = arg max
θ

l (θ) . (3.14)
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Therefore, θ̂ML is found as the solution of the following system of equations:

∇θ l (θ)
∣∣∣
θ̂ML

= 0,

which can be simplified by the substitution of l (θ) from Equation (3.13) as

K∑
i=1

Mi−1∑̀
=0

Ai,j(`) exp

[
−(z′i−`)

2

2ξ2i

]
Mi−1∑̀

=0

∆Qi (`) exp

[
−(z′i−`)

2

2ξ2i

] = 0, j = 1, 2, . . . , p, (3.15)

where Ai,j(`) is the partial derivative of ∆Qi (`) with respect to θj defined as

Ai,j(`)
def
=

∂

∂θj
[∆Qi (`)]

=
1√

2πσ2
i

(
∂gi
∂θj

)
exp

(
− g2

i

2σ2
i

)
Bi(`),

where Bi(`) is defined as

Bi(`)
def
= exp

(
2giβi (`)− β2

i (`)

2σ2
i

)
− exp

(
2giβi (`+ 1)− β2

i (`+ 1)

2σ2
i

)
.

This system of equations given in (3.15) is highly non-linear with respect to the unknown

parameters for most practical applications and does not have a closed-form solution. In

practice, an efficient numerical approach has to be devised to find the ML estimate formulated

in this section. In the next section, the EM algorithm [83] will be developed as an efficient

iterative approach to numerically find the ML estimate of a vector of unknown parameters

for the case of digital local processing scheme.

3.6 Linearized EM Solution for Digital Local Process-

ing

Based on the EM algorithm introduced by Dempster et al. [83], we consider the following

complete and incomplete datasets:

Incomplete dataset: The linearly processed received vector of local observations from dis-

tributed sensors at the FC z′, defined in Equation (3.11).
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Complete dataset: The pair of the vector of local observations r
def
= [r1, r2, . . . , rK ]T , de-

fined in Equation (3.1), and the vector of linearly transformed additive white Gaussian

channel noise variables v
def
= [v1, v2, . . . , vK ]T , i.e., {r,v}.

The mapping z′ = u + v relates the incomplete and complete data spaces, where u
def
=

[u1, u2, . . . , uK ]T is the vector of locally quantized observations of distributed sensors based

on ui = γi(ri) as the known local quantization rule of sensor i defined in Equation (1.3).

The joint probability density function of the complete dataset, parametrized by the vector

of unknown parameters θ is found as

fCD (r,v : θ)
(a)
= fr (r : θ) fv (v)

=

[
1√

(2π)K det ΣO

exp

(
−1

2
(r− g)T Σ−1

O (r− g)

)]

×

[
1√

(2π)K det ΣC

exp

(
−1

2
vTΣ−1

C v

)]
,

(3.16)

where (a) is based on the fact that r and v are independent Gaussian random vectors,

ΣO
def
= diag (σ2

1, σ
2
2, . . . , σ

2
K) and ΣC

def
= diag (ξ2

1 , ξ
2
2 , . . . , ξ

2
K) are the diagonal matrices of the

variances of the observation noise and the transformed channel noise ξ2
i

def
=

τ2i
|hi|2 , respectively.

The joint log-likelihood function of the complete dataset is defined as

lCD (r,v : θ)
def
= ln fCD (r,v : θ)

≡ − (r− g)T Σ−1
O (r− g)

= −
K∑
i=1

1

σ2
i

(ri − gi)2 ,

(3.17)

where the terms independent of the vector of unknown parameters θ are omitted.

Let θ̂(k) be the estimate of the unknown vector of parameters at the kth iteration of the

EM algorithm. To further refine and update the estimates of the unknown parameters, we

alternate the expectation and maximization steps defined as follows:

Expectation Step (E-Step): During the expectation step, the conditional expectation of

the joint log-likelihood function of the complete dataset, given the incomplete dataset and
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θ̂(k), is found as

F
(
θ
∣∣∣ θ̂(k)

)
def
= E

[
lCD (r,v : θ)

∣∣∣z′, θ̂(k)
]

= E

[
−

K∑
i=1

1

σ2
i

(ri − gi)2

∣∣∣∣z′, θ̂(k)

]
,

(3.18)

where E [·] denotes the expectation operation with respect to the conditional pdf of the

complete dataset, given the incomplete dataset and the estimate of the vector of parameters

at the kth iteration as

fCD|ID

(
r,v : θ̂(k)

∣∣∣z′) = fr|z′
(
r : θ̂(k)

∣∣∣z′) fv|z′
(
v : θ̂(k)

∣∣∣z′) , (3.19)

where r and v are two independent Gaussian random vectors, fv|z′
(
v : θ̂(k)

∣∣∣z′) is indepen-

dent of the argument inside the expectation operation, and based on the Bayes’ rule,

fr|z′
(
r : θ̂(k)

∣∣∣z′) =
fz′|r

(
z′ : θ̂(k)

∣∣∣r) fr

(
r : θ̂(k)

)
fz′

(
z′ : θ̂(k)

) . (3.20)

Based on the theorem of total probability,

fz′

(
z′ : θ̂(k)

)
=

∫
· · ·
∫

︸ ︷︷ ︸
K

fz′|r

(
z′ : θ̂(k)

∣∣∣r) fr

(
r : θ̂(k)

)
dr. (3.21)

Note that fz′

(
z′ : θ̂(k)

)
is independent of the argument inside the expectation operation in

Equation (3.18).

Maximization Step (M-Step): During the maximization step, the next estimate of the

vector of unknown parameters is found as the maximizer of the result of the expectation

step. In other words,

θ̂(k+1) = arg max
θ

F
(
θ
∣∣∣ θ̂(k)

)
, (3.22)

which can be rewritten as

∂

∂θj

{
F
(
θ
∣∣∣ θ̂(k)

)} ∣∣∣∣
θ̂(k+1)

= 0, j = 1, 2, . . . , p. (3.23)

This system of equations can be specified more precisely by the substitution of F
(
θ
∣∣∣ θ̂(k)

)
from Equation (3.18) as

E

[
K∑
i=1

1

σ2
i

(ri − gi)
∂gi
∂θj

∣∣∣∣z′, θ̂(k)

] ∣∣∣∣∣∣∣
θ̂(k+1)

= 0, j = 1, 2, . . . , p. (3.24)
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The conditional expectation in Equation (3.24) can be found using the probability density

functions defined in Equations (3.19)–(3.21) as

E

[
K∑
i=1

1

σ2
i

(ri − gi)
∂gi
∂θj

∣∣∣∣z′, θ̂(k)

]
=

K∑
i=1

1

σ2
i

E
[
(ri − gi)

∂gi
∂θj

∣∣∣∣z′i, θ̂(k)

]

=

K∑
i=1

1

σ2
i

∫∫ [
(ri − gi)

∂gi
∂θj

]
fCD|ID

(
ri, vi : θ̂(k)

∣∣∣∣z′i) dridvi

(a)
=

K∑
i=1

1

σ2
i

∫ [
(ri − gi)

∂gi
∂θj

]
fRi|Z′i

(
ri : θ̂(k)

∣∣∣∣z′i) dri

=

K∑
i=1

1

σ2
i

 1

fZ′i

(
z′i : θ̂(k)

)
T (k)

i,j (z′i),

(3.25)

where (a) is based on Equation (3.19) and the independence of vi from the argument of the

expectation operation, and T
(k)
i,j (z′i) is defined as

T
(k)
i,j (z′i) =

∫ ∞

−∞

[
(ri − gi)

∂gi
∂θj

]
fZ′i|Ri

(
z′i : θ̂(k)

∣∣∣∣ri) fRi (ri : θ̂(k)
)

dri. (3.26)

Note that based on Equation (3.11), random variable Z ′i, given Ri is Gaussian with mean ui

and variance ξ2
i

def
=

τ2i
|hi|2 , i.e., Z ′i|Ri ∼ N (ui, ξ

2
i ). Moreover, based on Equation (3.1), the

random variable Ri is Gaussian with mean g
(k)
i and variance σ2

i , i.e., Ri ∼ N
(
g

(k)
i , σ2

i

)
, where

g
(k)
i = g

(
xi, yi : θ̂(k)

)
is the estimate of the underlying function g(x, y) at location (xi, yi)

with the vector of unknown parameters θ replaced by its estimate at the kth iteration of the

EM algorithm. Using these two probability density functions, T
(k)
i,j (z′i) is found as

T
(k)
i,j (z′i) =

∫ ∞

−∞

[
(ri − gi)

∂gi
∂θj

][
1√
2πξ2

i

exp

(
−(z′i − ui)

2

2ξ2
i

)] 1√
2πσ2

i

exp

−
(
ri − g(k)

i

)2

2σ2
i


 dri

=
1

2π
√
ξ2
i σ

2
i

Mi−1∑
`=0

∫ βi(`+1)

βi(`)

[
(ri − gi)

∂gi
∂θj

]
exp

(
−(z′i − `)

2

2ξ2
i

)
exp

−
(
ri − g(k)

i

)2

2σ2
i

 dri

=
1√
2πξ2

i

Mi−1∑
`=0

exp

(
−(z′i − `)

2

2ξ2
i

)(
∂gi
∂θj

)
Γ

(k)
i (`) ,

(3.27)
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where Γ
(k)
i (`) is defined as

Γ
(k)
i (`) =

1√
2πσ2

i

∫ βi(`+1)

βi(`)

(ri − gi) exp

−
(
ri − g(k)

i

)2

2σ2
i

 dri

=

√
σ2
i

2π

∫ βi(`+1)

βi(`)

1

σ2
i

(
ri − g(k)

i

)
exp

−
(
ri − g(k)

i

)2

2σ2
i

 dri

+
1√

2πσ2
i

∫ βi(`+1)

βi(`)

(
g

(k)
i − gi

)
exp

−
(
ri − g(k)

i

)2

2σ2
i

 dri

=

√
σ2
i

2π
exp

−
(
g

(k)
i

)2

2σ2
i

Λ
(k)
i (`) +

(
g

(k)
i − gi

)
∆Q

(k)
i (`) ,

(3.28)

where ∆Q
(k)
i (`) = ∆Qi (`)

∣∣∣∣
gi=g

(k)
i

, ∆Qi (`) is defined in Equation (3.10), and Λ
(k)
i (`) is

defined as

Λ
(k)
i (`) = exp

(
2g

(k)
i βi (`)− β2

i (`)

2σ2
i

)
− exp

(
2g

(k)
i βi (`+ 1)− β2

i (`+ 1)

2σ2
i

)
. (3.29)

Combing Equations (3.25) and (3.27)–(3.29) and replacing them in Equation (3.24) will

result in a non-linear system of equations in terms of θ̂(k+1). In other words, Equation (3.24)

can be rewritten as follows to give a new update of the vector of unknown parameters at the

(k + 1)th step of the EM algorithm using its values derived in the kth step:

K∑
i=1

1

σ2
i

√
2πξ2

i

 1

fZ′i

(
z′i : θ̂(k)

)
Mi−1∑

`=0

exp

(
−(z′i − `)

2

2ξ2
i

)

×

[
∂g

(k+1)
i

∂θj
M

(k)
i (`)− g(k+1)

i

∂g
(k+1)
i

∂θj
∆Q

(k)
i (`)

]
= 0, j = 1, 2, . . . , p, (3.30)

where M
(k)
i (`) is defined as

M
(k)
i (`) =

√
σ2
i

2π
exp

−
(
g

(k)
i

)2

2σ2
i

Λ
(k)
i (`) + g

(k)
i ∆Q

(k)
i (`) . (3.31)
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It can easily been seen that the system of equations given in (3.30) is highly non-linear

with respect to the components of the vector of unknown parameters to be estimated θ̂(k+1).

Furthermore, the solution set for this system of equations is generally non-convex. Therefore,

a numerical solution should be found for this system of equations at each iteration of the EM

algorithm. In Section 3.7, this approach will be utilized to numerically find the ML estimate

of a vector of unknown parameters associated with a specific two-dimensional Gaussian-

shaped function of interest. Newton’s method is applied to linearize the system of equations

given in (3.30) as briefly described in the following.

Let f
(
θ(k+1)

)
= 0 be the vector form of the system of equations given in (3.30), where

each component of the vector function f (·) is a non-linear function of the components of the

vector of unknown parameters θ(k+1) def
=
[
θ

(k+1)
1 , θ

(k+1)
2 , . . . , θ

(k+1)
p

]T
. At each step m of the

Newton’s linearization method, the following system of linear equations is solved to find a

new update for θ
(k+1)
m+1 based on the previous estimate of θ

(k+1)
m :

J
(
θ(k+1)
m

) [
θ

(k+1)
m+1 − θ(k+1)

m

]
= −f

(
θ(k+1)
m

)
, m = 0, 1, 2, . . . , (3.32)

where J
(
θ

(k+1)
m

)
is the p-by-p Jacobian matrix of the vector function f (·) evaluated at θ

(k+1)
m .

The element at the rth row and cth column of the Jacobian matrix J (·) evaluated at θ
(k+1)
m

is defined as

Jr,c
(
θ(k+1)
m

)
=
∂fr (θ)

∂θc

∣∣∣∣
θ=θ

(k+1)
m

, r, c = 1, 2, . . . , p, (3.33)

where fr(·) is the rth component of the vector function f (·).

3.7 Case Study and Numerical Analysis

In this section, we will numerically evaluate the performance of the ML-estimation framework

developed in the previous sections for both analog and digital local processing schemes for

a specific function of interest g(x, y).
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3.7.1 Simulation Setup, Parameter Specification, and Performance-

Measure Definition

Suppose that a two-dimensional Gaussian-shaped function defined as

g(x, y)
def
= h exp

[
−1

2

(
(x− xc)2

σ2
x

+
(y − yc)2

σ2
y

)]
(3.34)

is being sampled by the WSN under study, where h is the maximum intensity or height of

the function, (xc, yc) is the location of its center, and σ2
x and σ2

y are the known spreads of

the function in the x and y directions, respectively. In our simulations, we fix these values

to be σ2
x = 4 and σ2

y = 1. Let θ
def
= [h, xc, yc]

T be the vector of unknown deterministic

parameters associated with function g(x, y). The goal is to estimate these p = 3 parameters

using distributed (and possibly sparse) noisy samples of the function acquired by a WSN

and transmitted to a FC through parallel, coherent fading channels.

Suppose thatK sensors are randomly distributed in the observation environment, which is

assumed to at least cover the area A def
= [xc − 3σx, xc + 3σx]× [yc − 3σy, yc + 3σy], where X ×

Y denotes the Cartesian product between two sets X and Y . This choice of the observation

environment guarantees that all of the sensors are within the domain of the underlying

function g(x, y), and that almost all of the domain of this function is covered by distributed

sensors. In our simulations, we assume that the observations made by distributed sensors

are homogeneous. In other words, it is assumed that the additive white Gaussian observation

noises for all sensors are identically distributed and their variances are the same, i.e.,

σ2 def
= σ2

1 = σ2
2 = · · · = σ2

K .

We define the observation signal-to-noise ratio (SNR) as

ψ
def
=

1

2σ2
. (3.35)

Note that this definition of ψ is the SNR at a reference distance from the center of the

function (xc, yc) at which the strength of the function samples is unit.

As it was mentioned in Section 3.3, there are two main classes of local processing schemes,

namely analog and digital. Both of these schemes are considered in our simulations. For
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the analog local processing scheme, it is assumed that the observation amplification gain is

absorbed in the channel fading coefficient and normalized to one as described in the following

paragraph. For the digital local processing scheme, it is assumed that the quantization rule at

all of the sensors is the same. Therefore, all sensors quantize their local analog observations

to b
def
= b1 = b2 = · · · = bK bits and use the same number of quantization levels M

def
= M1 =

M2 = · · · = MK . Each sensor uses a scalar deterministic uniform quantizer, whose set of

quantization thresholds is known and is the same for all sensors. In other words, β(`)
def
= βi(`),

∀i and ` = 0, 1, . . . ,M . In our simulations, the set of quantization thresholds for all sensors

is chosen as β(`) = `h
M

, ` = 1, 2, . . . ,M − 1.

The parallel, independent channels between distributed sensors and the FC are assumed

to experience Rayleigh fading. The channel fading coefficients are normalized to ensure

that E
[
|hi|2

]
= 1 (or more generally, E

[
|αihi|2

]
= 1 when applicable), i = 1, 2, . . . , K.

When the sensors are located close to each other and the FC is far away from them, the

distance between the sensors and the FC is approximately the same for all sensors, and this

assumption is valid. In our simulations, it is assumed that the parallel channels between

distributed sensors and the FC have homogeneous noises. In other words, it is assumed

that the additive white Gaussian noises of the channels between all sensors and the FC are

identically distributed and their variances are the same, i.e.,

τ 2 def
= τ 2

1 = τ 2
2 = · · · = τ 2

K .

We define the channel SNR as

η
def
=

1

2τ 2
. (3.36)

Again, this definition of η is the SNR at a reference distance from each sensor at which the

strength of the faded transmitted signal is unit.

For the analog local processing scheme, the ML estimate of the vector of unknown param-

eters θ is found based on the system of non-linear equations given in (3.8). This system of

equations is linearized and solved iteratively using Newton’s method as briefly described at

the end of Section 3.6. For the digital local processing scheme, the linearized EM algorithm

given in Equations (3.30)–(3.31) is used as an iterative, efficient approach to numerically find

the ML estimate of θ. To solve this system of non-linear equations, Newton’s linearization



Mohammad Fanaei Chapter 3. Distributed Estimation Using Non-Linear Observations 63

method is applied, as briefly described at the end of Section 3.6 and summarized in Equa-

tion (3.32). In all of our simulations, the true values of the parameters to be estimated are

h = 8, xc = 5, and yc = 3. Moreover, the initial values of the parameters fed to the Newton’s

linearization algorithm are hInit = 7, xInitc = 4, and yInitc = 2.

We have chosen the integrated mean-squared error (IMSE) of the estimation, defined as

IMSE
def
=

∫∫
A
MSE (x, y) dxdy, (3.37)

as the performance measure to evaluate the ML-estimation techniques developed in this

chapter, where A is the two-dimensional observation environment and MSE (x, y) is the

location-dependent mean-squared error of the estimation at location (x, y) ∈ A defined as

MSE (x, y)
def
= Eh,w,n

[
(g(x, y)− ĝ(x, y))2] , (3.38)

where Eh,w,n[·] denotes the expectation with respect to the observation noise, channel noise,

and channel fading coefficients, g(x, y) is the true sample of the underlying function at loca-

tion (x, y), and ĝ(x, y) is its estimated value based on the estimate of the vector of unknown

parameters θ
def
= [h, xc, yc]

T . In our simulations, the values of MSE (x, y) are also averaged

with respect to the random location of distributed sensors in the observation environment.

We use a Mante-Carlo method to calculate the IMSE values based on Equation (3.37).

In this Monte-Carlo simulation, 100 random placements of K sensors in the observation

environment are generated. For each random sensor placement, 104 realizations of the ob-

servation noise, channel noise, and channel fading coefficients have been generated based

on the statistical models described in Section 3.3. The IMSE values shown in the figures

depicted in the rest of this section are averaged over all of these realizations. Therefore,

our simulation results average the effects of random sensor placement in the observation

environment as well as the randomness in the observation noise, channel noise, and channel

fading coefficients on the performance of the proposed distributed estimation framework.
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3.7.2 Effects of K, and Observation and Channel SNR on the

Performance of Distributed Estimation Framework

The performance of the proposed distributed estimation framework is, in part, a function

of the number of distributed sensors in the observation environment, the observation SNR,

and the channel SNR.

In Figure 3.2, the integrated mean-squared error at the FC versus the number of dis-

tributed sensors in the observation environment (K) is shown for different values of the

observation SNR (ψ) and channel SNR (η). Figure 3.2a shows this performance measure for

applying the ML-estimation technique at the FC, when the analog local processing scheme

is used. Figure 3.2b shows the IMSE as the estimation performance measure for applying

the linearized EM estimation algorithm at the FC, when the digital local processing scheme

is used with M = 8 quantization levels. As it can be seen in this figure, as the number of

sensors in the observation environment increases, the IMSE decreases monotonically. This

conclusion is valid for both analog and digital local processing schemes. Furthermore, it can

be observed from Figure 3.2 that the performance improvement due to the increase in the

density of sensors in the observation environment is more considerable when there are small

number of sensors. As the number of sensors increases, the percentage of this performance

improvement decreases, and the distributed estimation technique achieves an acceptable

performance in terms of the IMSE at a moderate number of sensors in the observation

environment.

Figure 3.3 shows the integrated mean-squared error at the FC versus the observation SNR (ψ)

for different values of the number of distributed sensors in the observation environment (K)

and channel SNR (η). Figure 3.3a shows the IMSE as the performance measure for ap-

plying the ML-estimation technique at the FC, when the analog local processing scheme is

used. Figure 3.3b shows the IMSE as the estimation performance measure for applying the

linearized EM estimation algorithm at the FC, when the digital local processing scheme is

used with M = 8 quantization levels. Similar to detailed discussions provided in analyzing

Figure 3.2, as the observation SNR increases, the IMSE decreases monotonically for both

cases of analog and digital local processing schemes. Furthermore, it can be observed from
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(a) ML estimation at the FC based on analog local processing.
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(b) Linearized EM estimation at the FC based on digital local processing with M =

8 quantization levels.

Figure 3.2: IMSE versus the number of distributed sensors in the observation environ-

ment (K) for different values of the observation SNR (ψ) and channel SNR (η).
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Figure 3.3 that the performance improvement due to the increase in the observation SNR is

more considerable at low SNRs. As the observation SNR increases, the percentage of this

performance improvement decreases, and the distributed estimation framework achieves an

acceptable performance in terms of the IMSE at a moderate observation SNR. Similar results

and discussions can be provided for analyzing the effects of channel SNR on the performance

of the distributed estimation framework, which are omitted because of the limited space.

One of the most important points to be noticed in Figures 3.2 and 3.3 is that for the

same values of K, observation SNR ψ, and channel SNR η, the ML estimation at the FC

based on the analog local processing scheme outperforms the linearized EM estimation at

the FC based on the digital local processing scheme with M = 8 quantization levels. This

observation is expected for two main reasons: First, the linearized EM algorithm is an

efficient iterative method for numeric calculation of the ML estimate; therefore, it suffers

from a degraded performance compared to the exact ML estimate. Second, by performing

digital signal processing and quantizing their noisy observations, local sensors are introducing

a quantization noise in the processed samples to become available at the FC. Therefore, the

results of the estimation at the FC based on the received analog samples are more accurate

than those based on the quantized versions of local samples.

3.7.3 Effects of M on the Performance of Distributed Linearized

EM Estimation Framework

Besides K, observation SNR ψ, and channel SNR η, one of the major parameters that affects

the performance of the linearized EM estimation at the FC, when the digital local processing

scheme is used, is the number of quantization levels at local sensors, i.e., M . Figure 3.4 shows

the integrated mean-squared error at the FC versus the number of quantization levels at local

sensors (M) for different values of the number of distributed sensors in the observation envi-

ronment (K), observation SNR (ψ), and channel SNR (η), when the digital local processing

scheme is used at distributed sensors and the linearized EM estimation algorithm is applied

at the FC. As it can be seen in this figure, as the number of quantization levels at local sen-

sors increases, the IMSE decreases monotonically. Again, it can be observed from Figure 3.4
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(a) ML estimation at the FC based on analog local processing.
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(b) Linearized EM estimation at the FC based on digital local processing with M =

8 quantization levels.

Figure 3.3: IMSE versus the observation SNR (ψ) for different values of the number of

distributed sensors in the observation environment (K) and channel SNR (η).
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Figure 3.4: IMSE versus the number of quantization levels at local sensors for linearized

EM estimation at the FC based on digital local processing for different values of the num-

ber of distributed sensors in the observation environment (K), observation SNR (ψ), and

channel SNR (η).

that the performance improvement due to the increase in the umber of quantization levels at

local sensors is more considerable for small values of M . As the umber of quantization levels

at local sensors increases, the percentage of this performance improvement decreases, and

the distributed estimation technique achieves an acceptable performance in terms of the

IMSE at a reasonably low number of quantization levels. It is worth mentioning that Fig-

ure 3.4 shows that even M = 4 quantization levels at local sensors can achieve a very good

performance in terms of the IMSE. In other words, even if the sensors quantize their noisy

observations to only two bits, the system shows an acceptable performance. This conclusion

emphasizes on the energy efficiency of the proposed estimation framework that can lead to

a higher lift-time of distributed sensors in the network. In other words, the sensors do not

need to waste a lot of energy to send very high-resolution observations quantized to a large

number of quantization levels to achieve an acceptable estimation error performance at the

FC in terms of the IMSE.
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3.8 Conclusions

In this chapter, the problem of distributed estimation of a vector of unknown determinis-

tic parameters associated with a two-dimensional function was considered in the context of

WSNs. Each sensor observes a sample of the underlying function at its location, corrupted

by an additive white Gaussian observation noise, whose samples are spatially uncorrelated

across sensors. After local processing, each sensor transmits its locally processed sample to

the FC of a WSN through parallel, coherent fading channels. Two local processing schemes

were considered, namely analog and digital. In the analog local processing scheme, each

sensor transmits an amplified version of its analog noisy observation to the FC, acting like

a relay in a wireless network. In the digital local processing scheme, each sensor quantizes

its noisy observations using a deterministic uniform scaler quantizer before transmitting its

digitally modulated version to the FC. The ML estimate of the vector of unknown param-

eters at the FC was derived for both analog and digital local processing schemes. Since

the ML estimate for the case of digital local processing scheme was too complicated to be

implemented, an efficient iterative EM algorithm was proposed to numerically find the ML

estimate in this case. Numerical simulation results were provided to evaluate the performance

of the proposed distributed estimation framework in a typical WSN application scenario. As

shown in the results of these simulations, the proposed distributed estimation framework

achieves a very good performance in terms of the integrated mean-squared error for reason-

able values of the parameters of the system, including the number of distributed sensors in

the observation environment, the observation SNR, the channel SNR, and the number of

quantization levels for digital local processing scheme. In particular, numerical performance

analysis showed that even with a low number of quantization levels at distributed sensors,

i.e., high energy efficiency, the estimation framework provides a very good performance in

terms of the integrated mean-squared error.
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Chapter 4

Channel-aware Power Allocation for

Distributed BLUE Estimation:

Full and Limited Feedback of CSI

4.1 Introduction

Consider a wireless sensor network (WSN) in which the noisy observations of spatially dis-

tributed sensors are correlated with an unknown random signal to be estimated. Suppose

that the sensors transmit their local analog noisy observations to the fusion center (FC) using

an amplify-and-forward strategy as described in Subsection 1.1.2 under Equation (1.2). Ana-

log local processing is considered in this chapter due to its simplicity and practical feasibility.

Assume that the FC finds the best linear unbiased estimator (BLUE) of the unknown random

signal by combining linearly processed noisy observations of sensors received through orthog-

onal channels corrupted by fading and additive Gaussian noise. This chapter investigates one

of the main challenges of distributed estimation in the case of analog amplify-and-forward

local processing, which is finding the optimal local amplification gains [17–20]. The values of

these gains set the instantaneous transmission power of sensors; therefore, we refer to their

determination as the optimal, adaptive power allocation to sensors.

Cui et al. [17] have proposed an optimal power-allocation scheme to minimize the sum

of the local transmission powers, given a maximum estimation distortion defined as the
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variance of the BLUE estimator of a scalar, random signal at the FC of a WSN. Although

optimal with respect to the total transmission power in the network, this strategy can result

in assigning very high transmission power to sensors with high quality observations and

less noisy channels while assigning zero transmission power to other sensors. The direct

consequence of such power allocation is that some sensors will die quickly, which can in turn

result in a network partition, while the remaining sensors have either low observation quality

or too noisy communication channels. In order to alleviate this drawback, we propose an

optimal, adaptive power-allocation strategy that minimizes the L2-norm of the vector of

local transmission powers, given a maximum estimation distortion as defined above. This

approach prevents the assignment of high transmission power to sensors by putting a higher

penalty on them, which in itself reduces the chances of those sensors dying and the network

becoming partitioned. In other words, the proposed scheme results in the increased lifetime

of the WSN compared to similar approaches that are based on the minimization of the sum

of the local transmission powers. Furthermore, the total transmission power used in the

entire network still stays bounded.

As it will be seen in Section 4.3, the limitation of the proposed power-allocation scheme

is that the optimal local amplification gains found based on it depend on the instanta-

neous fading coefficients of the channels between the sensors and FC, as is the case in [17].

Therefore, the FC must feed the exact channel fading coefficients back to sensors through

infinite-rate, error-free links. This requirement of the feedback of the instantaneous channel

state information (CSI) from the FC to local sensors is not practical in most applications

of WSNs, especially when the number of sensors in the network is large. In the remainder

of this chapter, we propose a limited-feedback strategy to eliminate this requirement. The

proposed approach is based on designing an optimal codebook using the generalized Lloyd

algorithm with modified distortion metrics, which is used to quantize the space of the opti-

mal power-allocation vectors used by the sensors to set their local amplification gains. Based

on this scheme, each sensor amplifies its analog noisy observations using a quantized version

of its optimal amplification gain determined by the designed optimal codebook.

In summary, the main contributions of this chapter are as follows:
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(1) An optimal, adaptive power-allocation scheme is proposed to minimize the L2-norm

of the vector of local transmission powers, given a maximum estimation distortion

(defined as the variance of the BLUE estimator) at the FC. This scheme alleviates the

problem of assigning very high transmission power to some sensors while turning off

the other ones.

(2) A limited-feedback strategy is proposed to quantize the vector space of the optimal

local amplification gains. Appropriate distortion metrics are defined for the application

of the generalized Lloyd algorithm in the domain of adaptive power allocation for

distributed estimation.

The rest of this chapter is organized as follows: In Section 4.2, the system model of the

WSN under study is described. The proposed adaptive power-allocation strategy is derived

in Section 4.3. A brief discussion on the motivation for and implementation of the limited

feedback for the proposed power-allocation scheme is presented in Section 4.4. Details of

the implementation of the proposed limited-feedback scheme are discussed in Section 4.5.

Section 4.6 provides the numerical results to show the applicability of the proposed schemes.

Finally, the chapter is concluded in Section 4.7.

4.2 System Model

The system model of the WSN considered in this chapter, which is depicted in Figure 4.1,

is the same as the one described in Section 1.1. The goal of the WSN is to reliably estimate

an unknown random signal θ at its FC using linearly amplified versions of local noisy obser-

vations received through parallel (orthogonal) coherent communication channels corrupted

by fading and additive Gaussian noise. An example of the unknown random variable θ to

be estimated is the intensity of the signal originated from an energy-emitting source and

sensed by a set of spatially distributed signal detectors. This estimated variable along with

the propagation model of the given signal in the observation environment can then be used

to estimate the location of the source. It is assumed that θ has zero mean and variance σ2
θ ,

and is otherwise unknown.



Mohammad Fanaei Chapter 4. Power Allocation for Distributed BLUE Estimation 73

K

L

M

ε

gi Model

COPT

Generalized 
Lloyd Algorithm 

with Modified 
Distortion 
Metrics

Chapter 5
Asilomar 2013 Paper
Milcom 2013 Paper

θ

z1

Fusion 
Center

u2

uK

…
.......

n1

z2

n2

zK

nK

…
.......

h1

h2

hK

r1

…
.......

w1

r2

w2

rK

wK

g1

g2

gK

Sensor 1
u1

α1

̂

Sensor K

αK

Sensor 2

α2

Figure 4.1: System model of a WSN in which the FC finds an estimate of θ.

Assume that the local noisy observation at each sensor is a linear function of the unknown

random signal. Therefore, the observation function Ξi (·) in Equation (1.1) is defined as

Ξi (θ)
def
= giθ,

where gi is the fixed local observation gain at sensor i, completely known at the sensor and

FC, and the local noisy observation at the ith sensor is found as

ri = giθ + wi, i = 1, 2, . . . , K, (4.1)

where wi is the spatially independent additive observation noise with zero mean and known

variance σ2
i , which is independent from the unknown signal θ. Note that unlike the local

observation model described in Subsection 1.1.1, no further assumption is made on the type

of the distribution of the random signal to be estimated and on that of the observation noise.

We define the observation signal-to-noise ratio (SNR) at sensor i as

ψi
def
=
|gi|2 σ2

θ

σ2
i

, i = 1, 2, . . . , K,

where |·| denotes the absolute-value operation.

Suppose that the local processing rule at each sensor is the same as the one introduced

in Subsection 1.1.2 under “analog local processing” and Equation (1.2), where the local

amplification gain αi is to be optimally found in our analyses. Note that based on this local
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processing rule, the instantaneous transmission power of sensor i is found as

Pi = α2
i

(
|gi|2 σ2

θ + σ2
i

)
= α2

iσ
2
i (1 + ψi) . (4.2)

As it can be seen in Equation (4.2), the value of the local amplification gain at each sensor

determines the instantaneous transmission power allocated to that sensor. Therefore, we will

call any strategy that assigns a set of local amplification gains to sensors a power-allocation

scheme.

The model of the communication channels between the sensors and the FC is the same as

the one introduced in Subsection 1.1.3. It is assumed that the channel fading coefficients hi

are uncorrelated and can reliably be estimated by the FC. We define the channel SNR of

the signal received from sensor i at the FC as1

ηi
def
=
|hi|2

τ 2
i

, i = 1, 2, . . . , K.

4.3 Optimal Power Allocation with Minimal L2-Norm

of Transmission-Power Vector

Given a power-allocation scheme and a realization of the fading coefficients of the commu-

nication channels, the FC combines the set of received signals from different sensors to find

the best linear unbiased estimator for the unknown signal θ as [84, Chapter 6]

θ̂ =

(
K∑
i=1

|gi|2 α2
i |hi|

2

α2
i |hi|

2 σ2
i + τ 2

i

)−1 K∑
i=1

giαihizi

α2
i |hi|

2 σ2
i + τ 2

i

, (4.3)

where the corresponding estimator variance is found as

Var
(
θ̂
∣∣∣α,h) =

(
K∑
i=1

|gi|2 α2
i |hi|

2

α2
i |hi|

2 σ2
i + τ 2

i

)−1

= σ2
θ

(
K∑
i=1

ψiηiα
2
iσ

2
i

1 + ηiα2
iσ

2
i

)−1

,

(4.4)

1Note that the defined parameter ηi is not an exact definition of the channel SNR. We have loosely defined
this parameter to quantify the quality of the communication channel between each sensor and the FC and
to simplify our derivations.
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in which α
def
= [α1, α2, . . . , αK ]T and h

def
= [h1, h2, . . . , hK ]T are column vectors containing the

set of local amplification gains αi and fading coefficients of the channels between local sensors

and the FC (i.e., hi), respectively.

One of the goals of this chapter is to find the optimal local amplification gains or equiv-

alently, the optimal power-allocation scheme that minimizes the L2-norm of the vector of

local transmission powers defined as P
def
= [P1, P2, . . . , PK ]T , given a constraint on the vari-

ance of the BLUE estimator at the FC as defined in Equation (4.4). This objective can be

formulated as the following convex optimization problem:

minimize
{Pi}Ki=1

(
K∑
i=1

P 2
i

) 1
2

subject to Var
(
θ̂
∣∣∣α,h) ≤ D0

(4.5)

By replacing Pi and Var
(
θ̂
∣∣∣α,h) from Equations (4.2) and (4.4), respectively, Equation (4.5)

is converted to the following convex form (in terms of αi
2), whose optimization variables are

the (squared of the) local amplification gains:

minimize
{αi2}Ki=1

K∑
i=1

[
αi

2σ2
i (1 + ψi)

]2
subject to

K∑
i=1

ψiηiα
2
iσ

2
i

1 + ηiα2
iσ

2
i

≥ σ2
θ

D0

and αi
2 ≥ 0

(4.6)

Let bi be defined as bi
def
=

ψiηiα
2
i σ

2
i

1+ηiα2
i σ

2
i
. The above constrained optimization problem can be

rewritten as

minimize
{bi}Ki=1

K∑
i=1

(
(1 + ψi) bi
(ψi − bi) ηi

)2

subject to
K∑
i=1

bi ≥
σ2
θ

D0

and 0 ≤ bi < ψi

(4.7)

which is a convex optimization problem in terms of bi.
2 The Lagrangian function for this

constrained optimization problem is

L (b, λ,µ)
def
=

K∑
i=1

(
(1 + ψi) bi
(ψi − bi) ηi

)2

+ λ

(
σ2
θ

D0

−
K∑
i=1

bi

)
−

K∑
i=1

µibi, (4.8)

2Note that bi can be rewritten as bi
def
=

ψiηiσ
2
i

ηiσ2
i+

1

α2
i

. Since α2
i ≥ 0, the range over which bi can change is found

as 0 ≤ bi < ψi.
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where b
def
= [b1, b2, . . . , bK ]T is the column vector of target optimized variables, and µ

def
=

[µ1, µ2, . . . , µK ]T is the Lagrangian multiplier vector. The Karush-Kuhn-Tucker (KKT) con-

ditions [85, Theorem 18.6] for this optimization problem can be written as

∂L (b, λ,µ)

∂bi
=

2ψi (1 + ψi)
2 bi

(ψi − bi)3 η2
i

− λ− µi = 0, (4.9a)

K∑
i=1

bi =
σ2
θ

D0

, (4.9b)

µibi = 0, i = 1, 2, . . . , K, (4.9c)

µi ≥ 0 and bi ≥ 0, i = 1, 2, . . . , K. (4.9d)

Note that since the objective function of the constrained optimization problem in Equa-

tion (4.7) is an increasing function with respect to bi, its minimum is attained at the small-

est possible value of bi. Therefore, we have used the fact that the inequality constraint
K∑
i=1

bi ≥
σ2
θ

D0
is converted into an equality constraint as in Equation (4.9b) at the optimal

point of the optimization problem.

The first KKT condition in Equation (4.9a) can be simplified as

b3
i − 3ψib

2
i + ψi

(
3ψi +

2 (1 + ψi)
2

(λ+ µi) η2
i

)
bi − ψ3

i = 0. (4.10)

It can be shown that the cubic equation defined in Equation (4.10) only has a unique, real

root as follows, provided that λ+ µi > 0:

bi = ψi

1− 3

√
ψi δ2

i T
′
i

λ+ µi

(
1− 2

3
3

√
ψi δ2

i

(λ+ µi)T ′i
2

)
︸ ︷︷ ︸

def
= Γi

, (4.11)

where δi
def
= 1+ψi

ψiηi
, i = 1, 2, . . . , K, and T ′i is defined as

T ′i
def
= 1 +

√
1 +

8ψi δ2
i

27 (λ+ µi)
.

Based on the complementary slackness requirement of Equation (4.9c) and the constraint of

Equation (4.9d), µi = 0 when bi > 0, and bi = 0 when µi > 0. Therefore, Equation (4.11)
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can be simplified to

bi = ψi

[
1− 3

√
ψi δ2

i Ti
λ

(
1− 2

3
3

√
ψi δ2

i

λT 2
i

)]+

, (4.12)

where Ti is defined as

Ti
def
= 1 +

√
1 +

8ψi δ2
i

27λ
,

and the operator [·]+ is defined as

[x]+
def
=

 0, if x ≤ 0.

x, if x > 0.

It should be noted that the value of bi from Equation (4.12) is in the interval 0 ≤ bi < ψi.

Furthermore, when Γi in Equation (4.11) is negative, eliminating µi > 0 from it increases

the value of T ′i , which in turn decreases the value of Γi and bi to a smaller negative quantity.

Therefore, variable µi has been removed in Equation (4.12).

As the observation SNR ψi or channel SNR ηi decreases, the value of δi increases, which

in turn increases the value of Ti and decreases the value of bi. Therefore, if the sensors are

sorted so that δ1 ≤ δ2 ≤ · · · ≤ δK , only the first K1 sensors with the least values of δi will

have a positive value for bi, and bi = 0 for all i > K1. The values of the number of active

sensors K1 for which bi > 0, and the equality-constraint Lagrangian multiplier λ > 03 are

unique and can be found by replacing bi from Equation (4.12) into Equation (4.9b) to derive

the following relationship between them:

K1∑
i=1

ψi
3

√
ψi δ2

i Ti
λ

(
1− 2

3
3

√
ψi δ2

i

λT 2
i

)
=

K1∑
i=1

ψi −
σ2
θ

D0

. (4.13)

The values of K1 and λ can be found through the water-filling-based iterative process sum-

marized in Algorithm I. It can be shown that the solution of the above iterative algorithm

in terms of K1 and λ always exists and is unique.

Having found bi through the above process, the local amplification gain αi is found as

3Note that λ + µi > 0 is the condition under which the cubic equation defined in Equation (4.10) has a
unique real root. As µi = 0 when bi > 0, this condition is reduced to λ > 0.
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ALGORITHM I: The water-filling-based iterative process to find the unique values for

the number of active sensors K1 and the equality-constraint Lagrangian constant λ.

Require: K, σ2
θ , {ψi}

K
i=1, {ηi}Ki=1, and D0.

1. Initialization

2. for i = 1, 2, . . . , K do

3. δi ←− 1+ψi
ψiηi

4. end for

5. Sort the sensors based on the ascending values of δi so that δ1 ≤ δ2 ≤ · · · ≤ δK .

6. K1 ←− K

7. EndInitialization

8. repeat

9. Using the given value for K1, find the value of λ by solving Equation (4.13).

10. Replace the value of λ in Equation (4.12) and find the new values of bi, i =

1, 2, . . . , K.

11. K1 ←− K1 − 1

12. until The values of bi do not change from the previous iteration. In particular, bi > 0

for all i ≤ K1, and bi = 0 for all i > K1.

13. return K1 and λ.

follows:

α2
i =

bi
(ψi − bi) ηiσ2

i

=


1

ηiσ2
i

 3

√
λ

ψi δ
2
i
Ti

1− 2
3

3

√
ψi δ

2
i

λT2
i

− 1

 , i ≤ K1.

0, i > K1.

(4.14)

The above power-allocation strategy assigns a zero amplification gain or equivalently, zero

transmission power to the sensors for which δi is large because either the sensor’s observa-

tion SNR and/or its channel SNR is too low. The assigned instantaneous transmission power

to other sensors is non-zero and based on the value of δi for each sensor. Note that based on

the above power-allocation scheme, there is a unique one-to-one mapping between h and α

that can be denoted as α = f (h).
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4.4 Limited Feedback for Adaptive Power Allocation

The optimal power-allocation scheme proposed in the previous section is based on the as-

sumption that the complete forward CSI is available at the sensors. In other words, Equa-

tion (4.14) shows that the optimal value of the local amplification gain at sensor i is a

function of its channel SNR ηi, which in itself is a function of the instantaneous fading

coefficient of the channel between sensor i and the FC. Therefore, in order to achieve the

minimum L2-norm of the vector of local transmission powers, the FC must feed the instan-

taneous amplification gain αi back to each sensor through an infinite-rate, error-free link.4

This requirement is not practical in most applications, especially in large-scale WSNs, since

the feedback information is typically transmitted through finite-rate, digital feedback links.

In the rest of this chapter, we propose a limited-feedback strategy to eliminate the above-

mentioned requirement for infinite-rate digital feedback links from the FC to local sensors.

For each channel realization, the FC first finds the optimal power-allocation scheme using

the approach proposed in the previous section. Note that the FC has access to the perfect

backward CSI; i.e., the instantaneous fading coefficient of the channel between each sensor

and itself. Therefore, it can find the exact power-allocation strategy of the entire network

based on Equation (4.14), given any channel realization. In the next step, the FC broadcasts

the index of a quantized version of the optimized power-allocation vector to all sensors.

In the limited-feedback strategy summarized above, the FC and sensors must agree on

a codebook of the local amplification gains or equivalently, a codebook of possible power-

allocation schemes. The optimal codebook can be designed offline by quantizing the space

of the optimized power-allocation vectors using the generalized Lloyd algorithm [86] with

modified distortion metrics. Let L be the number of feedback bits that the FC uses to

quantize the space of the optimal local power-allocation vectors into 2L disjoint regions.

4Note that instead of feeding αi back to each sensor, the FC can send back the fading coefficient of the
channel between each sensor and itself. However, the knowledge of hi alone is not enough for sensor i to
compute the optimal value of its local amplification gain αi. The sensor must also know whether it should
transmit or stay silent. There are two ways that the extra information can be fed back to the sensors:
(a) This data can be encoded in an extra one-bit command instructing each sensor to transmit or to stay
silent, or (b) Each sensor can listen for the entire vector h sent by the FC over a broadcast channel and
determine whether or not it should transmit based on the details of the power-allocation scheme discussed
in Section 4.3. Sending back each value of αi from the FC avoids this extra communication.
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Note that L is the total number of feedback bits broadcast by the FC, and not the number

of bits fed back to each sensor. A codeword is chosen in each quantization region. The length

of each codeword is K, and its ith entry is a real-valued number representing a quantized

version of the optimal local amplification gain for sensor i. The proposed quantization scheme

can then be thought of as a mapping from the space of channel state information to a discrete

set of 2L length-K, real-valued power-allocation vectors. Details of this quantization method

are described in the next section.

4.5 Codebook Design Using Lloyd Algorithm

Let C = [α1 α2 · · · α2L ]T be a 2L-by-K codebook matrix of the optimal local amplification

gains, where [C]`,i denotes its element in row ` and column i as the optimal gain of sensor i

in codeword `. Note that each α`, ` = 1, 2, . . . , 2L is associated with a realization of the

fading coefficients of the channels between sensors and the FC. We apply the generalized

Lloyd algorithm with modified distortion metrics to solve the problem of vector quantization

in the space of the optimal local amplification gains. This algorithm designs the optimal

codebook C in an iterative process, as explained in the following discussions.

In order to implement the generalized Lloyd algorithm, one distortion metric must be de-

fined for the codebook and one for each codeword. Let DB (C) denote the average distortion

for codebook C defined as

DB (C)
def
= Eα

[
min

`∈{1,2,...,2L}
DW (α`,α)

]
, (4.15)

where Eα [·] denotes the expectation operation with respect to the optimal vector of local

amplification gains α, and DW (α`,α) represents the distance between codeword α` and an

optimal power-allocation vector α, defined as

DW (α`,α)
def
= |J (α`)− J (α)| , (4.16)

where J (·) is the optimized cost of a power-allocation vector. Let P` and P be the vectors

of local transmission powers, when the vector of local amplification gains is α` and α,

respectively. The cost function J (α) is defined as the L2-norm of the corresponding vector
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of transmission powers P, i.e.,

J (α)
def
=

(
K∑
i=1

P 2
i

) 1
2

=

(
K∑
i=1

[
α2
iσ

2
i (1 + ψi)

]2) 1
2

. (4.17)

Let A ⊆ RK+ be the K-dimensional vector space of the optimal local amplification gains,

whose entries are chosen from the set of real-valued, non-negative numbers. Given the distor-

tion metric for codebook C and that for each one of its codewords defined in Equations (4.15)

and (4.16), respectively, the two main conditions of the generalized Lloyd algorithm can be

reformulated for our vector-quantization problem as follows [86, Chapter 11]:

Nearest–Neighbor Condition: This condition finds the optimal Voronoi cells of the vec-

tor space to be quantized, given a fixed codebook. Based on this condition, given

a codebook C, the space A of optimized power-allocation vectors is divided into 2L

disjoint quantization regions (or Voronoi cells) with the `th region represented by code-

word α` ∈ C and defined as

A`
def
= {α ∈ A : DW (α`,α) ≤ DW (αk,α) ,∀k 6= `} . (4.18)

Centroid Condition: This condition finds the optimal codebook, given a specific parti-

tioning of the vector space to be quantized. Based on this condition, given a specific

partitioning of the space of the optimized power-allocation vectors {A1,A2, . . . ,A2L},

the optimal codeword associated with each Voronoi cell A` ⊆ A is the centroid of that

cell with respect to the distance function defined in Equation (4.16) as

α?
`

def
= arg min

α`∈A`
Eα∈A` [DW (α`,α)] , (4.19)

where the expectation operation is performed over the set of members of partition A`.

The optimal codebook is designed offline by the FC using the above two conditions. It can

be shown that the average codebook distortion defined in Equation (4.15) will monotonically

decrease through the iterative usage of the Centroid Condition and the Nearest-Neighbor

Condition [86, Chapter 11]. Details of the codebook-design process are summarized in Al-

gorithm II. The optimal codebook is stored in the FC and is shared with all sensors.
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ALGORITHM II: Iterative process of designing an optimal codebook of power-allocation

vectors based on the generalized Lloyd algorithm with modified distortion metrics.

Require: K, σ2
θ , {σ2

i }
K
i=1, {ψi}Ki=1, {τ 2

i }
K
i=1, D0, and L.

. L is the number of feedback bits.

Require: Fading model of the channel between local sensors and the FC.

Require: M . . M is the number of training vectors in space A.

Require: ε. . ε is the distortion threshold to stop the iterative process.

1. Initialization

2. Hs ←− A set of M length-K vectors of channel-fading realizations based on the

given fading model of the channels between local sensors and the FC.

. M � 2L.

3. As ←− The set of optimal local power-allocation vectors associated with the

channel fading vectors in Hs, found using Equation (4.14).

. As is the set of training vectors, and As ⊆ A.

4. {α0
`}

2L

`=1 ←− Randomly select 2L optimal power-allocation vectors from the set As
as the initial set of codewords.

5. C0 ←−
[
α0

1 α0
2 · · · α0

2L

]T
. C0 is the initial codebook.

6. NewCost←− DB (C0) and j ←− 0.

. The average distortion of codebook is found using Equation (4.15).

7. EndInitialization

8. repeat

9. j ←− j + 1 and OldCost←− NewCost.

10. Given codebook Cj−1, optimally partition the set As into 2L disjoint subsets based

on the Nearest-Neighbor Condition using Equation (4.18). Denote the resulted

optimal partitions by Aj−1
` , ` = 1, 2, . . . , 2L.

11. for all Aj−1
` , ` = 1, 2, . . . , 2L do

12. αj
` ←− Optimal codeword associated with partition Aj−1

` found based on the

Centroid Condition using Equation (4.19).

13. end for

14. Cj ←−
[
αj

1 αj
2 · · · αj

2L

]T
. Cj is the new codebook.

15. NewCost←− DB (Cj)

16. until OldCost− NewCost ≤ ε

17. return COPT ←− Cj.
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Upon observing a realization of the channel fading vector h, the FC finds its associated

optimal power-allocation vector αOPT, using Equation (4.14) to calculate each one of its

elements. It then identifies the closest codeword in the optimal codebook C to αOPT with

respect to the distance metric defined in Equation (4.16). Finally, the FC broadcasts the

L-bit index of that codeword over an error-free, digital feedback channel to all sensors as

`
def
= arg min

k∈{1,2,...,2L},αk∈C

DW

(
αk,α

OPT
)
. (4.20)

Upon the reception of the index `, each sensor i knows its quantized local amplification gain

or equivalently, its power-allocation weight as [C]`,i, where ` and i are the row and column

indexes of the codebook C, respectively.

4.6 Numerical Analysis

In this section, numerical results are provided to assess the performance of the optimal

power-allocation scheme proposed in Section 4.3 and to verify the effectiveness of the limited-

feedback strategy proposed in Section 4.5 in achieving the energy efficiency close to that of

a WSN with full CSI feedback. In our analyses, the energy efficiency of a power-allocation

scheme is defined as the L2-norm of the vector of local transmission powers formulated in

Equation (4.17).

In our simulations, we have set σ2
θ = 1 and the local observation gains gi are randomly

chosen from a Gaussian distribution with unit mean and variance 0.09. In all simulations,

the average power of gi across all sensors is set to be 1.2, i.e., E [g2
i ] = 1.2. The observation

noise variances σ2
i are uniformly selected from the interval (0.05, 0.15) such that the average

power of the noise variances across all sensors is kept at 0.01, i.e., E [σ2
i ] = 0.01. The channel

noise variance for all sensors is set to τ 2
i = −90 dBm, i = 1, 2, . . . , K. The following fading

model is considered for the channels between the sensors and the FC:

hi = ζ0

(
di
d0

)−α
2

fi, i = 1, 2, . . . , K,

where ζ0 = −30 dB is the nominal path loss at the reference distance set to be d0 = 1 meter,

di is the distance between sensor i and the FC (in meters), α = 2 is the path-loss exponent,
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Figure 4.2: Average energy efficiency versus the target estimation distortion D0 for the

proposed adaptive power-allocation scheme and the equal power-allocation strategy.

and fi is the independent and identically distributed (i.i.d.) Rayleigh-fading random vari-

able with unit variance. The distance between sensors and the FC is uniformly distributed

between 50 and 150 meters. The size of the training set in the optimal codebook-design pro-

cess described in Algorithm II is set to M = 5, 000, and the codebook-distortion threshold

for stopping the iterative algorithm is assumed to be ε = 10−4. The results are obtained by

averaging over 10,000 Monte-Carlo simulations.

Figure 4.2 illustrates the energy efficiency of the adaptive power-allocation scheme pro-

posed in Section 4.3. The figure depicts the average L2-norm of the vector of local transmis-

sion powers versus the maximum estimation distortion D0 at the FC for different values of

the number of sensors in the network K. The energy efficiency for the case of equal power

allocation, i.e., the minimum transmission power required to achieve the given target esti-

mation distortion at the FC, is also shown with dotted lines as a benchmark. As it can be

seen in this figure, the energy efficiency of the network improves as the number of sensors

increases. This is due to the fact that when there are fewer sensors in the network, each
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Figure 4.3: Average energy efficiency of the proposed power-allocation scheme versus the

target estimation distortion D0 for different values of the number of feedback bits L, when

there are K = 50 sensors in the network.

one of them must transmit with a higher power in order for the FC to achieve the same

estimation distortion. Note that in our analyses, there is no constraint on the total trans-

mission power consumed in the entire network. Another observation from Figure 4.2 is that

the proposed adaptive power allocation scheme achieves a higher energy efficiency than the

equal power-allocation strategy. As the maximum estimation-distortion constraint at the

FC is relaxed, i.e., the value of D0 is increased, the gain in the energy efficiency decreases

slightly.

Figure 4.3 illustrates the effect of L as the number of feedback bits from the FC to

local sensors on the energy efficiency of the proposed power-allocation scheme. It should

be emphasized that L is the total number of feedback bits broadcast by the FC, and not

the number of bits fed back to each sensor. This figure depicts the average L2-norm of the

vector of local transmission powers versus the maximum estimation distortion D0 at the FC

for different values of the number of feedback bits L, when there are K = 50 sensors in the

network. As it can be seen in this figure, the energy efficiency of the proposed adaptive
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power allocation with limited feedback is very close to that with full feedback and gets closer

to it as the number of feedback bits is increased.

4.7 Conclusions

In this chapter, an adaptive power-allocation scheme was proposed that minimizes the L2-

norm of the vector of local transmission powers in a WSN, given a maximum variance for

the BLUE estimator of a scalar, random signal at the FC. This approach results in an

increase in the lifetime of the network at the expense of a potential slight increase in the

sum total transmission power of all sensors. The next contribution of this chapter was to

propose a limited-feedback strategy to eliminate the requirement of infinite-rate feedback of

the instantaneous forward CSI from the FC to local sensors. This scheme designs an optimal

codebook by quantizing the vector space of the optimal local amplification gains using the

generalized Lloyd algorithm with modified distortion metrics. Numerical results showed that

the proposed adaptive power-allocation scheme achieves a high energy efficiency, and that

even with a limited number of feedback bits (small codebook), its average energy efficiency

based on the proposed limited-feedback strategy is close to that of a WSN with full CSI

feedback.
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Chapter 5

Linear Spatial Collaboration for

Distributed BLUE Estimation

5.1 Introduction

In most studies in the literature, it is assumed that the spatially distributed sensors forming

a wireless sensor network (WSN) do not communicate and/or collaborate with each other,

and that the local processing is performed only on each sensor’s noisy observations [16–26,

32, 33, 87–89]. In this chapter, we investigate the problem of distributed estimation under

the assumption that local sensors collaborate with each other by sharing their local noisy

observations. Consequently, the processing at each sensor connected to a fusion center (FC)

will be performed on the combination of the sensor’s own observations and those of the

other sensors to which it has access. We study the problem of linear spatial collaboration

for distributed estimation in the context in which each sensor can share its local noisy (and

potentially spatially correlated) observations with a subset of sensors through error-free, low-

cost links. An adjacency matrix defines the connectivity of the network and the pattern by

which local sensors share their noisy observations with each other. The signals observed by

different sensors are spatially correlated, and the goal of the WSN is for a FC to estimate

the vector of unknown signals observed by individual sensors. Each one of the sensors that

is connected to the FC forms a linear combination of the noisy observations to which it has

access and sends the result of this analog local processing to the FC through an orthogonal
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communication channel corrupted by fading and additive Gaussian noise. The FC combines

the received data from spatially distributed sensors to find the best linear unbiased estimator

(BLUE) of the vector of unknown signals observed by individual sensors. The main novelty

of this chapter is the derivation of an optimal power-allocation scheme for a network with

linear spatial collaboration in which the set of coefficients or weights used to form linear

combinations of shared noisy observations at the sensors connected to the FC is optimized.

Through this optimization, the total estimation distortion at the FC (defined as the sum of

the estimation variances of the BLUE estimators for different signals observed by individual

sensors) is minimized, given a constraint on the maximum average cumulative transmission

power in the entire network. Numerical results show that even with a moderate connectivity

across the network, spatial collaboration among sensors significantly reduces the estimation

distortion at the FC.

The rest of this chapter is organized as follows: In Section 5.2, a summary of the related

works to the ideas presented in this chapter will be provided, and the relationship between

this work and similar studies in the literature will be explained. Section 5.3 introduces the

system model of the WSN analyzed in this chapter. There are several differences between

this system model and that introduced in Section 1.1, which will be explained in detail. In

Section 5.4, an optimal power-allocation scheme will be derived that optimizes the mixing

coefficients of local sensors with an objective to minimize the estimation distortion at the

FC, given a constraint on the maximum average transmission power in the entire network.

Numerical results in Section 5.5 show the effectiveness of the spatial collaboration among

local sensors in improving the performance of the estimator at the FC. Finally, the chapter

will be concluded in Section 5.6.

5.2 Related Works

Bahçeci and Khandani [87] have studied a WSN in which spatially distributed sensors make

noisy observations of correlated Gaussian signals. They have assumed that each sensor

amplifies its own local noisy observation before sending it to the FC through orthogonal

channels corrupted by Rayleigh flat-fading and additive white Gaussian noise. The FC
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then combines the received data from local sensors to estimate the set of correlated signals

observed by the sensors, either using the BLUE or the minimum mean-squared error (MMSE)

estimator. They have derived the optimal power-allocation scheme that minimizes the total

cumulative transmission power in the entire network, given a constraint on the maximum

estimation distortion at the FC, measured either as the estimation variance of each individual

signal observed by one of the sensors, or as the average estimation variance of all signals of

interest. It is crucial to emphasize that [87] assumes that there is no communication and/or

collaboration among sensors.

Kar and Varshney [90] have studied the optimal power allocation for a WSN in which

sensors collaborate with each other by sharing their local noisy observations. To the best of

our knowledge, this is the first work that has considered sensor collaboration in the context

of distributed estimation. In the system model studied in [90], each sensor connected to

the FC, which in general can be in a subset of all sensors, forms a linear combination of its

own noisy observation and the observations of other sensors to which it has access. This

operation is known as the linear spatial collaboration. The sensor then sends the resulting

linearly processed data to the FC through a coherent multiple access channel (MAC). The FC

finds the linear minimum mean-squared error (LMMSE) estimator of a scalar, random signal

observed by spatially distributed sensors. The gains used to form the linear combinations at

local sensors are optimized to minimize the LMMSE estimator distortion at the FC, given

a constraint on the maximum per-sensor or cumulative transmission power in the network.

The results of their investigations show that even a moderate connectivity in the WSN

drastically reduces the estimation distortion at the FC.

As the system model of the WSN described in Section 5.3 shows, our goal in this chapter

is to generalize the network model studied in [87] by assuming that (a) the observation noises

and channel noises are spatially correlated, (b) a subset of sensors is not directly connected

to the FC, and more importantly, (c) the sensors collaborate with each other by sharing

their local noisy observations through error-free, low-cost links. The most important aspect

of this network model is the linear spatial collaboration among the sensors. Furthermore, we

will study a generalized version of the problem investigated in [90]. In contrast with [90], the

FC in our system model estimates the individual signals observed by distributed sensors and
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not just an underlying scalar signal that is collaboratively observed by the entire network.

Moreover, we consider the communication channels between the connected sensors and the

FC to be orthogonal rather than a coherent MAC. Another contribution of our work is

that the FC finds the BLUE estimator of the vector of unknown signals observed by local

sensors rather than the LMMSE estimator. Note that unlike the LMMSE estimator, which

depends on the statistics of the signals being observed and estimated, the BLUE estimator

is independent of the source statistics and is useful when the information about the signals

to be estimated is limited.

5.3 System Model

The system model of the WSN considered in this chapter, which is depicted in Figure 5.1,

is different from the one described in Section 1.1 in several aspects. These differences will

be clarified in this section.

Assume that M ≤ K sensors are connected to a FC, where K is the total number of the

spatially distributed sensors forming a WSN, each one of which observes a noisy version of

a local signal of interest. Using the received faded and noisy versions of locally processed

sensor observations from a subset of sensors that are connected to it, the FC tries to find

the BLUE estimator of the vector of signals observed by individual sensors.1 Note that

one of the major differences between the system considered here and most of the studies in

the literature is that in our model (similar to [87]), the FC estimates the individual signals

observed by local sensors rather than combining the observations to estimate a set of signals

that are correlated with the collection of local observations and that can directly be observed

by all sensors in the network. In other words, it is assumed that each signal to be estimated is

only observed by one sensor although signals observed by different sensors may be correlated

with each other.

Assume that the ith sensor observes a noisy version of a local signal of interest, denoted

1It is assumed that the observations of each sensor are communicated to the FC by itself if it is directly
connected to the FC, by a subset of connected sensors to the FC with which it shares its observations if it
is not directly connected to the FC, or by both.
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Figure 5.1: System model of a WSN with error-free inter-sensor collaboration in which the

FC finds an estimate of θ
def
= [θ1, θ2, . . . , θK ]T .

by θi. Therefore, the observation function Ξi (·) in Equation (1.1) is defined as

Ξi (θ)
def
= θi,

and the local noisy observation at the ith sensor is found as

ri = θi + wi, i = 1, 2, . . . , K, (5.1)

where θi is the local unknown random signal to be estimated at the FC, and wi is the

observation noise. Assume that the random vector of signals observed at different sensors θ
def
=

[θ1, θ2, . . . , θK ]T has zero mean and is spatially correlated with the known auto-correlation

matrix Rθ
def
= E

[
θθT

]
, where (·)T represents the vector/matrix transpose operation and

E [·] denotes the expectation operation. Furthermore, assume that the vector of observation

noises w
def
= [w1, w2, . . . , wK ]T is Gaussian with zero mean and Rw

def
= E

[
wwT

]
defined as

its auto-correlation matrix, i.e., w ∼ N (0,Rw). It is assumed that the random vectors θ

and w are independent.

With the exception of [90], most studies in the literature assume that there is no inter-

sensor communication and/or collaboration, and that each sensor processes only its own

local noisy observations before transmitting them to the FC. In this chapter, we assume

that the sensors share their observations with each other through error-free, low-cost links.2

2If the distance between sensors is a lot smaller than the distance between sensors and the FC, we can ignore
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Suppose that the inter-sensor connectivity is modeled by an M -by-K adjacency matrix A,

whose elements are either zero or one. If Aj,i = 1, then sensor j has access to the local ob-

servations of sensor i through a low-cost link. Otherwise, Aj,i = 0. Note that in general, the

adjacency matrix A is not necessarily symmetric since a sensor may receive the observations

of a subset of other sensors, but it may not share its own observations with them. Moreover,

Aj,j = 1, j = 1, 2, . . . ,M , as each sensor has access to its own local observations.

Suppose that the sensors are sorted so that the first M sensors are connected to the FC.

Each connected sensor to the FC uses an amplify-and-forward strategy and forms a linear

combination of all local observations to which it has access as

uj =
K∑
i=1

Aj,i=1

αj,iri, j = 1, 2, . . . ,M, (5.2)

where uj is the locally processed and transmitted data by the jth sensor, and αj,i is the

weight of the ith observation in the linear combination that sensor j forms to be transmitted

to the FC. Note that the above analog local processing can be rewritten in a vector form as

u = αr, (5.3)

where u
def
= [u1, u2, . . . , uM ]T is the column vector of transmitted signals from the sensors that

are connected to the FC, r
def
= [r1, r2, . . . , rK ]T is the vector of local noisy observations, and α

is an M -by-K mixing matrix. It can easily be seen that αj,i = 0 if Aj,i = 0, and αj,i = αj,i

if Aj,i = 1. Note that the average cumulative transmission power of the entire network is

found as

PTotal = E
[
uTu

]
= E

[
rTαTαr

]
= Tr

[
E
[
uuT

]]
= Tr

[
αE

[
rrT
]
αT
]

= Tr
[
αE

[
(θ + w) (θ + w)T

]
αT
]

= Tr
[
α (Rθ + Rw)αT

]
,

(5.4)

where Tr [·] denotes the trace operation of a square matrix. Therefore, the choice of the

mixing matrix α affects the average cumulative transmission power of the network. Hence,

determining the mixing matrix α can be considered a power-allocation strategy.

the transmission cost of inter-sensor communications as it is a lot smaller than that of the communication
between local sensors and the FC.
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The model of the communication channels between local sensors and the FC is the same

as the one introduced in Subsection 1.1.3. The received signal from sensor j at the FC is

modeled as

zj = hjuj + nj = hj

K∑
i=1

Aj,i=1

αj,iri + nj

= hj

K∑
i=1

Aj,i=1

αj,iθi + hj

K∑
i=1

Aj,i=1

αj,iwi + nj

j = 1, 2, . . . ,M. (5.5)

Suppose that the vector of channel noises n
def
= [n1, n2, . . . , nM ]T is Gaussian with zero mean

and Rn
def
= E

[
nnT

]
as its auto-correlation matrix, i.e., n ∼ N (0,Rn). The above model for

the communication channels between local sensors and the FC can be rewritten in a vector

form as

z = Hu + n = Hαr + n = Hαθ + Hαw + n, (5.6)

where z
def
= [z1, z2, . . . , zM ]T is the vector of the received data from local sensors at the FC,

and H = diag (h1, h2, . . . , hM) is a diagonal M -by-M matrix, whose mth diagonal element is

the fading coefficient of the channel between sensor m and the FC. In the following analyses,

we assume that the FC has perfect knowledge of the instantaneous fading coefficients of the

channels between the sensors and itself. This requirement can be satisfied by, for example,

using pilot signals.

5.4 Derivation of Optimal Power Allocation

It can be seen from Equation (5.6) that, due to the independence of w and n, given a

realization of the vector of locally observed signals θ and a realization of the fading coef-

ficients of the channels between local sensors and the FC (i.e., H), the received vector of

signals at the FC (i.e., z) is a Gaussian random vector with mean µz|{θ,H} = Hαθ and

covariance matrix Rz|{θ,H} = HαRwα
THT + Rn. In other words,

z
∣∣∣ {θ,H} ∼ N (Hαθ,HαRwα

THT + Rn

)
.
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Upon receiving the faded and noisy version of the vector of locally processed observations, the

FC finds the BLUE estimator for the vector of observed signals θ as follows [84, Chapter 6]:

θ̂ =
(
αTHT

(
HαRwα

THT + Rn

)−1
Hα

)−1

αTHT
(
HαRwα

THT + Rn

)−1
z, (5.7)

where the corresponding covariance matrix of the BLUE estimator is found as

Rθ̂ = E
[(

θ̂ − θ
)(

θ̂ − θ
)T]

=
(
αTHT

(
HαRwα

THT + Rn

)−1
Hα

)−1

.

(5.8)

Note that the calculation of the BLUE estimator is independent of the statistics of the

signal to be estimated θ. As it can readily be observed from Equation (5.8), the choice of

the mixing matrix α affects the estimation distortion at the FC, which can be defined based

on the given covariance matrix of the BLUE estimator.

The goal of this chapter is to derive an optimal mixing matrix α that minimizes the total

distortion in the estimation of θ at the FC, given a constraint on the average cumulative

transmission power of the sensors. We define the total estimation distortion at the FC as the

“trace of the covariance matrix of the BLUE estimator,” which is the sum of the estimation

variances for different components of θ. This objective can be formulated as the following

optimization problem:

minimize
α

Tr
[
αTHT

(
HαRwα

THT + Rn

)−1
Hα

]−1

subject to Tr
[
α (Rθ + Rw)αT

]
≤ PT

(5.9)

where PT is the constraint on the total average transmission power in the entire network.

The following lemma will be used to simplify the objective function of the above constrained

optimization problem.

Lemma 5.4.1. A lower bound on Tr
[
Rθ̂

]
can be found as

Tr
[
Rθ̂

]
≥ K2

Tr
[
αTHT (HαRwαTHT + Rn)−1 Hα

] . (5.10)

Proof. It is proved in [88, Lemma 1] that for any arbitrary real matrix Φ and any positive

semi-definite real matrix Λ of proper sizes, the following inequality holds:

Tr
[
ΦTΛ−1Φ

]
≥
(
Tr
[
ΦTΦ

])2

Tr [ΦTΛΦ]
.
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Let Φ
def
= IK and Λ

def
= Rθ̂, where IK denotes the K-by-K identity matrix. The lower bound

of the lemma is readily derived.

Using the result of Lemma 5.4.1, the optimization problem of Equation (5.9) can be

rewritten as follows:

maximize
α

Tr
[
αTHT

(
HαRwα

THT + Rn

)−1
Hα

]
subject to Tr

[
α (Rθ + Rw)αT

]
≤ PT

(5.11)

Lemma 5.4.2. The optimization problem given in Equation (5.11) is equivalent to the fol-

lowing form:

minimize
α,γ,Γ

γ

subject to Tr
[
α (Rθ + Rw)αT

]
≤ PT(

Γ R−1
w

R−1
w αTHTR−1

n Hα + R−1
w

)
� 0

Tr [Γ] ≤ γ

(5.12)

where γ is a real scalar, Γ is a symmetric K-by-K real matrix, and Υ � 0 denotes that the

matrix Υ is positive semi-definite.

Proof. Based on the Woodbury matrix inversion lemma [91, Page 19], for any arbitrary

matrix Υ and any non-singular matrices Φ and Λ of proper sizes, if the matrix Φ + ΥΛΥT

is non-singular, then the following identity holds:

(
Φ + ΥΛΥT

)−1
= Φ−1 −Φ−1Υ

(
Λ−1 + ΥTΦ−1Υ

)−1
ΥTΦ−1.

Let Φ
def
= R−1

w , Λ
def
= R−1

n , and Υ
def
= αTHT . Using the above matrix identity, the argument

of the trace operation in the objective function of Equation (5.11) can be simplified as

αTHT
(
HαRwα

THT + Rn

)−1
Hα = R−1

w −R−1
w

(
αTHTR−1

n Hα + R−1
w

)−1
R−1

w .

Hence, the optimization problem defined in Equation (5.11) can be rewritten as

minimize
α

Tr
[
R−1

w

(
αTHTR−1

n Hα + R−1
w

)−1
R−1

w

]
subject to Tr

[
α (Rθ + Rw)αT

]
≤ PT

(5.13)
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Let γ be a real scalar such that for any mixing matrix α, the following inequality holds:

Tr
[
R−1

w

(
αTHTR−1

n Hα + R−1
w

)−1
R−1

w

]
≤ γ. (5.14)

There exists a symmetric K-by-K real matrix Γ such that [89]

R−1
w

(
αTHTR−1

n Hα + R−1
w

)−1
R−1

w � Γ (5.15a)

and Tr [Γ] ≤ γ (5.15b)

where Φ � Λ means that the matrix Λ−Φ is positive semi-definite, denoted as Λ−Φ � 0.

In other words,

Γ−R−1
w

(
αTHTR−1

n Hα + R−1
w

)−1
R−1

w � 0. (5.16)

Based on the Schur’s complement theorem [91, Page 472], for any arbitrary matrix Υ

and any symmetric matrices Φ and Λ of proper sizes, if Λ is invertible and Λ � 0, then

Φ−ΥΛ−1ΥT � 0 if and only if (
Φ Υ

ΥT Λ

)
� 0,

where Λ � 0 means that the matrix Λ is positive definite. Let Φ
def
= Γ, Υ

def
= R−1

w , and

Λ
def
= αTHTR−1

n Hα+R−1
w . Note that any real symmetric matrix Λ is positive semidefinite if

and only if it can be factored as Λ
def
= ΨΨT , where Ψ is an arbitrary matrix [91]. Using the

Schur’s complement, the condition shown in Equation (5.16) is equivalent to the following

matrix being positive semi-definite:(
Γ R−1

w

R−1
w αTHTR−1

n Hα + R−1
w

)
� 0.

Based on the above discussions, the optimization problem given in Equation (5.13) is

equivalent to the constrained optimization problem defined in Equation (5.12), and the

proof of Lemma 5.4.2 is concluded.

The constrained optimization problem defined in Equation (5.12) is a linear program-

ming with bi-linear matrix-inequality constraints. It can efficiently be solved using numerical

solvers such as PENBMI [92], which is fully integrated within the MATLAB R© environment

through version 3.0 of the YALMIP interface library [93].
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5.5 Numerical Analysis

In this section, the numerical results are presented to show the effect of spatial collabo-

ration among sensors on the estimation performance at the FC of a WSN. Suppose that

K = 6 sensors are randomly and uniformly distributed in the two-dimensional rectangle of

[−10, 10] × [−5, 5], where × denotes the Cartesian product of two sets. It is assumed that

all sensors are connected to the FC, i.e., M = K. Let the covariance between the signals

observed by sensors i and j be defined as

Rθi,j
def
= E [θiθj]

def
= σ2

θ ρi,j, i, j = 1, 2, . . . , K, (5.17)

where σ2
θ is the variance of each component of the vector of signals to be estimated θ, and

ρi,j is the inter-sensor correlation coefficient that monotonically decreases with the increase

of the distance between sensors as

ρi,j
def
= e

−
(
di,j
κ1

)κ2
, i, j = 1, 2, . . . , K, (5.18)

where di,j is the distance between sensors i and j, κ1 > 0 is the normalizing factor of the

distances, and 0 < κ2 ≤ 2 controls the rate of the decay of the correlation coefficients with

distance. Note that ρi,i = 1, i = 1, 2, . . . , K. Assume that the vectors of observation noise w

and channel noise n are homogeneous and equi-correlated with their covariance matrix de-

fined as

Rw = σ2
w

[
(1− λw) IK + λw11T

]
(5.19a)

Rn = σ2
n

[
(1− λn) IM + λn11T

]
(5.19b)

where σ2
w and σ2

n are the variances of each component of the vectors of observation noise w

and channel noise n, respectively, λw and λn are the constant correlation coefficients between

each pair of distinct components of w and n, respectively, and 1 is a column vector of

all ones with appropriate length. To generate our numerical results, the coefficients of

the communication channels between local sensors and the FC are assumed to be unit,

i.e., hj = 1, j = 1, 2, . . . ,M . The following values are used for the parameters of the system

to generate the numerical results presented in this section: σ2
θ = 1, κ1 = 6, κ2 = 3, σ2

w = 0.1,

σ2
n = 0.01, and λw = λn = 0.1.



Mohammad Fanaei Chapter 5. Spatial Collaboration for Distributed Estimation 98

0 2 4 6 8 10 12 14

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average Cumulative Transmission Power (PT) in dB

To
ta

l E
st

im
at

io
n 

D
is

to
rti

on

 

 

-5

0

5
Network 1

-10 -5 0 5 10-5

0

5
Network 2

q=0 No Collaboration
q=1 (Network 1)
q=3 (Network 1)
q=1 (Network 2)
q=3 (Network 2)

Figure 5.2: Total estimation distortion at the FC versus the average cumulative transmission

power for different degrees of spatial collaboration within two random network realizations.

Figure 5.2 shows the total estimation distortion at the FC, as defined by the objective

function of the optimization problem in Equation (5.9), versus the total average transmission

power in the entire network PT for two network realizations. Each sensor collaborates with

its q closest neighbors by sharing its local noisy observations with them through error-free,

low-cost links. Note that q = 0 represents a network without any spatial collaboration, and

q = K − 1 corresponds to a network with full spatial collaboration. As evident from this

figure, even moderate collaboration among sensors decreases the estimation distortion at the

FC. The collaboration gain is more significant when the signals to be estimated have a higher

correlation, i.e., when the sensors observing them are located more closely, as depicted in

Network 2.

5.6 Conclusions

In this chapter, we studied the effect of spatial collaboration on the performance of the

BLUE estimator at the FC of a WSN that tries to estimate the vector of spatially correlated

signals observed by sensors, rather than the well-studied case of estimating a common signal

observed by a collection of sensors. An optimal linear spatial-collaboration scheme was

derived that minimizes the sum of the estimation variances of different signals observed by
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the network, given a constraint on the average cumulative transmission power in the entire

network. The numerical results showed that even a small degree of connectivity and spatial

collaboration in the network improves the quality of the estimators at the FC, and that the

collaboration gain is more significant when the signals observed by sensors have a higher

spatial correlation.
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Chapter 6

Effects of Spatial Randomness on

Source Localization with Distributed

Sensors

6.1 Introduction

The problem of energy-based source localization using a set of spatially distributed, ran-

domly located, limited-power sensors forming a wireless sensor network (WSN) has recently

attracted a lot of attention in the research community [28,29,81,94–98]. An effective source

localization can be a first step in a broad range of other applications such as navigation,

tracking, and geographic routing. In this context, the sensors make noisy observations of the

energy transmitted by, for example, an RF or acoustic source at their locations, process their

noisy observations locally by, for instance, quantizing them, and send their processed data to

a central entity in the network, known as the fusion center (FC), for further processing. The

FC will then combine the received signals from the sensors, which are potentially corrupted

by the communication channels between the sensors and itself, to estimate the location of

the energy-transmitting source. As is common in the literature, it is reasonable to assume

that the locations of the sensors are known at the FC, which can be achieved using any form

of cooperative localization schemes (e.g., [99–103]).

The analyses and performance assessments in most of the works proposed in the literature
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for source localization can easily be generalized to a generic case in which the sensors are

randomly located within the surveillance region covered by the network. Of course, the real-

ization of the network geometry after its deployment should be known at the FC. However,

the results of the performance analysis are usually presented for a fixed network topology

such as a regular grid deployment [29] or for an average behavior of a number of random net-

work realizations [96]. To the best of our knowledge, the effect of randomness of the sensor

placement on the performance of source-localization schemes has been relatively unexplored,

beyond analyzing the network’s average behavior [104, 105]. Srinivasa and Haenggi [104]

have considered the problem of distributed estimation of the path-loss exponent in an envi-

ronment in which an RF signal is broadcast, where the sensors are distributed according to

a Poisson point process and sensor transmissions can interfere with each other.

The goal of this chapter is to assess the performance of a typical source-localization

scheme under different scenarios of random network realizations using numerical simula-

tions. In other words, the question that we are trying to answer is as follows: Given a

specific localization scheme, how does a randomly deployed WSN within a fixed surveillance

region perform in terms of the localization accuracy? Note that answering this question

gives significantly more insight into the design of a network than predicting only the average

behavior of a randomly deployed system. Therefore, we are not proposing a new local-

ization scheme, but rather we are applying concepts from stochastic geometry and point

processes [106–109] to investigate the performance of a refined and special version of a re-

cently proposed source-localization algorithm [29]. A novel performance measure called the

localization outage will be introduced to assess the performance of a typical localization algo-

rithm. Numerical methods will be used to determine what parameters affect the performance

of the given localization scheme when the sensors are placed according to a binomial point

process with repulsion, which is also known as a uniform clustering process. The results of

this analysis can be used to guide network deployment. If these guidelines are followed, a

randomly formed network can be guaranteed (with some confidence) to achieve a minimum

performance in terms of the localization accuracy.

The rest of this chapter is organized as follows: Section 6.2 describes the system model

considered in our analyses. In Section 6.3, the source-localization scheme proposed in [29] is
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summarized and the Cramér-Rao lower bound (CRLB) for the location estimator based on

the binary quantized data at the sensors is derived. The effects of the random realization of

the network geometry on the aforementioned localization scheme are shown through numer-

ical simulations in Section 6.4. Section 6.5 introduces the concept of localization outage for

a random network realization and discusses the effects of exclusion zones around sensors on

the performance of an arbitrary random realization of the network geometry. Finally, the

chapter is concluded in Section 6.6.

6.2 System Model

Suppose that a WSN is composed of a FC and K sensors arbitrarily located in the two-

dimensional space R2 within a circular surveillance region S ⊆ R2 with radius R and spatially

distributed according to any point process. Assume that a point source located at (xT, yT) ∈

S emits energy omni-directionally and that its power received by an arbitrary sensor i located

at (xi, yi) ∈ S is

Pi = P0

(
d0

di

)α
, di ≥ d0 and i = 1, 2, . . . , K, (6.1)

where P0 is the received power from the source at the reference distance d0, α is the power-

decay exponent, and di is the distance between the source and sensor i defined as

di =

√
(xT − xi)2 + (yT − yi)2, i = 1, 2, . . . , K.

An example of the random realization of such network topology is shown in Figure 6.1,

where K = 50 sensors are randomly distributed in a circular region with radius R = 50.

Other parameters shown in the figure are introduced later in this chapter. It should be

mentioned that in addition to RF point sources, one of the most well-studied sources that

satisfies the above power-decay model is the acoustic source, whose localization has widely

been studied in the literature [95].

Let θ
def
= [P0, xT, yT]T denote the vector of deterministic parameters associated with the

source, where [·]T represents the transpose operation. The ultimate goal of the WSN is to

estimate these parameters. More specifically, the focus of this chapter is on the estimation
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Figure 6.1: The network topology of an example WSN consisting of K = 50 sensors denoted

by ‘×’, whose objective is to localize a source target denoted by ‘∗’ and located at (xT, yT) =

(5, 10). The sensors are randomly placed in the circular surveillance region with radius R =

50 and centered at the origin according to a uniform clustering process. Each sensor is

surrounded by an exclusion zone with radius Rex = 5, shown by a dotted circle around the

sensor. A dashed circle with radius RT = 14 is depicted around the source target, within

which there is KT = 1 sensor enclosed.

of the source location. Figure 6.2 shows the functional diagram of the WSN. Assume that

the ith sensor observes a noisy version of the received power of the broadcast signal at its

location. Therefore, the observation function Ξi (·) in Equation (1.1) is defined as

Ξi (θ)
def
=
√
Pi.

Based on the above power-decay model, the local noisy observation at the ith sensor is found

as

ri =
√
Pi + wi, i = 1, 2, . . . , K. (6.2)

Note that each sensor can make N consecutive observations over a specific time interval T
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Figure 6.2: Functional system model of a WSN in which the FC localizes a source of energy.

and average them to find the observed signal as shown in Equation (6.2). The time averaging

of the local observations results in an observation noise with smaller variance. We define

the observation signal-to-noise ratio (SNR) at sensor i as ψi
def
= P0

σ2
i
, i = 1, 2, . . . , K. Upon

observing the received noisy signal, each sensor uses a binary quantization scheme to quantize

its local observation as

ui =

 0, if ri < βi

1, if ri ≥ βi
i = 1, 2, . . . , K, (6.3)

where βi is the binary quantization threshold at sensor i. This is a special case of the digital

local processing scheme introduced in Subsection 1.1.2 under Equation (1.3). Note that the

sensors can process their noisy observations using various processing schemes. The simple

binary quantization method considered as an example does not limit the generality of the

following discussions and has only been used to emphasize the main objective of this chapter,

which is to study how spatial randomness affects the performance of a typical localization

scheme.

The model of the communication channels between the sensors and the FC is the same

as the one introduced in Subsection 1.1.3. More specifically, each sensor will use an on-off

keying (OOK) scheme to send its quantized data to the FC through orthogonal channels

corrupted by fading and additive white Gaussian noise (AWGN). The received signal from
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sensor i at the FC is

zi = hi
√
Ebi ui + ni, i = 1, 2, . . . , K, (6.4)

where
√
Ebiui is transmitted by the ith sensor, hi is the multiplicative fading coefficient of

the channel between sensor i and the FC, and ni is the spatially independent, zero-mean,

complex Gaussian random variable with variance τ 2
i , i.e., ni ∼ CN (0, τ 2

i ). In this chapter,

it is assumed that the channels between the sensors and the FC experience Rayleigh fading

and therefore, the random variable hi is assumed to be spatially independent, zero-mean,

complex Gaussian with unit power, i.e., hi ∼ CN (0, 1). It is also assumed that the FC

does not have access to the instantaneous channel coefficients and that it only knows their

distribution. We define the channel SNR for sensor i as ηi
def
=
Ebi
τ2i

, i = 1, 2, . . . , K.

Upon receiving the signal from sensor i, the FC finds the energy of the received signal

as ti = |zi|2, i = 1, 2, . . . , K, where |·| denotes the absolute-value operation. Having access

to t
def
= [t1, t2, . . . , tK ]T , the FC finds the maximum likelihood (ML) estimate of the vector of

unknown parameters θ as explained in the following section.

6.3 Derivation of ML Estimator and CRLB

As mentioned in the previous section, the sensors are arbitrarily located in the surveillance

region S. However, it is assumed that the FC knows their exact locations after the de-

ployment of the WSN. This assumption can in practice be satisfied using any localization

scheme [99–103]. Note that the method and criteria for the localization of distributed sensors

can in general be quite different from those of a single energy-emitting source, as considered

in this chapter.

Let Ω be a variable denoting a realization of the network geometry, when the WSN is

deployed and the set of {(xi, yi)}Ki=1 (and consequently, the set of {di}Ki=1) is fixed. It is

intuitive that the performance of any source-localization scheme, including the one studied

in this chapter, depends on the specific realization of the network geometry. The main goal of

this chapter is to study the effect of variable Ω as the network geometry on the performance

of a source-localization scheme similar to the one proposed in [29]. In the rest of this section,
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the ML estimator and its corresponding CRLB proposed in [29] are summarized in order to

assess the effect of network geometry on their performance.

6.3.1 Derivation of ML Estimator

Based on the observation model introduced in Equation (6.2) and the binary quantization

rule specified in Equation (6.3), the probability density function (pdf) of each sensor’s quan-

tized data parameterized by the vector of unknown parameters to be estimated, given a

realization of the network geometry Ω, is found as

fUi|Ω (ui : θ|Ω) = Q

(√
Pi − βi
σi

)
δ [ui] +Q

(
βi −

√
Pi

σi

)
δ [ui − 1] , (6.5)

where δ [·] denotes the discrete Dirac delta function, and Q(·) is the complementary cu-

mulative distribution function (CCDF) of the standard Gaussian random variable defined

as

Q(x)
def
=

1√
2π

∫ ∞
x

e−
t2

2 dt.

Based on the channel model introduced in Equation (6.4), given any binary sensor deci-

sion ui, the signal received from sensor i at the FC is a complex Gaussian random variable

with zero mean and variance Ebiu2
i + τ 2

i , i.e., zi|ui ∼ CN (0, Ebiu2
i + τ 2

i ). Note that the chan-

nel fading coefficient and the channel AWGN are assumed to be independent. Based on this

result, the energy of the received signal from sensor i at the FC, given the sensor’s binary

decision, is exponentially distributed with parameter ζi
def
= 1
Ebiu

2
i+τ

2
i
, i.e., ti|ui ∼ E

(
1

Ebiu
2
i+τ

2
i

)
.

Therefore, given a realization of the network geometry Ω, the joint pdf of the vector of re-

ceived energies from different sensors at the FC, parameterized by the vector of unknown

parameters to be estimated can be written as

fT|Ω (t : θ|Ω) =
K∏
i=1

fTi|Ω (ti : θ|Ω) , (6.6)

where

fTi|Ω (ti : θ|Ω) =

∫
fTi|Ui (ti|ui) fUi|Ω (ui : θ|Ω) dui

(a)
=

1

τ 2
i

e
− ti
τ2
i Q

(√
Pi − βi
σi

)
+

1

Ebi + τ 2
i

e
− ti
Ebi+τ

2
i Q

(
βi −

√
Pi

σi

) (6.7)
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where (a) is based on the sifting property of the Dirac delta function. It is well known that

the ML estimate of the vector of unknown parameters at the FC using the vector of the

received energies from local sensors is found as [84, Chapter 7]

θ̂Ω = arg max
θ

ln
(
fT|Ω (t : θ|Ω)

)
, (6.8)

where the subscript Ω for the ML estimator signifies that it depends on the realization of

the network geometry.

6.3.2 Derivation of CRLB

The performance of any estimator can be quantified by its variance. The CRLB expresses a

lower bound on the variance of any unbiased estimator θ̂Ω as [84, Chapter 3]

E
[(

θ̂Ω − θ
)(

θ̂Ω − θ
)T]
� I−1

Ω (θ) , (6.9)

where E [·] represents the expectation operation with respect to the joint pdf of the vector

of received energies from different sensors at the FC, Φ � Λ means that the matrix Φ−Λ is

positive semi-definite, and IΩ (θ) denotes the Fisher information matrix (FIM) for the given

realization of the network geometry Ω, whose element in row m and column n is defined as

[IΩ (θ)]m,n = −E

[
∂2 ln

(
fT|Ω (t : θ|Ω)

)
∂θm∂θn

]
.

Based on the joint pdf of the vector of received energies from different sensors at the FC

defined in Equations (6.6)–(6.7), the FIM for the given observation and channel models and

given a realization of the network geometry Ω is found as follows [29]:

IΩ (θ) =

K∑
i=1

Gi,Ω (θ)Pi
8πσ2

i P0

e
− (
√
Pi−βi)

2

σ2
i

∫ ∞
0

1

fTi|Ω (ti : θ|Ω)

(
1

Ebi + τ 2
i

e
− ti
Ebi+τ

2
i − 1

τ 2
i

e
− ti
τ2
i

)2

dti,

(6.10)

where fTi|Ω (ti : θ|Ω) is found in Equation (6.7), and Gi,Ω (θ) is a symmetric 3-by-3 matrix

defined as

Gi,Ω (θ)
def
=


1
P0

α
d2i

(xi − xT) α
d2i

(yi − yT)

α
d2i

(xi − xT) P0α2

d4i
(xT − xi)2 P0α2

d4i
(xT − xi) (yT − yi)

α
d2i

(yi − yT) P0α2

d4i
(xT − xi) (yT − yi) P0α2

d4i
(yT − yi)2

. (6.11)
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Note that the matrix Gi,Ω (θ) and consequently, the FIM and CRLB depend on the realization

of the network geometry.

6.3.3 Performance-Assessment Metric for Localization Schemes

One of the main measures used to assess the performance of any source-localization scheme

is the geometric location-estimation error (GLE) defined as [81]

GLEΩ
def
=

√
(x̂T,Ω − xT)2 + (ŷT,Ω − yT)2, (6.12)

where the subscript Ω signifies that the GLE depends on the realization of the network

geometry. Note that given a specific realization of the network geometry Ω, the following

lower bound can be established on the mean squared GLE using the CRLB as defined in

Equation (6.9):

MSGLEΩ
def
= E

[
GLE2

Ω

]
= E

[
(x̂T,Ω − xT)2 + (ŷT,Ω − yT)2]

≥
[
I−1

Ω (θ)
]

2,2
+
[
I−1

Ω (θ)
]

3,3
,

(6.13)

where MSGLEΩ denotes the mean squared GLE, given a specific realization of the network

geometry Ω, and the expectation operation is calculated with respect to the distributions of

the observation noise, channel fading coefficients, and channel noise.

Since there is no closed-form equation for finding MSGLEΩ, we resort to a Monte-Carlo

approach for its calculation as follows. For a fixed arbitrary realization of the network geom-

etry Ω, the set of sensors’ locations {(xi, yi)}Ki=1 and consequently, the sets of their distances

to the source target {di}Ki=1 and the received power from the source at their locations {Pi}Ki=1

(defined in Equation (6.1)) are fixed. In order to find the empirical mean squared GLE, NMC

Monte-Carlo trials are performed for the given network geometry by generating random ob-

servation noises, channel fading coefficients, and channel noises based on their respective

distributions introduced in Section 6.2. The empirical mean squared GLE for the given

network realization can then be found as

MSGLEΩ =
1

NMC

NMC∑
m=1

SGLE
(m)
Ω

=
1

NMC

NMC∑
m=1

(
x̂

(m)
T,Ω − xT

)2

+
(
ŷ

(m)
T,Ω − yT

)2

,

(6.14)
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where SGLEΩ
def
= GLE2

Ω and GLEΩ is defined in Equation (6.12), and the superscript m denotes

the result obtained in the mth Monte-Carlo trial.

6.3.4 Derivation of Optimal Local Quantization Thresholds

Note that the performance of both empirical mean squared GLE and its corresponding CRLB

for any fixed network realization is a function of the sensors’ binary quantization thresholds.

In this chapter, the optimal set of local quantization thresholds are found based on the ap-

proach proposed in [28]. According to this method, since the main focus of this chapter is

the accurate localization of the source target and not so much the accurate estimation of

P0 as the received power from the source at the reference distance d0, the binary quanti-

zation thresholds are found such that the CRLB on the mean squared GLE as defined in

Equation (6.13) is minimized. In other words, the optimal set of binary quantization thresh-

olds for the optimal source-localization scheme can be found as [28]{
βOPT
i

}K
i=1

= arg min
{βi}Ki=1

([
I−1

Ω (θ)
]

2,2
+
[
I−1

Ω (θ)
]

3,3

)
, (6.15)

where the conditional FIM IΩ (θ), given the current network realization Ω is found using

Equations (6.10)–(6.11).

6.4 Numerical Performance Assessment

Ozdemir et al. [29] have reported the performance of their proposed source-localization

scheme summarized in Subsections 6.3.1 and 6.3.2 for a WSN deployed in a regular grid

configuration. As mentioned previously, the performance of the source-localization method

is heavily affected by the realization of the network geometry. In order to observe this depen-

dence, suppose that a WSN consisting of K = 50 sensors is randomly deployed to estimate

the location and parameter P0 of a source target located at (xT, yT) = (5, 10), for which

P0 = 10, 000, d0 = 1, and the power-decay exponent is α = 2. The sensors are randomly

placed in the circular surveillance region with radius R = 50 and centered at the origin

according to a uniform clustering process. The local observation noises are assumed to be

identically distributed with the same variance σ2 ≡ σ2
i = P0

ψ
, where ψ ≡ ψi is the common
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Figure 6.3: Empirical RMSE of the source-location estimation, shown by solid lines, and

its corresponding CRLB, shown by dashed lines, vs channel SNR in dB for three different

random realizations of the network geometry, when the observation SNR is ψ = 40 dB.

observation SNR. Similarly, the local channel noises are assumed to be identically distributed

with the same variance τ 2 ≡ τ 2
i = Eb

η
, where Eb ≡ Ebi = 1 dB is the common transmission

energy when ui = 1 is sent, and η ≡ ηi is the common channel SNR. Due to the homogeneous

nature of the network, all of the binary quantization thresholds are assumed to be identical

to β ≡ βi. The results have been found by averaging over NMC = 10, 000 Monte-Carlo trials

as explained in Subsection 6.3.3.

Figure 6.3 shows the empirical root mean-squared error (RMSE) for the source-location

estimation, plotted by solid lines, and its corresponding CRLB, plotted by dashed lines, as

functions of the channel SNR η for three different random network realizations, when the

observation SNR is fixed at ψ = 40 dB. Details of generating each random network geometry

are explained in the next section. The first and second network realizations corresponding to

the curves without marker and with the circle marker, respectively, are shown in the corners

of Figure 6.3, where sensors are denoted by ‘×’. In these two network realizations, there is

no exclusion zone considered around the sensors (i.e., Rex = 0) and therefore, they may be

placed very close to each other. The network realization corresponding to the curves shown

by the square marker ‘2’ is depicted in Figure 6.1. In this case, each sensor is surrounded
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by an exclusion zone with radius Rex = 5 and therefore, all of the sensors will be apart from

each other by at least 5 units of length. It can be seen in this figure that the performance of

the source-localization scheme highly depends on the realization of the network geometry. It

also shows that as the channel SNR increases, the error in the localization decreases and gets

closer to its CRLB, as expected. Similar results can be found by considering the localization

performance as a function of the observation SNR.

A close look at all network configurations shown in Figure 6.1 and the corners of Figure 6.3

reveals that a circle with radius RT = 14 is centered at the source target and shown by a

dashed line. In Network 1 shown at the top of Figure 6.3, there are only two sensors located

within this region surrounding the target, whereas in Network 2 shown at the bottom of this

figure, there are six such sensors in the same vicinity of the target. This difference partially

explains why the performance of the localization scheme using the two different network

realizations is completely different. When there are more sensors within the immediate

vicinity of the target, the localization error will be lower since the observations are of higher

quality. This point will further be discussed with more details in Subsection 6.5.2.

6.5 Spatial Dependence of Source Localization

In this section, we study the effects of spatial randomness, i.e., random realization of the

network geometry, on the performance of the source-localization scheme proposed in [29]

and summarized in Section 6.3, through a numerical Monte-Carlo approach. Note that

the performance evaluations presented here can easily be extended to any other source-

localization method.

Let the localization outage event in the space of random realizations of network geometry

be defined as

A (γ)
def
=
{

Ω : MSGLEΩ > γ2
}
.

Based on the above definition, a localization outage occurs when the root mean squared

distance between the estimated location of the source (x̂T, ŷT) and its true value (xT, yT)

exceeds a prespecified threshold γ. In other words, a realization of the network geometry Ω

is said to be in outage if on average, the source-location estimation using that network
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deployment produces an error beyond an acceptable threshold γ.

It can be observed that the localization outage is a random variable depending on the

distribution of the network geometry. In order to assess the dependence of the localization

outage on the realization of the network geometry, we will use the CCDF of the random

variable MSGLEΩ defined as

FMSGLE (γ)
def
= P

[
MSGLEΩ > γ2

]
, (6.16)

where the right-hand side of the equation is the probability that an arbitrary network ge-

ometry is in outage, as defined above.

In the following discussions, the performance assessments will be based on a Monte-Carlo

approach with 500 simulation trials ran as follows. In each simulation trial, a realization of

the network geometry is obtained by randomly placing K sensors within the circular region of

radius R. There can be an exclusion zone around each sensor within which no other sensors

can be placed. The sensors are located within the surveillance region successively according

to a uniform clustering process as follows. A pair of independent random variables (xi, yi),

i = 1, 2, . . . , K, is selected from a uniform distribution over [−R,R]. If the sensor falls

outside of the circular disk of radius R, i.e., x2
i + y2

i > R2, this process is repeated until the

sensor falls inside the surveillance region. If an exclusion zone of radius Rex is considered

around each sensor, the distances between the ith sensor and all i − 1 other sensors are

found, and the above process of assigning new random location to the ith sensor is repeated

as many times as necessary until the sensor is located outside of the exclusion zones of all

other previously located sensors in the network.

In the next step, the empirical mean squared GLE (i.e., MSGLEΩ) is found for a fixed

random realization of the network geometry Ω using the Monte-Carlo approach described in

Subsection 6.3.3 with NMC = 1, 000 trials per network realization. The CRLB on the mean

squared GLE is found only once for each network realization as defined in Equation (6.13).

The optimal local binary quantization threshold is fixed and found only once for any net-

work realization, using the approach discussed in Subsection 6.3.4. All of the simulation

parameters are exactly the same as those summarized in Section 6.4. The observation SNR

and channel SNR are fixed at ψ = 40 dB and η = 0 dB, respectively.
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Figure 6.4: CCDF of the empirical RMSE of the source-location estimation and its corre-

sponding CRLB vs the outage threshold γ for different settings of the network geometry.

The observation SNR and channel SNR are fixed at ψ = 40 dB and η = 0 dB, respectively.

6.5.1 Effect of Sensor Exclusion Zones on Source Localization

One of the parameters affecting the performance of any source-localization scheme, which

is based on the assumption of random sensor placement, is the exclusion zone around each

sensor. The exclusion zone is a circular disk around each sensor within which no other sensors

can be placed. It can be the result of a physical limitation that does not allow such proximity

of two sensors or it can be controlled by the network administrator during the network

deployment in order to guarantee a proper coverage of the surveillance region. Figure 6.4

depicts the CCDF of the empirical RMSE of the source-location estimation, as defined

by Equation (6.16), and its corresponding CRLB as functions of the outage threshold γ

for different values of the radius of sensor exclusion zones Rex. The results were obtained

using 500 Monte-Carlo trials for generating random network realizations as described at the

beginning of this section.

As it can be seen from Figure 6.4, the probability of an empirical localization outage

increases as the radius of the sensor exclusion zones increases. In other words, as the exclusion

zone around each sensor expands, the probability that the average GLE of an arbitrary

random network deployment exceeds a prescribed threshold increases, due to the fact that

the expansion of the exclusion zones around sensors results in them being located farther
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apart. Therefore, the number of sensors that can be located close to a target decreases on

average. This will result in a lower number of strong local measurements, which in turn

decreases the quality of the data available at the FC as more sensors are likely to have sent

zeros. It should be mentioned that for lower probabilities of localization outage, i.e., higher

values of outage threshold γ, the exclusion zones around sensors do not have much effect

as almost any network realization can on average satisfy the required accuracy of location

estimation. The same argument applies to the CCDF for the CRLB values on the root mean

squared location estimation error.

6.5.2 Effect of the Closest Sensors to Source on Localization

It is intuitive that the performance of any source-localization scheme depends mainly on the

observation and channel qualities of the closest sensors to the target. In order to investi-

gate this effect, consider a scenario in which there is no exclusion zone around the sensors,

i.e., Rex = 0. Note that similar results and discussions can be found for the network re-

alizations with an arbitrary exclusion zone around sensors. Let RT denote the radius of a

circular region around the target within which we assume the most important sensors to

the performance of the source-localization scheme are located. Let KT denote the number

of sensors located within this region. In the network realization depicted in Figure 6.1, the

region around the target is shown by a dashed line as a circle with radius RT = 14, and the

number of sensors within this region is KT = 1. Note that in general, 0 ≤ RT ≤ 2R and

0 ≤ KT ≤ K, where R is the radius of the surveillance region. Figure 6.5 depicts the CCDF

of the empirical RMSE of the source-location estimation, as defined by Equation (6.16), as

a function of the outage threshold γ for different values of RT and KT, when there is no

exclusion zone around the sensors, i.e., Rex = 0. The results were obtained in a similar way

to the procedure explained at the beginning of this section.

As it can be seen in Figure 6.5, for a given RT, the probability of localization outage

decreases as KT increases. In other words, if in the random realizations of the network

geometry, the number of sensors located within a fixed radius around the target increases,

the probability that an arbitrary network deployment is in outage drastically decreases. In
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Figure 6.5: CCDF of the empirical RMSE of the source-location estimation vs the out-

age threshold γ for different values of RT and KT, when Rex = 0. The network geometries

are generated without considering any sensor exclusion zones. The observation SNR and

channel SNR are ψ = 40 dB and η = 0 dB, respectively.

a similar discussion, for a given KT, the probability of outage decreases as the radius RT

decreases. In other words, if we need to expand the region around the target to have a

specific, fixed number of sensors located close to it, the probability of outage increases as

the region expands. Figure 6.5 shows that the effect of increasing KT for a fixed RT is

always noticeable, whereas the effect of decreasing RT for a fixed KT is more noticeable

when the number of sensors considered within the neighborhood of the target is larger. The

important implication of this discussion in practical network design is that the density of

the randomly deployed network should be above a threshold to guarantee that the sensors

are so closely located that if the target location is anywhere within the surveillance region,

there are enough number of sensors in its proximity.
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6.6 Conclusions

The main focus of this chapter was to quantify the effects of spatial randomness on the

performance of source-localization schemes. To this end and for demonstration purposes,

a recently proposed approach was studied in which the FC of a WSN finds the maximum-

likelihood estimate of the location of a point source (in addition to another parameter related

to the power-decay model of its power radiations). The FC uses the energies received from a

set of spatially distributed sensors that make binary quantization of their local noisy power

observations. The random realization of the network geometry was assumed to be according

to a uniform clustering process. The concept of localization outage was defined to be a

realization of the network geometry that on average fails to satisfy a required threshold

on the localization accuracy. The numerical results verified that the source-localization

performance is heavily affected by the realization of sensor deployment and that it highly

depends on the number of sensors that are within a close proximity of the source. This

conclusion suggests a guideline that the sensor density in the network should appropriately

be chosen such that enough number of sensors will be close to a target arbitrarily located

within a random realization of the network geometry. As the network density increases,

resulting in a higher number of sensors in a fixed disk around the source, the performance

of the localization scheme improves drastically. The effect of exclusion zones around sensors

was also studied based on which increasing the minimum sensor separation increases the

localization-outage probability, i.e., if the sensors are forced to be farther separated, it is

more likely that a random network realization will be in outage.
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Chapter 7

Summary and Future Work

In this dissertation, we investigated the problem of distributed detection, classification, and

estimation in WSNs, which enables a wide range of applications such as event detection,

classification, localization, system identification, and target tracking. In this chapter, a

summary of the problems considered in the previous chapters and the main results of each

proposed solution are presented in Section 7.1. Section 7.2 presents several avenues for

further exploration that can be considered a starting point for continued research in the

domain of distributed estimation in WSNs.

7.1 Summary

In Chapter 2, we presented an extensive literature review on the distributed detection and

classification in WSNs and summarized the results of major research accomplishments in this

area up to date. Furthermore, we proposed an approach for distributed multi-hypothesis clas-

sification of an underlying hypothesis at the FC of a WSN using local binary decisions based

on the known influence fields characterizing different hypotheses. The main contribution of

this chapter is the formulation of local and fusion decision rules that maximize the probabil-

ity of correct global classification at the FC, along with an algorithm for channel-aware global

optimization of the decision thresholds at local sensors and the FC. The results of numerical

analyses showed that the proposed approach simplifies decision making at the sensors while

achieving an acceptable performance in terms of the global average probability of correct
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classification at the FC, for a wide range of the parameters of the system, including the num-

ber of distributed sensors, the observation SNR, and the channel SNR. Furthermore, it was

shown that a global optimization of the local decision thresholds improves the probability

of correct classification at the FC compared to the case in which local thresholds are only

locally optimized.

In Chapter 3, the problem of distributed estimation of a vector of unknown parame-

ters associated with a deterministic, two-dimensional function using its spatially distributed,

noisy samples was considered in the context of WSNs. The ML estimate of the vector of

unknown parameters at the FC was derived for both analog and digital local processing

schemes. Since the ML estimate for the case of digital local processing scheme was too com-

plicated to be implemented, an efficient iterative EM algorithm was proposed to numerically

find the ML estimate in this case. Numerical simulation results proved that the proposed

distributed estimation framework achieves a very good performance in terms of the inte-

grated mean-squared error for reasonable values of the parameters of the system, including

the number of distributed sensors in the observation environment, the observation SNR, the

channel SNR, and the number of quantization levels for digital local processing scheme. In

particular, numerical performance analysis showed that even with a low number of quan-

tization levels at distributed sensors, i.e., high energy efficiency, the estimation framework

provides a very good performance in terms of the integrated mean-squared error.

In Chapter 4, an adaptive power-allocation scheme was proposed to find the optimal local

amplification gains in a distributed estimation framework. The proposed power allocation

minimizes the L2-norm of the vector of local transmission powers in a WSN, given a maximum

variance for the BLUE estimator of a scalar, random signal at the FC. This approach results

in an increase in the lifetime of the network at the expense of a potential slight increase

in the sum total transmission power of all sensors. This is because the proposed scheme

prevents the assignment of high transmission power to sensors by putting a higher penalty

on them, compared to similar approaches that are based on the minimization of the sum

of the local transmission powers. The limitation of the proposed power-allocation scheme

is that the optimal local amplification gains found based on it depend on the instantaneous

fading coefficients of the channels between the sensors and FC. The next contribution of this
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chapter was to propose a limited-feedback strategy to eliminate the requirement of infinite-

rate, error-free feedback of the instantaneous forward CSI from the FC to local sensors. This

scheme designs an optimal codebook by quantizing the vector space of the optimal local

amplification gains using the generalized Lloyd algorithm with modified distortion metrics.

Numerical results showed that the proposed adaptive power-allocation scheme achieves a high

energy efficiency, and that even with a limited number of feedback bits (small codebook), its

average energy efficiency based on the proposed limited-feedback strategy is close to that of

a WSN with full CSI feedback.

In Chapter 5, we investigated the effect of linear spatial collaboration on the performance

of the BLUE estimator at the FC of a WSN that estimates the vector of spatially correlated

signals observed by sensors. In this context, each sensor can collaborate with a subset of

other sensors by sharing its local observations with them through error-free, low-cost links.

An optimal linear spatial-collaboration scheme was derived in which the set of coefficients

or weights used to form linear combinations of shared noisy observations at the sensors con-

nected to the FC is derived. The objective of this power-allocation scheme is to minimize

the sum of the estimation variances of different signals observed by the network, given a

constraint on the average cumulative transmission power in the entire network. The numer-

ical results showed that even a small degree of connectivity and spatial collaboration in the

network improves the quality of the estimators at the FC, and that the collaboration gain is

more significant when the signals observed by sensors have a higher spatial correlation.

In Chapter 6, the effects of spatial randomness on the performance of source-localization

schemes were demonstrated using a recently proposed approach in which the FC of a WSN

finds the ML estimate of the location of a point source based on the energies received by a

set of spatially distributed sensors that make binary quantization of their local noisy power

observations. The random realization of the network geometry was assumed to be according

to a uniform clustering process. The concept of localization outage was defined to be a

realization of the network geometry that on average fails to satisfy a required threshold

on the localization accuracy. The numerical results verified that the source-localization

performance is heavily affected by the realization of sensor deployment, and that it highly

depends on the number of sensors that are within a close proximity of the source. This
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conclusion suggests a guideline that the sensor density in the network should appropriately

be chosen such that enough number of sensors will be close to a target arbitrarily located

within a random realization of the network geometry. As the network density increases,

resulting in a higher number of sensors in a fixed disk around the source, the performance

of the localization scheme improves drastically. The effect of exclusion zones around sensors

was also studied based on which increasing the minimum sensor separation increases the

localization-outage probability, i.e., if the sensors are forced to be farther separated, it is

more likely that a random network realization will be in outage.

7.2 Future Work

In this section, several research ideas are summarized that can be considered as a continuation

of the works presented in the previous chapters.

7.2.1 Extension of Chapter 4

The analyses and results presented in this chapter can be extended in the following aspects:

1. Cui et al. [17] have introduced the concepts of estimation outage and estimation diver-

sity. The estimation outage probability is defined as

Pout (γ)
def
= P

[
Var
(
θ̂
)
> γ

]
,

where γ is a predefined threshold. The estimation diversity is defined as the exponential

rate at which the asymptotic estimation outage probability for large WSNs (i.e., large

number of distributed sensors K) decreases as the total transmission power in the

network increases. It is an interesting problem to derive the estimation outage and

estimation diversity for the proposed power-allocation scheme and to compare them

with those for the cases of equal power allocation and optimal power allocation based

on the minimization of the sum of the local transmission powers.

2. It is also interesting to quantify and/or analyze through numerical simulations the

effects of the proposed limited-feedback scheme on the estimation outage probability



Mohammad Fanaei Chapter 7. Summary and Future Work 121

and estimation diversity of the proposed power-allocation approach. In other words,

one can attempt to find the potential increase in the estimation outage probability and

the potential loss in the estimation diversity due to the limited feedback.

7.2.2 Extension of Chapter 5

The analyses and results presented in this chapter can be extended in the following aspects:

1. The proposed optimal power allocation in this chapter minimizes the total estimation

distortion at the FC subject to a constraint on the average transmission power in the

entire network. A more meaningful constraint in this optimization problem can be

put on the average transmission power of each sensor. One can attempt to solve this

problem with the new constraint and discuss the differences between the two solutions.

2. In our analyses in this chapter, we assumed that the sensors collaborate with each other

through error-free, low-cost links. These assumptions may not be valid in practical

WSNs. One can attempt to analyze our power-allocation scheme under the assumption

of costly collaboration. In this case, the available power budget should appropriately

be divided between collaboration and transmission. Furthermore, the problem can be

extended to a case in which a collaboration noise is added to local observations. In this

case, the optimal mixing matrix is expected to also depend on the level of unreliability

in the collaboration channel, i.e., how noisy the channel between two collaborating

sensors is.

7.2.3 Extension of Chapter 6

In Chapter 6, we analyzed the effects of spatial randomness of sensor locations on the perfor-

mance of an energy-based source-localization algorithm through extensive numerical simu-

lations using the measure of localization outage. More theoretical analyses can be performed

based on the rich results of the theory of stochastic geometry. In other words, the following

question can be considered as the backbone of a future research study:

“Through theoretical analysis based on the theory of stochastic geometry, what is
the probability that a randomly placed network of wireless sensors on average can
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achieve a minimum localization accuracy at the FC for a given source-localization
scheme?”
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