85,941 research outputs found

    Remembering today tomorrow: exploring the human-centred design of digital mementos

    Get PDF
    This paper describes two-part research exploring the context for and human-centred design of ‘digital mementos’, as an example of technology for reflection on personal experience(in this case, autobiographical memories). Field studies into families’ use of physical and digital objects for remembering provided a rich understanding of associated user needs and human values, and suggested properties for ‘digital mementos’ such as being ‘not like work’, discoverable and fun. In a subsequent design study, artefacts were devised to express these features and develop the understanding of needs and values further via discussion with groups of potential ‘users’. ‘Critical artefacts’(the products of Critical Design)were used to enable participants to envisage broader possibilities for social practices and applications of technology in the context of personal remembering, and thus to engage in the design of novel devices and systems relevant to their lives. Reflection was a common theme in the work, being what the digital mementos were designed to afford and the mechanism by which the design activity progressed. Ideas for digital mementos formed the output of this research and expressed the designer’s and researcher’s understanding of participants’ practices and needs, and the human values that underlie them and, in doing so, suggest devices and systems that go beyond usability to support a broader conception of human activity

    CMOL: Second Life for Silicon?

    Get PDF
    This report is a brief review of the recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the "bottom-up" approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 1012 cm2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Non-power-of-Two FFTs: Exploring the Flexibility of the Montium TP

    Get PDF
    Coarse-grain reconfigurable architectures, like the Montium TP, have proven to be a very successful approach for low-power and high-performance computation of regular digital signal processing algorithms. This paper presents the implementation of a class of non-power-of-two FFTs to discover the limitations and Flexibility of the Montium TP for less regular algorithms. A non-power-of-two FFT is less regular compared to a traditional power-of-two FFT. The results of the implementation show the processing time, accuracy, energy consumption and Flexibility of the implementation

    Distributed design information and knowledge : storage and strategy

    Get PDF
    This paper discusses the storage and strategy of distributed design information and knowledg

    Real-time digital video multiplexer synchronisation implementation with CPLD

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.---- Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Many video applications in security areas such as close circuit television (CCTV) require multiple video channels which must be multiplexed into a single video streanm. The industry can only afford to have a few frames or fields per camera. This paper emphasises on a novel hardware design using an algorithm for synchronising the analogue video inputs. Therefore the proposed multiplexer system is able to achieve a constant stream of 50 digital video fields per second using a CPLD (Complex Programmable Logic Device) for 625/50 video system

    A study of pattern recovery in recurrent correlation associative memories

    Get PDF
    In this paper, we analyze the recurrent correlation associative memory (RCAM) model of Chiueh and Goodman. This is an associative memory in which stored binary memory patterns are recalled via an iterative update rule. The update of the individual pattern-bits is controlled by an excitation function, which takes as its arguement the inner product between the stored memory patterns and the input patterns. Our contribution is to analyze the dynamics of pattern recall when the input patterns are corrupted by noise of a relatively unrestricted class. We make three contributions. First, we show how to identify the excitation function which maximizes the separation (the Fisher discriminant) between the uncorrupted realization of the noisy input pattern and the remaining patterns residing in the memory. Moreover, we show that the excitation function which gives maximum separation is exponential when the input bit-errors follow a binomial distribution. Our second contribution is to develop an expression for the expectation value of bit-error probability on the input pattern after one iteration. We show how to identify the excitation function which minimizes the bit-error probability. However, there is no closed-form solution and the excitation function must be recovered numerically. The relationship between the excitation functions which result from the two different approaches is examined for a binomial distribution of bit-errors. The final contribution is to develop a semiempirical approach to the modeling of the dynamics of the RCAM. This provides us with a numerical means of predicting the recall error rate of the memory. It also allows us to develop an expression for the storage capacity for a given recall error rate

    Memory transition between communicating agents

    Get PDF
    Abstract: What happens to a memory when it has been externalised and embodied but has not reached its addressee yet? A letter that has been written but has not been read, a monument before it is unveiled or a Neolithic tool buried in the ground – all these objects harbour human memories engrained in their physicality; messages intended for those who will read the letter, admire the monument and hold the tool. According to Ilyenkov’s theory of objective idealism, the conscious and wilful input encoded in all manmade objects as the ‘ideal’ has an objective existence, independent from the author, but this existence lasts only while memories are shared between communicating parties. If all human minds were absent from the world for a period of time, the ‘ideal’, or memories, would cease to exist. They would spring back to existence, however, once humans re-entered the world. Ilyenkov’s analysis of memories existing outside an individual human consciousness is informative and thorough but, following his line of thought, we would have to accept an ontological gap in the process of memory acquisition, storage and transmission. If there is a period, following memory acquisition and receding its transmission, when memories plainly do not exist, then each time a new reader, spectator or user perceives them, he or she must create the author’s memories ex nihilo. Bergson’s theory of duration and intuition can help us to resolve this paradox. This paper will explore the ontological characteristics of memory passage in communication taken at different stages of the process. There will be an indicationof how the findings of this investigation could be applicable to concrete cases of memory transmission. In particular, this concerns intergenerational communication, technological memory, the use of digital devices and the Internet

    Knowledge Enhanced Notes (KEN)

    Get PDF
    To aid the creation and through-life support of large complex engineering products, organisations are placing a greater emphasis on constructing complete and accurate records of design activities. Current documentary approaches are not sufficient to capture activities and decisions in their entirety and can lead to organisations revisiting and in some cases reworking design decisions in order to understand previous design episodes. This paper presents an overview of the challenges in creating accurate, re-usable records of synchronous design activities, enhancing the through-life support of engineering products, followed by the development of an information capture software system to address these challenges. The main objectives for the development of the Knowledge Enhanced Notes system are described followed by the techniques chosen to address the objectives, and finally a description of a use-case for the system. Whilst the focus of the KEN System was to aid the creation and through-life support of large complex engineering products through constructing complete and accurate records of design activities, the system is entirely generic in its application to synchronous activities
    • 

    corecore