798 research outputs found

    Multiagent Decision Making for SME Supply Chain Simulation

    Get PDF
    International audienceTo tackle the complexity and heterogeneity of the networks that integrate Mechatronic SMEs, this paper describes a modelling and simulation solution based on multiagent system and ArchMDE (Architecture Model Drive Engineering) methodology for supply chain agentification. This research work outlines two main results: conceptualisation and modelling. The first one deals with the identification and concepts definition of the different entities moving and acting into the multiagent and supply chain systems. The second one discusses the agent approach providing a framework naturally oriented to model supply chain concepts and their dynamic behavior

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    A Multiagent System for Production Synchronization in SME Mecatronics Supply Chain

    Get PDF
    International audienceWe present in this paper the application of multiagent system (MAS) for modelling and simulation of the dynamic structure and behaviour of the supply chain in SMEs mechatronic context in Savoie. First, a short literature overview describes the context and the contribution of multiagent modelling for SMEs integration. In the rest of the paper, the supply chain concepts and their agentification are presented. On the basis of this correspondence, we propose a synchronization protocol for the operational system (production flow and resources)

    Multiagent-Based Control for Plug-and-Play Batteries in DC Microgrids with Infrastructure Compensation

    Get PDF
    The influence of the DC infrastructure on the control of power-storage flow in micro- and smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applications. Principal effects include the potential loss of the charge–discharge synchronization and the subsequent impact on the control stabilization, the increased degradation in batteries’ health/life, and resultant power- and energy-efficiency losses. This paper proposes and tests a candidate solution to compensate for the infrastructure effects in a DC microgrid with a varying number of heterogeneous battery storage systems in the context of a multiagent neighbor-to-neighbor control scheme. Specifically, the scheme regulates the balance of the batteries’ load-demand participation, with adaptive compensation for unknown and/or time-varying DC infrastructure influences. Simulation and hardware-in-the-loop studies in realistic conditions demonstrate the improved precision of the charge–discharge synchronization and the enhanced balance of the output voltage under 24 h excessively continuous variations in the load demand. In addition, immediate real-time compensation for the DC infrastructure influence can be attained with no need for initial estimates of key unknown parameters. The results provide both the validation and verification of the proposals under real operational conditions and expectations, including the dynamic switching of the heterogeneous batteries’ connection (plug-and-play) and the variable infrastructure influences of different dynamically switched branches. Key observed metrics include an average reduced convergence time (0.66–13.366%), enhanced output-voltage balance (2.637–3.24%), power-consumption reduction (3.569–4.93%), and power-flow-balance enhancement (2.755–6.468%), which can be achieved for the proposed scheme over a baseline for the experiments in question.</p

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    Resilience and Controllability of Dynamic Collective Behaviors

    Get PDF
    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics

    A customizable multi-agent system for distributed data mining

    Get PDF
    We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances

    Evolution of clusters in large-scale dynamical networks

    Get PDF

    Dynamical strategies for obstacle avoidance during Dictyostelium discoideum aggregation: a Multi-agent system model

    Get PDF
    Chemotaxis, the movement of an organism in response to chemical stimuli, is a typical feature of many microbiological systems. In particular, the social amoeba \textit{Disctyostelium discoideum} is widely used as a model organism, but it is not still clear how it behaves in heterogeneous environments. A few models focusing on mechanical features have already addressed the question; however, we suggest that phenomenological models focusing on the population dynamics may provide new meaningful data. Consequently, by means of a specific Multi-agent system model, we study the dynamical features emerging from complex social interactions among individuals belonging to amoeba colonies.\\ After defining an appropriate metric to quantitatively estimate the gathering process, we find that: a) obstacles play the role of local topological perturbation, as they alter the flux of chemical signals; b) physical obstacles (blocking the cellular motion and the chemical flux) and purely chemical obstacles (only interfering with chemical flux) elicit similar dynamical behaviors; c) a minimal program for robustly gathering simulated cells does not involve mechanisms for obstacle sensing and avoidance; d) fluctuations of the dynamics concur in preventing multiple stable clusters. Comparing those findings with previous results, we speculate about the fact that chemotactic cells can avoid obstacles by simply following the altered chemical gradient. Social interactions are sufficient to guarantee the aggregation of the whole colony past numerous obstacles
    • …
    corecore