146 research outputs found

    Review of selection criteria for sensor and actuator configurations suitable for internal combustion engines

    Get PDF
    This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited. Simple control metrics such as conditioning number are popular, mostly because they need fewer assumptions than closed-loop metrics, which require a full plant, disturbance and goal model. Overall, no clear consensus can be found on the choice of metrics to define optimal control configurations, with physical measures, linear algebra metrics and modern control metrics all being used. Genetic algorithms and multi-criterial optimisation were identified as the most widely used methods for optimal sensor selection, although addressing the dimensionality and complexity of formulating the problem remains a challenge. This review does present a number of different successful approaches for specific applications domains, some of which may be applicable to diesel engines and other automotive applications. For a thorough treatment, non-linear dynamics and uncertainties need to be considered together, which requires sophisticated (non-Gaussian) stochastic models to establish the value of a control architecture

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv

    On Approximation of Linear Network Systems

    Get PDF

    On Approximation of Linear Network Systems

    Get PDF
    • …
    corecore