10 research outputs found

    SweetCam: an IP Camera Honeypot

    Get PDF
    The utilization of the Internet of Things (IoT) as an attack surface is nowadays a fact. Taking IP cameras as a use-case, they have been targeted to a great extent mainly due to the absence of authentication, the utilization of weak, in terms of security, protocols, and their high availability. To cope with the current situation and study the current state of attacks against IP cameras we propose the use of cyber-deception and in particular honeypots. Honeypots can provide useful insights into current attack campaigns, and they can divert attackers’ attention away from the actual targets.In this paper, we propose an open-source medium interaction IP camera honeypot that requires minimal settings while supporting a modular architecture for adding new camera models. The honeypot, namely SweetCam, supports the emulation of SSH, RTSP and HTTP. Furthermore, it creates a web-service (HTTP) that depicts an IP camera interface with a login page and the emulation of a camera interface using user-specified 360-degree video streams and images. We deploy instances of the honeypot in different geographical locations, for a period of 3 weeks, and receive a total of 5,780, 1,402 and 218,344 attacks on HTTP, RTSP and SSH services respectively; from 5,924 unique IPs. Lastly, we further analyze the attacks, and identify common Internet scanners (e.g., Shodan) among the services that have contacted the honeypots

    Wireless local area network management frame denial- of-service attack detection and mitigation schemes

    Get PDF
    Wireless Local Area Networks (WLAN) are increasingly deployed and in widespread use worldwide due to its convenience and low cost. However, due to the broadcasting and the shared nature of the wireless medium, WLANs are vulnerable to a myriad of attacks. Although there have been concerted efforts to improve the security of wireless networks over the past years, some attacks remain inevitable. Attackers are capable of sending fake de-authentication or disassociation frames to terminate the session of active users; thereby leading to denial of service, stolen passwords, or leakage of sensitive information amongst many other cybercrimes. The detection of such attacks is crucial in today's critical applications. Many security mechanisms have been proposed to effectively detect these issues, however, they have been found to suffer limitations which have resulted in several potential areas of research. This thesis aims to address the detection of resource exhaustion and masquerading DoS attacks problems, and to construct several schemes that are capable of distinguishing between benign and fake management frames through the identification of normal behavior of the wireless stations before sending any authentication and de-authentication frames. Thus, this thesis proposed three schemes for the detection of resource exhaustion and masquerading DoS attacks. The first scheme was a resource exhaustion DoS attacks detection scheme, while the second was a de- authentication and disassociation detection scheme. The third scheme was to improve the detection rate of the de-authentication and disassociation detection scheme using feature derived from an unsupervised method for an increased detection rate. The effectiveness of the performance of the proposed schemes was measured in terms of detection accuracy under sophisticated attack scenarios. Similarly, the efficiency of the proposed schemes was measured in terms of preserving the resources of the access point such as memory consumptions and processing time. The validation and analysis were done through experimentation, and the results showed that the schemes have the ability to protect wireless infrastructure networks against denial of service attacks

    Asynchronous Gathering in a Torus

    Get PDF
    We consider the gathering problem for asynchronous and oblivious robots that cannot communicate explicitly with each other but are endowed with visibility sensors that allow them to see the positions of the other robots. Most investigations on the gathering problem on the discrete universe are done on ring shaped networks due to the number of symmetric configurations. We extend in this paper the study of the gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity detection. That is, robots cannot make the difference between nodes occupied by only one robot from those occupied by more than one robot unless it is their current node. Consequently, solutions based on creating a single multiplicity node as a landmark for the gathering cannot be used. We present in this paper a deterministic algorithm that solves the gathering problem starting from any rigid configuration on an asymmetric unoriented torus shaped network

    Healthcare digitalization and pay-for-performance incentives in smart hospital project financing

    Get PDF
    This study aims to explore the impact of healthcare digitalization on smart hospital project financing (PF) fostered by pay-for-performance (P4P) incentives. Digital platforms are a technology-enabled business model that facilitates exchanges between interacting agents. They represent a bridging link among disconnected nodes, improving the scalable value of networks. Application to healthcare public-private partnerships (PPPs) is significant due to the consistency of digital platforms with health issues and the complexity of the stakeholder’s interaction. In infrastructural PPPs, public and private players cooperate, usually following PF patterns. This relationship is complemented by digitized supply chains and is increasingly patient-centric. This paper reviews the literature, analyzes some supply chain bottlenecks, addresses solutions concerning the networking effects of platforms to improve PPP interactions, and investigates the cost-benefit analysis of digital health with an empirical case. Whereas diagnostic or infrastructural technology is an expensive investment with long-term payback, leapfrogging digital applications reduce contingent costs. “Digital” savings can be shared by key stakeholders with P4P schemes, incentivizing value co-creation patterns. Efficient sharing may apply network theory to a comprehensive PPP ecosystem where stakeholding nodes are digitally connected. This innovative approach improves stakeholder relationships, which are re-engineered around digital platforms that enhance patient-centered satisfaction and sustainability. Digital technologies are useful even for infectious disease surveillance, like that of the coronavirus pandemic, for supporting massive healthcare intervention, decongesting hospitals, and providing timely big data

    Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model

    Get PDF
    Reactive programming is a programming paradigm whereby programs are internally represented by a dependency graph, which is used to automatically (re)compute parts of a program whenever its input changes. In practice reactive programming can only be used for some parts of an application: a reactive program is usually embedded in an application that is still written in ordinary imperative languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill "the awkward squad for reactive programming" as 3 concerns that are essential for real-world software development, but that do not fit within reactive programming. They are related to long lasting computations, side-effects, and the coordination between imperative and reactive code. To solve these issues we design a new programming model called the Actor-Reactor Model in which programs are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of imperative and reactive code, and they can be composed via a number of composition operators that make use of data streams. We demonstrate the model via our own implementation in a language called Stella

    Computer Science 2019 APR Self-Study & Documents

    Get PDF
    UNM Computer Science APR self-study report and review team report for Spring 2019, fulfilling requirements of the Higher Learning Commission

    Distributed Self Fault Diagnosis in Wireless Sensor Networks using Statistical Methods

    Get PDF
    Wireless sensor networks (WSNs) are widely used in various real life applications where the sensor nodes are randomly deployed in hostile, human inaccessible and adversarial environments. One major research focus in wireless sensor networks in the past decades has been to diagnose the sensor nodes to identify their fault status. This helps to provide continuous service of the network despite the occurrence of failure due to environmental conditions. Some of the burning issues related to fault diagnosis in wireless sensor networks have been addressed in this thesis mainly focusing on improvement of diagnostic accuracy, reduction of communication overhead and latency, and robustness to erroneous data by using statistical methods. All the proposed algorithms are evaluated analytically and implemented in standard network simulator NS3 (version 3.19). A distributed self fault diagnosis algorithm using neighbor coordination (DSFDNC) is proposed to identify both hard and soft faulty sensor nodes in wireless sensor networks. The algorithm is distributed (runs in each sensor node), self diagnosable (each node identifies its fault status) and can diagnose the most common faults like stuck at zero, stuck at one, random data and hard faults. In this algorithm, each sensor node gathered the observed data from the neighbors and computes the mean to check the presence of faulty sensor node. If a node diagnoses a faulty sensor node in the neighbors, then it compares observed data with the data of the neighbors and predicts its probable fault status. The final fault status is determined by diffusing the fault information obtained from the neighbors. The accuracy and completeness of the algorithm are verified based on the statistical analysis over sensors data. The performance parameters such as diagnosis accuracy, false alarm rate, false positive rate, total number of message exchanges, energy consumption, network life time, and diagnosis latency of the DSFDNC algorithm are determined for different fault probabilities and average degrees and compared with existing distributed fault diagnosis algorithms. To enhance the diagnosis accuracy, another self fault diagnosis algorithm is proposed based on hypothesis testing (DSFDHT) using the neighbor coordination approach. The Newman-Pearson hypothesis test is used to diagnose the soft fault status of each sensor node along with the neighbors. The algorithm can diagnose the faulty sensor node when the average degree of the network is less. The diagnosis accuracy, false alarm rate and false positive rate performance of the DSFDHT algorithm are improved over DSFDNC for sparse wireless sensor networks by keeping other performance parameters nearly same. The classical methods for fault finding using mean, median, majority voting and hypothesis testing are not suitable for large scale wireless sensor networks due to large devi- ation in transmitted data by faulty sensor nodes. Therefore, a modified three sigma edit test based self fault diagnosis algorithm (DSFD3SET) is proposed which diagnoses in an efficient manner over a large scale wireless sensor networks. The diagnosis accuracy, false alarm rate, and false positive rate of the proposed algorithm improve as compared to that of the DSFDNC and DSFDHT algorithms. The algorithm enhances the total number of message exchanges, energy consumption, network life time, and diagnosis latency, because the proposed algorithm needs less number of message exchanges over the algorithms such as DSFDNC and DSFDHT. In the DSFDNC, DSFDHT and DSFD3SET algorithms, the faulty sensor nodes are considered as soft faulty nodes which behave permanently. However in wireless sensor networks, the sensor nodes behave either fault free or faulty during different periods of time and are considered as intermittent faulty sensor nodes. Diagnosing intermittent faulty sensor nodes in wireless sensor networks is a challenging problem, because of inconsistent result patterns generated by the sensor nodes. The traditional distributed fault diagnosis (DIFD) algorithms consume more message exchanges to obtain the global fault status of the network. To optimize the number of message exchanges over the network, a self fault diagnosis algorithm is proposed here, which repeatedly conducts the self fault diagnosis procedure based on the modified three sigma edit test over a duration to identify the intermittent faulty sensor nodes. The algorithm needs less number of iterations to identify the intermittent faulty sensor nodes. The simulation results show that, the performance of the HISFD3SET algorithm improves in diagnosis accuracy, false alarm rate and false positive rate over the DIFD algorith
    corecore