17 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    An Agent-Based Intrusion Detection System for Local Area Networks

    Full text link
    Since it is impossible to predict and identify all the vulnerabilities of a network beforehand, and penetration into a system by malicious intruders cannot always be prevented, intrusion detection systems (IDSs) are essential entities to ensure the security of a networked system. To be effective in carrying out their functions, the IDSs need to be accurate, adaptive, and extensible. Given these stringent requirements and the high level of vulnerabilities of the current days' networks, the design of an IDS has become a very challenging task. Although, an extensive research has been done on intrusion detection in a distributed environment, distributed IDSs suffer from a number of drawbacks e.g., high rates of false positives, low detection efficiency etc. In this paper, the design of a distributed IDS is proposed that consists of a group of autonomous and cooperating agents. In addition to its ability to detect attacks, the system is capable of identifying and isolating compromised nodes in the network thereby introducing fault-tolerance in its operations. The experiments conducted on the system have shown that it has a high detection efficiency and low false positives compared to some of the currently existing systems.Comment: 13 pages, 5 figures, 2 table

    Process-aware web programming with Jolie

    Full text link
    We extend the Jolie programming language to capture the native modelling of process-aware web information systems, i.e., web information systems based upon the execution of business processes. Our main contribution is to offer a unifying approach for the programming of distributed architectures on the web, which can capture web servers, stateful process execution, and the composition of services via mediation. We discuss applications of this approach through a series of examples that cover, e.g., static content serving, multiparty sessions, and the evolution of web systems. Finally, we present a performance evaluation that includes a comparison of Jolie-based web systems to other frameworks and a measurement of its scalability.Comment: IMADA-preprint-c

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities

    UML consistency rules: a systematic mapping study

    Get PDF
    Context: The Unified Modeling Language (UML), with its 14 different diagram types, is the de-facto standard tool for objectoriented modeling and documentation. Since the various UML diagrams describe different aspects of one, and only one, software under development, they are not independent but strongly depend on each other in many ways. In other words, the UML diagrams describing a software must be consistent. Inconsistencies between these diagrams may be a source of the considerable increase of faults in software systems. It is therefore paramount that these inconsistencies be detected, ana

    Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model

    Get PDF
    Reactive programming is a programming paradigm whereby programs are internally represented by a dependency graph, which is used to automatically (re)compute parts of a program whenever its input changes. In practice reactive programming can only be used for some parts of an application: a reactive program is usually embedded in an application that is still written in ordinary imperative languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill "the awkward squad for reactive programming" as 3 concerns that are essential for real-world software development, but that do not fit within reactive programming. They are related to long lasting computations, side-effects, and the coordination between imperative and reactive code. To solve these issues we design a new programming model called the Actor-Reactor Model in which programs are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of imperative and reactive code, and they can be composed via a number of composition operators that make use of data streams. We demonstrate the model via our own implementation in a language called Stella
    corecore