128 research outputs found

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    Distributed Resource Allocation and Performance Analysis in 5G Wireless Cellular Networks

    Get PDF
    This thesis focuses on the study of Heterogeneous Networks (HetNets), Device-to-device (D2D) communication networks, and unmanned aerial vehicle (UAV) networks in fifth generation wireless communication (5G) systems. HetNets that consist of macro-cells and small-cells have become increasingly popular in current wireless networks and 5G systems to meet the exponentially growing demand for higher data rates. Compared to conventional homogeneous cellular networks, the disparity of transmission power among different types of base stations (BSs), the relatively random deployment of SBSs, and the densifying networks, bring new challenges, such as the imbalanced load between macro and small cells and severe inter-cell interference. In the other hand, with the skyrocketing number of tablets and smart phones, the notion of caching popular content in the storage of BSs and users' devices is proposed to reduce duplicated wireless transmissions. To fulfill multi-fold communication requirements from humans, machine, and things, the 5G systems which include D2D communications, UAV communications, and so on, can improve the network performance. Among them, the performance analyses of these emerging technologies are attracting much attention and should be investigated first. This thesis focuses on these hot issues and emerging technologies in 5G systems, analyzing the network performance and conducting the allocation of available resources, such as serving BSs, spectrum resources, and storage resources. Specifically, three main research focuses are included in the thesis. The first focus of this thesis is the impact of the BS idle mode capacity (IMC) on the network performance of multi-tier and dense HCNs with both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. I consider a more practical set-up with a finite number of UEs in the analysis. Moreover, the SBSs apply a positive power bias in the cell association procedure, so that macrocell UEs are actively encouraged to use the more lightly loaded SBSs. In addition, to address the severe interference that these cell range expanded UEs may suffer, the MBSs apply enhanced inter-cell interference coordination (eICIC), in the form of almost blank subframe (ABS) mechanism. For this model, I derive the coverage probability and the rate of a typical UE in the whole network or a certain tier. The impact of the IMC on the performance of the network is shown to be significant. In particular, it is important to note that there will be a surplus of BSs when the BS density exceeds the UE density, and thus a large number of BSs switch off. As a result, the overall coverage probability, as well as the area spectral efficiency (ASE), will continuously increase with the BS density, addressing the network outage that occurs when all BSs are active and the interference becomes LoS dominated. Finally, the optimal ABS factors are investigated in different BS density regions. One of major findings is that MBSs should give up all resources in favor of the SBSs when the small cell networks go ultra-dense. This reinforces the need for orthogonal deployments, shedding new light on the design and deployment of the future 5G dense HCNs. The second focus of this thesis is the content caching in D2D communication networks. In practical deployment, D2D content caching has its own problem that is not all of the user devices are willing to share the content with others due to numerous concerns such as security, battery life, and social relationship. To solve this problem, I consider the factor of social relationship in the deployment of D2D content caching. First, I apply stochastic geometry theory to derive an analytical expression of downloading performance for the D2D caching network. Specifically, a social relationship model with respect to the physical distance is adopted in the analysis to obtain the average downloading delay performance using random and deterministic caching strategies. Second, to achieve a better performance in more practical and specific scenarios, I develop a socially aware distributed caching strategy based on a decentralized learning automaton, to optimize the cache placement operation in D2D networks. Different from the existing caching schemes, the proposed algorithm not only considers the file request probability and the closeness of devices as measured by their physical distance, but also takes into account the social relationship between D2D users. The simulation results show that the proposed algorithm can converge quickly and outperforms the random and deterministic caching strategies. With these results, the work sheds insights on the design of D2D caching in the practical deployment of 5G networks. The third focus of this thesis is the performance analysis for practical UAV-enabled networks. By considering both LoS and NLoS transmissions between aerial BSs and ground users, the coverage probability and the ASE are derived. Considering that there is no consensus on the path loss model for studying UAVs in the literature, in this focus, three path loss models, i.e., high-altitude model, low-altitude model, and ultra-low-altitude model, are investigated and compared. Moreover, the lower bound of the network performance is obtained assuming that UAVs are hovering randomly according to homogeneous Poisson point process (HPPP), while the upper bound is derived assuming that UAVs can instantaneously move to the positions directly overhead ground users. From the analytical and simulation results for a practical UAV height of 50 meters, I find that the network performance of the high-altitude model and the low-altitude model exhibit similar trends, while that of the ultra-low-altitude model deviates significantly from the above two models. In addition, the optimal density of UAVs to maximize the coverage probability performance has also been investigated

    Unmanned Aerial Vehicles (UAVs) for Integrated Access and Backhaul (IAB) Communications in Wireless Cellular Networks

    Get PDF
    An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics of user distribution pose major challenges in the practical deployment of IAB networks. To tackle these problems, we leverage the flying capabilities of unmanned aerial vehicles (UAVs) as hovering IAB-nodes and propose an interference management algorithm to maximize the overall sum rate of the IAB network. In particular, we jointly optimize the user and base station associations, the downlink power allocations for access and backhaul transmissions, and the spatial configurations of UAVs. We consider two spatial configuration modes of UAVs: distributed UAVs and drone antenna array (DAA), and show how they are intertwined with the spatial distribution of ground users. Our numerical results show that the proposed algorithm achieves an average of 2.9× and 6.7× gains in the received downlink signal-to-interference-plus-noise ratio (SINR) and overall network sum rate, respectively. Finally, the numerical results reveal that UAVs cannot only be used for coverage improvement but also for capacity boosting in IAB cellular networks

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users

    Implementação e avaliação no system generator de um sistema cooperativo para os futuros sistemas 5G

    Get PDF
    With the arrival of 5G it is expected the proliferation of services in the different fields such as healthcare, utility applications, industrial automation, 4K streaming, that the former networks can not provide. Additionally, the total number of wireless communication devices will escalate in such a manner that the already scarce available frequency bandwidth won’t be enough to pack the intended objectives. Cisco’s Annual Internet Report from 2018 predicts that by 2023 there will be nearly 30 billion devices capable of wireless communication. Due to the exponential expiation of both services and devices, the challenges upon both network data capacity and efficient radio resourse use will be greater than ever, thus the urgency for solutions is grand. Both the capacity for wireless communications and spectral efficiency are related to cell size and its users proximity to the access point. Thus, shortening the distance between the transmitter and the receiver improves both aspects of the network. This concept is what motivates the implementation of heterogeneous networks, HetNets, that are composed of many different small-cells, SCs, overlaid across the same coexisting area of a conventional macro-cell, shortening the distance between the cell users and its access point transceivers, granting a better coverage and higher data rates. However, the HetNets potential does not come without any challenges, as these networks suffer considerably from communication interference between cells. Although some interference management algorithms that allow coexistence between cells have been proposed in recent years, most of them were evaluated by software simulations and not implemented in real-time platforms. Therefore, this master thesis aims to give the first step on the implementation and evaluation of an interference mitigation technique in hardware. Specifically, it is assumed a downlink scenario composed by a macro-cell base station, a macro-cell primary user and a small cell user, with the aim of implementing an algorithm that eliminates the downlink interference that the base station may cause to the secondary users. The study was carried out using the System Generator DSP tool, which is a tool that generates code for hardware from schematics created in it. This tool also offers a wide range of blocks that help the creation, and fundamentally, the simulation and study of the system to be implemented, before being translated into hardware. The results obtained in this work are a faithful representation of the behavior of the implemented system, which can be used for a future application for FPGA.Com a chegada do 5G, espera-se a proliferação de serviços nas mais diversas áreas tal como assistência médica, automação industrial, transmissão em 4k, que não eram possíveis nas redes das gerações anteriores. Além deste fenómeno, o número total de dispositivos capazes de conexões wireless aumentará de tal maneira que a escassa largura de banda disponível não será suficiente para abranger os objetivos pretendidos. O Relatório Anual de 2018 sobre a Internet da Cisco prevê que até 2023 haverá quase 30 bilhões de dispositivos capazes de comunicação sem fio. Devido ao aumento exponencial de serviços e dispositivos, os desafios sobre a capacidade de dados da rede e o udo eficiente dos recursos de rádio serão maiores que nunca. Por estes motivos, a necessidade de soluções para estas lacunas é enorme. Tanto a capacidade da rede e o uso eficiente do espectro de frequências estão relacionados ao tamanho da célula e à proximidade dos usuários com o ponto de acesso da célula. Ao encurtar a distância entre o transmissor e o recetor ocorre um melhoramento destes dois aspetos da rede. Este é o principal conceito na implementação de redes heterogéneas, HetNets, que são compostas por diversas células pequenas que coexistem na área de uma macro célula convencional, diminuído a distância entre os utilizadores da célula e os pontos de acesso, garantindo uma melhor cobertura e taxa de dados mais elevadas. No entanto, o potencial das HatNets não vem sem nenhum custo, pois estas redes sofrem consideravelmente de interferência entre as células. Embora nos últimos anos foram propostos alguns algoritmos que permitem a coexistência das células, a maioria destes foi só testado em simulações de software e não em plataformas em tempo real. Por esse motivo, esta dissertação de mestrado visa dar o primeiro passo na implementação e a avaliação de uma técnica de mitigação de interferência em hardware. Mais especificamente no cenário de downlink entre uma estação base de uma macro célula, um utilizador primário da macro célula e um utilizador secundário de uma célula pequena, com o principal objetivo de cancelar a interferência que a estação base possa fazer ao utilizador secundário. O estudo foi realizado utilizando a ferramenta System Generator DSP, que é uma ferramenta que gera código para hardware a partir de esquemáticos criados na mesma. Esta ferramenta também oferece uma vasta gama de blocos que ajudam a criação, e fundamentalmente, a simulação e o estudo do sistema a implementar antes de ser traduzido para hardware. Os resultados obtidos neste trabalho são uma fiel representação do comportamento do sistema implementado. O quais podem ser utilizados para uma futura aplicação para FPGA.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore