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ABSTRACT OF THE THESIS

UNMANNED AERIAL VEHICLES (UAVS) FOR INTEGRATED ACCESS AND

BACKHAUL (IAB) COMMUNICATIONS IN WIRELESS CELLULAR

NETWORKS

by

Abdurrahman Fouda

Florida International University, 2019

Miami, Florida

Professor Ahmed S. Ibrahim, Major Professor

An integrated access and backhaul (IAB) network architecture can enable flexible

and fast deployment of next-generation cellular networks. However, mutual in-

terference between access and backhaul links, small inter-site distance and spatial

dynamics of user distribution pose major challenges in the practical deployment of

IAB networks. To tackle these problems, we leverage the flying capabilities of un-

manned aerial vehicles (UAVs) as hovering IAB-nodes and propose an interference

management algorithm to maximize the overall sum rate of the IAB network. In

particular, we jointly optimize the user and base station associations, the downlink

power allocations for access and backhaul transmissions, and the spatial configura-

tions of UAVs. We consider two spatial configuration modes of UAVs: distributed

UAVs and drone antenna array (DAA), and show how they are intertwined with

the spatial distribution of ground users. Our numerical results show that the pro-

posed algorithm achieves an average of 2.9× and 6.7× gains in the received downlink

signal-to-interference-plus-noise ratio (SINR) and overall network sum rate, respec-

tively. Finally, the numerical results reveal that UAVs cannot only be used for

coverage improvement but also for capacity boosting in IAB cellular networks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The exponential increase in capacity and mobile traffic demands has revolutionized

the design methodologies of next-generation cellular networks. In recent years, the

basic idea of dense deployment of small base stations (SBSs) for capacity boosting

and/or coverage enhancement has laid the foundation for the concept of multi-

tier heterogeneous networks (HetNets). Essentially, the dense deployment of SBSs

raises the need for easily scalable solutions to meet the requirements of network

densification. In typical macro-cell deployments, the high-speed optical fiber can

offer reliable communication links and high data rates. Hence, it is considered as

an appropriate medium for the backhaul network traffic. On the contrary, wireless

backhauling has been emerged as a potential solution for HetNets to reduce the

network deployment cost, in which, the macro base station (MBS) provides wireless

access and backhauling functionality to cellular users and SBSs respectively [1, 2].

In this regard, 3rd Generation Partnership Project (3GPP) has introduced the

integrated access and backhaul (IAB) network architecture to allow for flexible de-

ployment of next-generation cellular networks [3,4]. Generally, the IAB architecture

implies tight interworking between access and backhaul links, where the IAB-donor

(i.e., macro base station (MBS)) uses the same infrastructure and wireless chan-

nel resources to provide access and backhauling functionalities for cellular users

and IAB-nodes (i.e., small bases stations (SBSs)), respectively [5–7]. Although

IAB-based cellular networks are envisioned to meet the increase in user and traf-

fic demands, the mutual interference between access and backhaul links and the

limitations of backhaul capacity are among the main challenges to develop reliable
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communication links in IAB networks (see, e.g., [5]). Moreover, the random massive

deployment of users and base stations (BSs) poses another challenge in the design

of reliable interference management frameworks (user-BS associations and power

allocations) considering the shortened distance between cellular users and BSs and

the raised levels of inter-site interference.

In this thesis, we consider the unmanned aerial vehicles (UAVs) as a promising

candidate to tackle these challenges in the IAB-based cellular networks. In particu-

lar, we investigate the potential gains of leveraging the flying capabilities of UAVs as

hovering IAB-nodes in UAV-assisted IAB networks. There have been several recent

studies where utilizing UAVs is proposed as a cost-effective and easily-scalable solu-

tion that can achieve significant performance improvements in wireless networks [8].

Specifically, the idea of using a swarm of UAVs is widely considered as a potential

solution to provide wireless connectivity where users suffer from coverage gaps (see,

e.g., [9] and references therein). Moreover, unlike the basic idea of dense deploy-

ment of SBSs to get closer to edge users [10], the use of UAVs allows for the network

architecture to be reconfigured dynamically based on the coverage and capacity

demands [11,12].

Having UAVs communicating towards MBSs over backhaul links and towards

cellular users over access links naturally leads to creating a wirelessly backhauled

network architecture [13–17]. Furthermore, the entanglement between the spatial

configurations of a swarm of UAVs and spatial dynamics of users’ distribution makes

it more challenging to meet the target quality of service (QoS) requirements. How-

ever, the joint optimization of the overall network performance in UAV-assisted

IAB cellular networks considering the full and/or partial reuse of the wireless chan-

nel resources between backhaul and access links and the spatial dynamics of cellular

users distribution has not been addressed in literature. Therefore, there has been
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great interest in studying the performance of UAVs on both the access and backhaul

networks.

1.2 Literature review and related work

• Applications of UAVs in cellular networks

UAVs have been considered in literature for various applications and use cases in

next-generation cellular networks. On one hand, UAVs can be integrated into cellu-

lar networks as flying BSs and can be deployed as a part of the HetNet architecture.

UAVs can provide public safety communications with significant improvements in

the events of small scale (e.g., building fire), and large scale (e.g., floods, hurricanes,

tornadoes and military attacks) damages to the network architecture. Particularly,

the throughput coverage and the fifth-percentile throughput if of the terrestrial net-

work can be significantly improved by optimizing the 3D-deployment locations of

UAVs [18]. Furthermore, it has been shown that LTE-Unlicensed (LTE-U) based

UAVs can be integrated effectively with WiFi access points into UAV-assisted LTE-

U/WiFi HetNet architecture to improve the coverage and capacity requirements of

the terrestrial networks in the aftermath of a natural disaster [19].

UAVs can also exploit their unique characteristics (e.g. flexible, dynamic, 3D

deployment and line-of-sight (LOS) communications) to improve the coverage and

capacity of next-generation cellular networks. For example, AT&T has been in-

vestigating the integration of terrestrial and traditional cell on wings (COWs) into

the drones, and using them to provide additional capacity or coverage on demand.

Specifically, drones can be deployed from cell towers to the desired locations (e.g.,

hotspots) to provide them with temporary extra capacity. UAVs can return back to

the cell towers to recharge and to wait their next mission when the network deter-
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mines that the temporary capacity or coverage is no longer needed [20]. Moreover,

UAVs have been exploited by Intel Corporation to create a live drone light show

tethered. Drones have also been deployed above Atlanta to overlook the events

surrounding the Super Bowl and add more security at the event [21].

In addition to the coverage and capacity enhancement, the unique characteris-

tics of UAVs can be exploited to create re-configurable antenna arrays in the sky.

Specifically, a group of UAVs can be spatially configured together (e.g., in the form

of uniform linear array (ULA), planar array, or 3D-array) to benefit from the po-

tential advantages of the beamforming and maximization of the antenna directivity

gains [22, 23]. In this regard, UAV-BSs are considered as promising candidates to

employ massive multiple input multiple output (MIMO) and full-dimensional MIMO

(i.e., 3D MIMO) in next-generation cellular networks. Generally, full-dimensional

MIMO enables the 3D beamforming in both azimuth and elevation angles to max-

imize the received signal-to-interference-plus-noise ration (SINR) at users who are

distributed at different elevation angles with respect to their serving BSs [8]. Fur-

thermore, UAV-BSs have attracted increasing attention as a feasible, cost-effective

and easily-scalable network solution that can be integrated in fast deployments of

next-generation cellular networks. Specifically, the LOS capabilities of UAVs can

be exploited to provide the ground networks with with reliable and cost-effective

wireless backhaul connectivity [14,15,24].

On the other hand, UAVs can operate as cellular-connected user equipments

(i.e., cellular-connected drone-UEs [25, 26]) that can be used for various applica-

tions (e.g., package delivery, internet of things (IoT) applications, remote sensing,

virtual/augmented reality (VR/AR) applications and surveillance purposes). It has

been shown that UAVs can be used for energy-efficient uplink data collection from

ground IoT devices. Specifically, by a group of ground IoT devices can be suc-
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cessfully connected to the terrestrial network with minimum transmission power

by optimizing the 3D locations of UAVs and uplink power allocations of the IoT

devices. Furthermore, the connectivity of the IoT networks can be improved by in-

telligently moving the UAVs based on the activation patterns of the IoT devices [9].

UAVs can also be equipped with actuators, sensors, cameras and other indispensable

IoT devices to enable UAVs for trajectory, path planning, environment monitoring,

tracking and other purposes [27]. In [28], authors have investigated the use of fa-

cial recognition tools in a UAV-based IoT platform for crowd surveillance purposes.

They have shown that how UAV can be exploited to improve the system respon-

siveness by quickly detecting and recognizing suspicious persons in the crowd.

In addition to the UAV-based IoT use cases, Amazon has revealed the latest

version of its prime air delivery drone to improve the overall safety and efficiency of

its transportation system [29]. A novel framework for the cell association and the

3D deployment of UAV-BSs and drone-UEs have proposed in [11] to improve the

spectral efficiency and minimize the cell-association latency in the 3D UAV-enabled

cellular networks. Furthermore, it has been found that the HetNets introduce an

additional degree of freedom for UAVs to be integrated into the cellular networks

as aerial-users. Specifically, UAVs at low altitudes are best served by micro cells,

while UAVs at higher altitudes are best served by macro cells [30].

Although the drone-UEs leverage their LOS capabilities to establish ubiquitous

and reliable wireless communication links, they might impose more interference chal-

lenges as being integrated into the cellular architecture. Generally, UAVs have a

strong LOS channel to a large number of BSs, which that adding more UAVs in-

creases the levels of UAV to ground UEs interference and UAV-UAV interference [31].

Furthermore, it has been shown that adding more cellular-connected drone-UEs

might decrease the network densification gains of ultra-dense networks [30].
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• Performance analysis of UAV-BS assisted cellular networks

The access link performance gains of using UAVs as flying BSs have been studied

extensively in the literature. In [9], the authors have proposed a framework to opti-

mize the mobility and 3D deployment of UAVs to efficiently collect the uplink link

data from ground internet of things (IoT) devices. It has been shown that exploit-

ing the UAVs can significantly improve the connectivity and the energy efficiency

of the IoT networks. The authors of [32] have derived the coverage probability and

analyzed the performance of a communication scenario, in which, UAVs are used as

hovering BSs to provide downlink link transmissions to ground users while taking

into account the interference generated from the device-to-device (D2D) transmis-

sion. They have shown that the optimal UAV altitude decreases as the density

of D2D users increases. Furthermore, they have proposed a framework to define

the minimum number of stop points that UAV needs to coverage a desired coverage

area with a minimum required transmission power. It has been shown that the num-

ber of stop points per UAVs are required to be increased to improve the coverage

probability of ground users.

The interior-point optimizer of MOSEK solver and the bisection search method

have been exploited in [33] to find the 3D placement that maximizes the number

of covered users by a single UAV-BS. It has been demonstrated that measuring the

traffic characteristics in space (e.g. the amount of clustered ground cellular users) is

of significant importance for determining the efficiency of integrating the UAVs into

the cellular network architecture. It has been proved that the use of UAVs as relays

in UAV-assisted HetNets can improve the capacity, reliability and connectivity of

the cellular networks compared with the ground-based terrestrial networks [34]. It

is also has been shown that UAVs not only provides long-range connectivity but

also improve the load balancing and the traffic offload in the UAV-assisted HetNets.
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In [35], the authors have presented experimental field-test results of using small

UAV (SUAV) as a wireless relay in a cellular network. They have shown that the

peak throughput and ping time can be significantly improved by integrating UAVs

as wireless relays into the existing cellular networks. The problem of optimizing the

coverage area of a single UAV-BS has been formulated in [36] as a second order cone

problem (SOCP) to find hovering altitude of the UAV that maximizes the number

of covered users and minimizes the transmission power of the UAV. The author have

shown that there have been significant savings in the UAV downlink transmission

power and the number of covered ground users as the users get closer to each other.

Interference alignment (IA) technique has been exploited in [37] to propose a blind

channel state information (CSI) feedback transmission scheme that maximizes the

sum-rate of a high altitude platform drone-based wireless system. It has been proven

that IA can be exploited to mitigate the UAV-UAV interference and increase the

sum-rate gain significantly in relay-aided drone wireless networks.

The optimal transport theory has been exploited in [38] to minimize the flight

time and find the optimal deployment of UAVs to provide wireless service to ground

users and minimize the transmission power of UAVs. It has been shown that the

total UAV-hover time that is required for serving ground users can be decreased in

increasing the allocated bandwidth to ground users (i.e., by increasing the trans-

mission rate) [39]. The authors have also shown that the total hover time of each

UAV decreases as the number of serving UAV-BSs increases given a fixed number

of ground users. However, increasing the number of UAVs leads to more inter-cell

interference which reduces the transmission rate gains that can be achieved by us-

ing more UAVs. It has been revealed that using UAVs with long flight time can be

more beneficial than using UAVs with short flight times. The mean-field game has

been exploited in [40] to propose a non-cooperative movement control algorithm for
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a swarm of massive UAVs, in which, the energy efficiency of UAVs is maximized

while avoiding inter-UAV collisions. Authors have shown how the mean-field game

approach can be leveraged to enable fully-distributed control of massive number

of UAVs. It has also been shown how the downlink rate of ground users can be

enhanced by decreasing the mechanical mobility control energy and minimizing the

UAV energy consumption per downlink rate. A 3D deployment approach based

on the circle packing theory has been proposed in [41] to maximize the coverage

performance and minimize the transmission power of UAVs. It has been shown

how the number of UAVs, the beamwidth of the antennas and the 3D locations

of UAVs can be designed to meet the coverage requirements in the desired cov-

erage area. In [42], the authors have proposed a machine learning framework to

efficiently predict the congested coverage areas and subsequently deploy a group of

UAV-BSs therein, to offload the traffic from congested terrestrial BSs to UAVs. It

has been demonstrated that the machine learning can be used to significantly reduce

the required UAV downlink transmission power and mobility power to satisfy the

users’ demands compared with the traditional optimal deployment of UAVs without

machine learning prediction.

Millimeter-wave frequency band has been considered as a promising solution for

reliable, scalable and low-latency UAV-based cellular networks for multiple reasons.

First, highly directional and 3D beamforming can be exploited for interference mit-

igation over the backhaul and access links in UAV communications [43]. Second,

the dominance of LOS links (e.g., Air-to-Ground, Ground-to-Air and Air-to-Air)

suggests that mmWave frequencies can be easily exploited in UAV-assisted cellular

networks [44]. Third, mmWave communication is considered as a promising can-

didate to establish high date rate and high capacity wireless access and backhaul

connections in UAV use cases (e.g., support high traffic demands in congested ar-
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eas, data collection from ground devices and video monitoring traffic) due to the

availability of large spectrum resources in mmWave frequency bands [45–48]. In this

regard, ray tracing simulations have been utilized in [49] to study the propagation

characteristics of of outdoor mmWave channels at 30 and 60 GHz frequency bands

in UAV-assisted IAB mmWave networks. Ray tracing simulation results have shown

that using UAV as amplify-and-forward (AF) and decode-and-forward (DF) relays

achieves significant gains in the downlink coverage and capacity of IAB mmWave

networks. An angular-based user separation approach has been proposed in [50]

to find the UAV deployment that maximizes the overall downlink link rate. It has

been mobility attributes of UAVs can be exploited to move the UAVs to location

where orthogonal beams can be generated at different users. In that, the UAV-based

beamforming scheme can give better capacity performance than that of the normal

linear zero-forcing beamforming (LZFBF) without the requirement of CSI knowl-

edge from all users in the desired coverage area (i.e., CSI is required to be known

from the serving user only).

In [51], the authors have proposed distance-based CSI feedback scheme and

derived the analytical expressions of outage probabilities and sum-rates for UAV-

based mmWave non-orthogonal multiple access (NOMA) downlink transmissions.

It has been shown that the distance-based CSI feedback can be an efficient alterna-

tive for the traditional full CSI feedback for fast varying channels in UAV-assisted

mmWave networks. The authors have also demonstrated that NOMA can be ex-

ploited in UAV-based cellular networks to significantly improve the sum-rate per-

formance compared with traditional orthogonal multiple access (OMA) schemes.

UAV-BSs have been also used in [52] to design an angle-based CSI feedback scheme

(by exploiting the space domain and beamforming) for mmWave NOMA downlink

transmissions in UAV-assisted cellular networks. Authors have also shown how to
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determine a feedback scheme as a measure of channel quality (e.g. angle-based or

distance-based) based on the UAV beamwidth, so that ground users can become

more distinguishable. Furthermore, 3GPP has been investigating the integration of

UAVs as hovering BSs and cellular connected drones-UEs into the existing cellular

networks [26,53].

On the backhaul network side, the authors of [14] have exploited the branch-

and-bound method to find deployment of a single UAV that maximizes the network

utility function considering the limiting constraint of available spectrum resources

for backhaul transmissions. It has been shown how the supported peak date rate on

the drone access links can be limited by the capacity limitation on the wireless back-

haul links. Authors also have demonstrated that the UAV deployment algorithm

can be robust against the modest movement of ground users by finding the opti-

mal 3D locations of UAVs. Hence, UAVs can be exploited to improve the coverage

and capacity of the cellular network while minimizing the energy consumption of

UAVs. In [15], the authors have exploited convex optimization and particle swarm

optimization (PSO) algorithm to find UAV deployments and user-BS associations

considering the limited available data rates at backhaul links. Authors have shown

how using UAV-BSs can increase the overall network rate when users are clustered

into several hotspots in the desired coverage area. It has been also shown how

defining the optimal UAV-BS beamwidth can decrease the UAV-UAV interference

levels in UAV-assisted cellular networks. Another PSO-based algorithm has been

presented in [54], in which, different network utility functions were maximized suc-

cessively, to find UAV deployments and minimum required number of UAVs to cover

a designated coverage area. It has been shown how the optimal deployment of UAV-

BSs (i.e., number of UAV-BSs and the 3D locations of UAVs) is intertwined with

the density of ground users in the desired coverage area. Specifically, a UAV-BS
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decreases its altitude in dense area to reduce the inter-cell interference and increases

its altitude to increase its coverage area when the number of ground users is low

(i.e., low density coverage area).

In addition to the conventional spatial configuration of UAVs as distributed

nodes, the authors in [22] have exploited an evolution-based multi-objective opti-

mization algorithm to maximize the directivity of UAV-based 3D antenna array.

Specifically, they have shown how to exploit the 3D deployment attribute of UAVs

as an additional degree of freedom to combine a group of UAV together and gen-

erate different antenna configurations (e.g., cubic, linear, circular, planar and 3D

nonuniform antenna array). It has been demonstrated that the proposed UAV-

based antenna arrays can provide significant performance improvements in terms

of antenna directivity gain and side lobe level. Essentially, in UAV-based antenna

configurations, UAV-BSs are not interfering to each other, but are rather benefiting

from being composed in a single antenna array. The UAV-based coordinated an-

tenna configurations help to increase the operation range of UAV-communications

and improve the overall system performance without compromising the energy and

weight load of UAVs. In [55], the authors have optimized the deployment of a group

of single-antenna UAVs to maximize the LOS MIMO channel gain and minimize the

travelling distance of each UAV. It has been shown how directing UAVs to form an

optimal uniform rectangular array (URA) can be exploited to minimize the overall

distance travelled by all UAVs.

The authors of [23,56] have proposed a framework that dynamically adjusts the

3D locations of drone-elements in DAA to provide wireless coverage to different

ground users based on their spatial distribution. They have exploited a geometric-

based solution and bang-bang control theory to minimize the transmission time

and the control time that is required to adjust the 3D locations of the drones,
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respectively. It has been shown how a group of UAVs can be configured together to

maximize the array directivity of the proposed drone antenna array (DAA). Authors

have also demonstrated that the proposed DAA framework can significantly reduce

the UAV-service time and improve the spectral and energy efficiency of the UAV-

assisted cellular networks. However, it is worth noting that the negative impacts of

the required control time to adjust the array locations every time it serves a different

user, in terms of, transmission delay and low data rates, impose various challenges

on the proposed framework to be implemented in next-generation cellular networks.

• Performance analysis of IAB-based cellular networks

As mentioned earlier, wireless backhauling has been emerged as a potential

solution to reduce the network deployment cost and meet the traffic demands of

next-generation cellular networks. The 3GPP is currently considering IAB and its

inherited use cases; namely out-of-band and in-band IAB; as attractive solutions

to improve the spectral efficiency in wirelessly backhauled cellular networks [3, 4].

The joint optimization problem of load balancing and interference mitigation in

IAB 5G HetNets has been studied in [5] taking into account the dynamic wire-

less backhaul, traffic demands and imperfect CSI. It has been demonstrated that

increasing the small cell density and improving the wireless backhaul quality can

significantly improve the cell-edge performance of IAB HetNets. The power con-

sumption of downlink and uplink transmissions in wirelessly backhauled HetNets

has been studied in [57]. Authors have presented how the time-division-duplexing

(TDD) can be exploited for coordination between macro and small BSs without the

need of exchanging the CSI through the wireless backhaul links. It has been also

shown that the network operation can become infeasible beyond a critical value of

the imperfect CSI. Hence, a fraction of users are required to lower their target rates
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or to use other transmission protocols that do not require CSI knowledge at the

transmitter.

Regularized zero-forcing (RZF) precoding and joint linear minimum mean square

error (LMMSE) have been exploited in [58] to mitigate in inter-tier interference

between uplink and downlink transmission of macro and small cells in out-of-band

wirelessly backhauled cellular networks. In [6], the authors have analyzed the down-

link rate coverage probability and studied different bandwidth splitting strategies

between access and backhaul links in mmWave HetNets. It has been proven that,

for different splitting strategies, there exists an optimal access-backhaul bandwidth

split such that a specific objective function (e.g., rate coverage probability, median

rate and 5th percentile rate) can be maximized. Authors have also proved that the

IAB-enabled cellular networks outperform the macro-only networks (i.e., without

wireless backhauling and without SBS) up to a critical cell-load. This critical cell-

load is linearly proportional to the overall available system bandwidth. It is worth

mentioning that the IAB-based wireless backhaul network architecture has been

demonstrated to significantly improve the overall network throughput and end-to-

end latency in congested cellular networks [7].

In this context, the Xhaul architecture has in proposed in [59], in which, back-

haul and fronthaul connections are tightly integrated together to enable flexible and

software-defined reconfiguration of all networking elements in next-generation cellu-

lar networks. The joint resource allocation for D2D, access and backhaul connections

has been investigated in [60] in IAB-based next generation cellular networks. The

interoperability between base stations from different manufactures have been stud-

ied in [61] for multi-hop IAB-enabled cellular networks. It has been shown that

the optimized relay selection and the joint resource allocation at both backhaul and

access links can significantly improve the received user downlink rates. The resource
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allocation problem in mmWave self-backhauled IAB network has been studied in [62]

to maximize the overall received data sum-rate at cellular users taking into account

the capacity limitations at backhaul links. It has been shown how the Markov ap-

proximation can be exploited to significantly improve the spectral efficiency of the

self-backhauled IAB cellular networks. Furthermore, it has been shown that the

IAB network architecture can be exploited to decrease the deployment cost and

improve the overall downlink and uplink sum-rates of the mmWave fixed access

wireless networks [63].

1.3 Contribution of the Thesis

To the best of the authors’ knowledge, none of the prior studies have considered

in their analysis the problem of jointly optimizing the UAV deployment, user-BS

associations and power allocations taking into account the tight interworking and

the mutual interference between access and backhaul links, resulting inter-cell inter-

ference and the mutual dependence between the spatial configurations of the UAVs

and spatial dynamics of cellular users distributions in UAV-assisted IAB networks.

Moreover, none of these works considered the problem of finding the design pa-

rameters of DAA independent of the number of drone element in the DAA spatial

configurations of UAVs.

In this thesis, we propose an interference management algorithm for UAV-assisted

IAB cellular networks. In particular, the proposed algorithm jointly optimizes the

3D deployment of UAVs, user-BS associations and power allocations for downlink

link transmissions at backhaul and access links. We show how the spatial config-

urations of UAVs are intertwined with the spatial distribution of ground cellular

users and present two spatial configurations of UAVs; namely distributed UAVs and
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DAA; based on the spatial dynamics of ground users. Moreover, we consider in-

band backhauling, as a natural candidate for tighter interworking between access

and backhaul links. In the former mode we define the 3D placement of UAVs. In

the latter mode we define the DAA design parameters in terms of 3D placement of

array center, array orientation and drone element separation. All while taking into

account the mutual interference due to the full reuse of wireless channel resources,

i.e., time and frequency, between backhaul and access links, LOS capabilities of

UAVs, inter-cell interference and spatial dynamics of users’ distribution.

The problem is cast as a network sum rate maximization problem and decom-

posed into two subproblems due to the mutual dependence between the optimization

variables. We then propose an iterative framework to find the optimized set of vari-

ables. In that, the first subproblem is solved using a two-stage fixed-point method

to find user-BS associations and downlink power allocations for access and backhaul

transmissions, given fixed UAV spatial configurations. The second subproblem is

solved using particle swarm optimization (PSO) to define the spatial configurations

of UAVs and update power allocations given fixed user-BS associations. We show

how the computational complexity of the proposed framework can be independent

of the number of UAVs when they are configured as DAA, and demonstrate (with

the aid of simulation results) the consistency of the computational complexity of

the proposed framework for larger number of UAVs.

Our numerical results show that the proposed algorithm achieves an average

of 3.1× and 6.7× gains in received downlink signal-to-interference-plus-noise ratio

(SINR) and overall network sum rate, respectively, compared to the baseline sce-

nario, in which, UAVs are not used. We demonstrate that the use of UAVs in

in-band IAB networks results in both coverage enhancement and capacity boosting.

As for the DAA configuration, the numerical results also reveal that the achievable
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network performance gains are directly proportional to the number of drone ele-

ments in the DAA. In this regard, we show how the computational complexity of

the proposed algorithm can be independent of the number of UAVs when they are

configured as DAA. We also analyze the convergence results of the proposed PSO

algorithm and show how PSO settings can be adjusted to converge to the same near-

optimal set of solutions in fewer number of iterations. We discuss the robustness

of the proposed iterative algorithm against the order of the optimization steps and

show that it converges to same optimized set of solutions irrespective of the order

of the optimization steps. Furthermore, our numerical results reveal that the per-

formance of the proposed algorithms is directly proportional to the heterogeneity of

the spatial distribution of cellular users (i.e.,performance gain increases with more

clustered users).

1.4 Organization of the Thesis

In Chapter 2, we consider different spatial configuration modes of UAVs; namely

distributed UAVs and drone antenna array; and present a system model for down-

link transmissions of both access and backhaul links in UAV-assisted IAB cellular

networks. Furthermore, we show how the in-band backhauling can be resulted in

tighter interworking between access and backhaul links in IAB-based cellular sce-

narios.

In Chapter 3, we formulate the problem of joint optimization of user-BS associ-

ations, downlink power allocations and the 3D deployment of UAVs to maximize the

overall network sum-rate while keeping the minimum levels of interference at access

and backhaul links for different UAV configuration modes (i.e., distributed UAVs

and drone antenna array) in UAV-assisted IAB cellular networks. In addition, we
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show how fixed point iteration method and PSO algorithm can be exploited to de-

velop an iterative interference management algorithm to solve the proposed network

sum-rate maximization problem.

In Chapter 4, we exploit the proposed iterative algorithm and extensive Monte

Carlo simulations to numerically evaluate the performance gains of using UAVs as

IAB-nodes in in-band IAB networks, in terms of the received downlink throughput,

SINR at both access and backhaul links and overall network sum rate. Furthermore,

we analyze the convergence results of the proposed iterative algorithm and discuss

its robustness against the order of the optimization steps.

Finally, the concluding remarks are drawn in Chapter 5.

1.5 Notation

The following notation is used throughout the thesis. Matrices are expressed by up-

percase and boldface letters. Lowercase and boldface letters represent vectors. Sets

are denoted by script typefaces. We use standard normal case letters to represent

the scalars. (.)∗,(.)†, (.)> and � denote the Hermitian transpose, the pseudo-inverse,

the transpose and the Hadamard division operations, respectively. The norm of a

vector is represented by ‖.‖. Either the cardinality of a set or the absolute value

of a scalar are described by |.| depending on the context. We denote the complex

Gaussian and uniform distributions by CN and U , respectively. Finally, 1A denotes

the A-dimensional all-ones vector.
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CHAPTER 2

SYSTEM AND RECEIVED SIGNAL MODEL

We consider a downlink link transmission scenario in IAB multi-tier drone cel-

lular network as shown in Fig. 2.1. The first tier represents the IAB-donor b that

supports T terrestrial users (tUEs) with direct links and provides wireless backhaul-

ing functionality to D UAVs. The second tier represents UAVs operating as drone

IAB-nodes to support A aerial users (aUEs) with access links. We consider an in-

band -IAB scenario, in which, access and backhaul link fully overlap in spectrum

resources [3]. Fig. 2.1 clarifies definitions that are used throughout this thesis to

refer to the proposed system model. The downlink transmission denotes the data

transmission from UAVs to aUEs, IAB-donor to tUEs, and IAB-donor to UAVs.

The IAB-donor uses same spectrum resources for direct and backhaul links, and it

is equipped with N element uniform linear array (ULA). Drone IAB-nodes use the

same spectrum resources for backhaul and access links, and they are equipped with

single receiving and transmitting antennas. Similarly, cellular users are equipped

with single receiving and transmitting antennas. We assume that cellular ground

users are spatially distributed into D clusters. Let D = {1, . . . , D}, A = {1, . . . , A}

and T = {1, . . . , T} denote the sets of UAVs, aUEs and tUEs, respectively where,

e.g., the cardinality of D is |D| and is equal to D. The set of BSs is represented

by S = {1, . . . , S} where S = D + 1. Finally, the set of users is represented by
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Figure 2.1: In-band IAB system architecture for next-generation cellular networks:
UAVs can be users themselves or operate as drone IAB-nodes to serve other users.

U = A ∪ T where U = A+ T .

2.1 Generic Channel Model

The multiple-input-single-output (MISO) downlink channel hb,t ∈ C1×N between

IAB-donor and tth tUE is introduced as [64, Ch. 7]:

hb,t =
1√
K
×

K∑
k=1

gbt,ka
∗ (θbt,k

)
1 +

(
db,t

)α , (2.1)

where K, gbt,k, θbt,k, db,t and α represent the number of propagation paths, complex

channel gain of the kth path, angle-of-departure (AoD) of the kth path, 3D distance

between IAB-donor and tth tUE and pathloss coefficient, respectively. gbt,k follows

standard complex Gaussian distribution with CN (0, 1) and θbt,k follows a uniform

distribution with U
[
θLOS

b,t − ASD, θLOS
b,t + ASD

]
where θLOS

b,t is the LOS angle between

IAB-donor and tth tUE, and ASD is the angular spread of departure and follows the

same distribution as [65, Table 7.5-6]. The transmit antenna array steering vector
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of the kth path and AoD θbt,k is given by:

a
(
θbt,k

)
=

1√
N

[
1, e−j2π

∆
λ

sin(θbt,k), . . . , e−j2π
∆
λ

(N−1)sin(θbt,k)
]>

, (2.2)

where ∆ is the antenna element separation of the ULA and λ is the carrier wave-

length. Similarly, the backhaul channel between IAB-donor and dth drone is rep-

resented by hb,d ∈ C1×N and the access channel between dth drone and ath aUE is

represented by hd,a ∈ C1×1.

2.2 Distributed UAVs Spatial Configuration Mode

2.2.1 Backhaul Downlink Transmissions

We consider linear zero-forcing beamforming (LZFBF) for multi-user MISO trans-

missions at backhaul links, in which, the ZF precoder at IAB-donor is defined as

Vb ∈ CN×(D+1), where Vb = H†b = H*
b

[
HbH

*
b

]−1

. The full rank channel matrix be-

tween IAB-donor, UAVs and tth tUE scheduled at f th subcarrier and lth time slot is

given by Hb(f, l) ∈ C(D+1)×N where Hb(f, l) =
[
hb,1(f, l), . . . ,hb,D(f, l),hb,t(f, l)

]
.

For simplicity of presentation, we omit references to (f, l) indices in the rest of this

thesis. The precoding vector between IAB-donor and ith reception point is normal-

ized using equal transmit power (ETP) normalization due to its higher sum rate

gains [66], and is given by vb,i = [Vb]i /
∥∥[Vb]i

∥∥, where [Vb]i is the ith column of Vb.

The received signal at dth drone from IAB-donor (see Fig. 2.1) can be modeled
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as:

yb,d =
√
pb,dhb,dvb,dxb,d︸ ︷︷ ︸
transmitted signal

+
∑
i∈Ad

√
pd,ihd,dxd,i︸ ︷︷ ︸

self-interference

+
∑
i∈Ab

√
pb,ihb,dvb,ixb,i︸ ︷︷ ︸

inter-stream interference

+
∑
j∈D\d

∑
i∈Aj

√
pj,ihj,dxj,i︸ ︷︷ ︸

inter-tier interference

+nd,

(2.3)

where pb,d, vb,d and xb,d represent the backhaul downlink power allocation, precod-

ing vector and transmitted data symbol. Ad and Aj denote the sets of interfering

aUEs that are associated with dth and jth UAVs, respectively where j 6= d. The

second, third and fourth terms in (2.3) represent the self-interference between ac-

cess and backhaul, inter-stream interference and inter-tier interference on backhaul

transmissions of dth drone. nd ∼ CN (0, σ2) denotes the received zero-mean com-

plex Gaussian noise with variance σ2 at dth UAV. Each UAV is a full-duplex capa-

ble drone IAB-node, which can be integrated into in-band IAB scenarios without

self-interference constraints. We assume perfect channel state information (CSI)

knowledge at IAB-donor. Further, LZFBF is used to suppress the inter-stream

interference between (D + 1) independent spatial streams of backhaul and direct

links [67]. Hence, the second and third terms can be omitted from (2.3) and the

received SINR at dth drone can be calculated as:

γb,d =
pb,d

∣∣hb,dvb,d

∣∣2∑
j∈D\d

∣∣hj,d∣∣2 ∑
i∈Aj

pj,i + σ2
. (2.4)

2.2.2 Access Downlink Transmissions

Similarly, the received downlink signal at tth tUE from IAB-donor is given by:

yb,t =
√
pb,thb,tvb,txb,t︸ ︷︷ ︸

transmitted signal

+
∑
j∈D

∑
i∈Aj

√
pj,ihj,txj,i︸ ︷︷ ︸

inter-tier interference

+nt, (2.5)
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where Aj is the set of associated aUEs with jth drone and are scheduled on same

spectrum and time resources as tth tUE. The second term in (2.5) represents the

inter-tier interference on the access transmissions of tth tUE. The received SINR at

tth tUE can be expressed by:

γb,t =
pb,t

∣∣hb,tvb,t

∣∣2∑
j∈D

∣∣hj,t∣∣2 ∑
i∈Aj

pj,i + σ2
. (2.6)

Finally, the received downlink signal at ath aUE from dth drone is given by:

yd,a =
√
pd,ahd,axd,a︸ ︷︷ ︸

transmitted signal

+
∑
j∈D\d

∑
i∈Aj

√
pj,ihj,axj,i︸ ︷︷ ︸

intra-tier interference

+
∑
k∈D∪T

√
pb,khb,avb,kxb,k︸ ︷︷ ︸

inter-tier interference

+na,
(2.7)

where D∪T is the set of UAVs and tUEs scheduled on the same spectrum and time

resources as ath aUE. The second and third terms in (2.7) represent the intra-tier

interference and inter-tier interference of the IAB-donor transmissions on the access

transmissions of ath aUE. The received SINR at ath aUE is represented by:

γd,a =
pd,a
∣∣hd,a∣∣2∑

j∈D\d

∣∣hj,a∣∣2 ∑
i∈Aj

pj,i +
∑
k∈D∪T

pb,k

∣∣hb,avb,k

∣∣2 + σ2
. (2.8)

2.3 Drone Antenna Array Spatial Configuration Mode

In the previous sections, we presented how a group of UAVs can be spatially config-

ured as distributed IAB-nodes to serve multiple hotspots for in-band IAB scenarios.

As the number of ground users increases, the number of required UAVs for coverage

enhancement and capacity boosting increases as well, entailing more design chal-

lenges and higher levels of interference between direct, access and backhaul links.

Moreover, the SINR formulas in (2.4), (2.6) and (2.8) show that decreasing the inter-

site distance poses more technical challenges in the design of the proposed in-band
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Figure 2.2: Drone antenna array design parameters.

IAB drone network architecture. To this end, we consider another spatial configura-

tion mode for UAVs. In that, UAVs are configured as a single DAA to serve ground

users that are spatially distributed in a single hotspot. Unlike distributed UAVs,

UAVs in DAA mode are not interfering to each other, but are rather composed in a

single antenna array to benefit from the potential advantages of the DAA [23]. The

DAA configuration mode allows for on-demand array configurations. Specifically,

the design parameters of the DAA are adjusted based on the spatial distribution of

ground users to maximize the overall sum rate gains.
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2.3.1 Backhaul Downlink Transmissions

The MISO channel between DAA r, composed of single antenna D drones and ath

aUE hr,a ∈ C(1×D) is given by:

hr,a =
1√
D
×
[
h1,a, . . . , hD,a

]
, (2.9)

where hd,a ∈ C(1×1) is the access link channel coefficient between dth antenna, i.e.,

drone, element and ath aUE. It follows the same definition as (2.1). Let us consider

the set of DAA design parameters as X where X = {θ, φ,∆r, xc, yc, zc}. θ ∈ [0, 2π],

φ ∈ [0, 2π], ∆r and [xc, yc, zc] are the azimuth angle from (x′, z′) plane, elevation

angle from (x′, y′) plane, antenna element separation and 3D coordinates of the DAA

center, i.e., coordinates of the origin of (x′, y′, z′) plane, respectively (see Fig. 2.2).

Now the 3D coordinates of dth drone element in the DAA can be defined in terms

of X and they are given by:

[xd, yd, zd] = [xc, yc, zc] +
∆r (D − 2d+ 1)

2
×
[
cos(φ)cos(θ), cos(φ)sin(θ), sin(φ)sin(θ)

]
.

(2.10)

Consequently, hr,a can be defined in terms of X as hr,a(X ) and is used to define

LZFBF precoder for multi-user MISO transmissions at access links of the DAA.

The LZFBF precoder at the DAA is given by Vr ∈ C(D×L) = H†r = H∗r [HrH
∗
r ]−1,

where Hr ∈ C(L×D) is the full rank channel matrix between DAA and L aUEs with

Hr(X ) =
[
hr,1(X ), . . . ,hr,L(X )

]>
. By utilizing the DAA configuration mode, DAA

divides aUEs into spatial division multiple access (SDMA) groups. In that, the

set of SDMA group of aUEs that are associated with the DAA and scheduled at

same time and spectrum resources is represented by L where |L| = L. It is worth

noting that, the spatial multiplexing gains are constrained by the number of drones

in DAA. In particular, the DAA exploits LZFBF to transmit L independent spatial

streams for downlink access transmissions, where L ≤ D.
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Now, let us consider DAA that is configured to serve a group of ground users that

are spatially distributed away from IAB-donor and concentrated in the center of a

single hotspot. Hence, the received signal at dth antenna element from IAB-donor

can be written as:

yb,d =
√
pb,dhb,dvb,dxb,d︸ ︷︷ ︸
transmitted signal

+
∑
j∈D\d

∑
i∈L

√
pr,ihj,dvr,ixr,i︸ ︷︷ ︸

self-interference

+
∑
j∈D\d

√
pb,jhb,dvb,jxb,j︸ ︷︷ ︸

inter-stream interference

+nd,

(2.11)

where L is the SDMA group of interfering aUEs to tth tUE . The second and third

term in (2.11) denote the self-interference and inter-stream interference on the back-

haul transmissions of the DAA. The received SINR at dth drone can be defined as:

γb,d =
pb,d

∣∣hb,dvb,d

∣∣2
σ2

. (2.12)

2.3.2 Access Downlink Transmissions

Similarly, the received downlink signal and SINR at tth tUE from IAB-donor are

given by:

yb,t =
√
pb,thb,tvb,txb,t︸ ︷︷ ︸

transmitted signal

+
∑
i∈L

√
pr,ihr,tvr,ixr,i︸ ︷︷ ︸

inter-tier interference

+nt, (2.13)

γb,t =
pb,t
∣∣hb,tvb,t

∣∣2∑
i∈L

pr,i

∣∣hr,tvr,i

∣∣2 + σ2
, (2.14)

respectively, where D ∪ T denotes the set of interfering direct and backhaul link

transmissions to ath UE and make interference. Finally, the received downlink signal

and SINR at ath aUE from DAA are defined as (2.15) and (2.16), respectively where:

yr,a =
√
pr,ahr,avr,axr,a︸ ︷︷ ︸

transmitted signal

+
∑
k∈D∪T

√
pb,khb,avb,kxb,k︸ ︷︷ ︸

inter-tier interference

+na, (2.15)

25



γr,a =
pr,a

∣∣hr,avr,a

∣∣2∑
k∈D∪T

pb,k

∣∣hb,avb,k

∣∣2 + σ2
. (2.16)
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CHAPTER 3

SUM-RATE MAXIMIZATION PROBLEM IN UAV-ASSISTED IAB

CELLULAR NETWORKS

3.1 Distributed UAVs Spatial Configuration Mode

In this chapter, we formulate the joint optimization of user-BS associations, down-

link power allocations and the 3D deployment of UAVs. To this end, The problem

is cast as a network sum rate maximization problem subject to a received SINR

threshold at each reception point and taking into account the transmission power

constraint at each BS. The network sum rate maximization problem can be written

as:

P : max
C,w,p,pBH

1>A log2 (1 + γA) + 1>T log2 (1 + γT) , (3.1)

subject to γU ≥ εu,γD ≥ εd, (3.2a)

cd ∈
[
c

(min)
d , c

(max)
d

]
,∀ c ∈ {x, y, z} , (3.2b)

m ≤ p
(max)
S , (3.2c)

where 1A denotes the A-dimensional all-ones vector, γA = (γa : a ∈ A) and γT =

(γt : t ∈ T) denote the vectors of received downlink SINR at aUEs and tUEs, re-

spectively. C ∈ R3×D denotes the 3D locations of UAVs with cd = [xd, yd, zd]
>.

The user-BS association vector is given by w ∈ R1×U where w =
(
ws,u : u ∈ U

)
contains the indices of serving BS of each user with value ws,u := s, s ∈ S. The user

power allocation vector is given by p ∈ R1×U , where p =
(
ps,u : u ∈ U

)
with ps,u

being the power allocated by sth BS for downlink transmissions of uth user based on

association vector w. Similarly, the UAV backhaul link power allocation vector is

given by pBH ∈ R1×D, where pBH =
(
pb,d : d ∈ D

)
.
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Essentially, a low-quality backhaul link will bottleneck the access link. In this

thesis, we implement such dependency between the backhaul and access links in a

binary fashion, as shown in the inequality constraint (3.2a). In that, there will be no

access transmissions if the received SINR levels at backhaul links are below a prede-

fined threshold. It is worth noting that this binary dependency resembles selective

decode-and-forward (DF) relaying mode, in which, the relay only forwards the signal

if the received SINR exceeds a given threshold [68]. Finally, the boundaries of the

feasible set of solutions are given by (3.2b) and (3.2c). In that, the total power allo-

cation vector of BSs is represented by m ∈ R1×S with m =
(
ms : s ∈ S,ms = 1>ps

)
where ps =

(
ps,i : i ∈ As

)
and As denote the power allocation vector and the total

number of attached users to sth BS, respectively. The transmission power constraints

of BSs are given by p
(max)
S =

(
p

(max)
s : s ∈ S

)
.

According to the channel model in (2.1), logarithmic objective function in (3.1)

and SINR constraints in (3.2a), the problem is considered as NP-hard mixed-integer

nonlinear program (NP-MINLP) [69]. Moreover, the problem cannot be consid-

ered as a single optimization problem due to the mutual dependence between the

optimization variables. Essentially, increasing the downlink power allocations in-

creases the received levels of signal power at cellular users and UAVs. However,

given (2.4), (2.6) and (2.8), the received levels of inter-tier and intra-tier interfer-

ence increase as we increase the downlink power allocations. We also note that each

suboptimal set of 3D locations of UAVs leads to different suboptimal sets of user-

BS associations and power allocations. Hence, we solve the master optimization

problem (3.1) to find the near-optimal set of power allocations, user-BS associations

and 3D deployment of UAVs to maximize the received overall network downlink

throughput while keeping the minimum levels of interference at access and back-

haul links.
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To this end, and to make the optimization problem tractable, we decompose

the mater problem in (3.1) into two subproblems denoted by PA and PB. In PA,

we jointly optimize the user-BS associations and power allocations for access and

backhaul downlink transmissions given fixed UAV spatial configurations. PA can

be written as follows:

PA : max
w,p,pBH

1>A log2 (1 + γA) + 1>T log2 (1 + γT) ,

subject to (3.2a) and (3.2c).

(3.3)

In PB, we define the 3D hovering locations of UAVs and update downlink power

allocations accordingly, given fixed user-BS associations. The subproblem PB is

given by:

PB : max
C,p,pBH

1>A log2 (1 + γA) + 1>T log2 (1 + γT) ,

subject to (3.2a) - (3.2c).

(3.4)

3.2 Drone Antenna Array Spatial Configuration Mode

Now, we show how the network performance can be improved in in-band IAB sce-

narios by spatially configuring UAVs as a single DAA. The network sum rate max-

imization problem is given by:

max
X ,w,p,pBH

1>A log2(1 + γA) + 1>T log2(1 + γT), (3.5)

subject to γU ≥ εu,γD ≥ εd, (3.6a)∣∣∣∆(r)
d+1 −∆

(r)
d

∣∣∣ ≥ ∆(min)
r ,∀ d ∈ D, (3.6b)

θ ∈ [0, 2π[, φ ∈ [0, 2π[, (3.6c)

m ≤ p
(max)
S , (3.6d)
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where the minimum separation between the DAA antenna elements is defined in (3.6b)

as ∆
(min)
r to avoid collisions. As shown in (3.5), the problem is cast in terms of X

and is independent of the number of antenna elements of the DAA. In DAA-assisted

in-band IAB scenarios, the network performance enhancement is directly propor-

tional to the number of antenna elements of the DAA (see Section 4.1). Hence, it

is of paramount importance to design problem (3.5) such that its computational

complexity is independent of the number of UAVs. Problem (3.5) shares the same

logarithmic objective function and SINR non-linear inequality constraints as (3.1).

Hence, both problems can be solved using the two-stage iterative algorithm in Al-

gorithm 3 as will be shown in the following sections. Finally, PA and PB can be

defined as (3.7) and (3.8), respectively where:

PA : max
w,p,pBH

1>A log2 (1 + γA) + 1>T log2 (1 + γT) ,

subject to (3.6a) and (3.6d),

(3.7)

PB : max
X ,p,pBH

1>A log2 (1 + γA) + 1>T log2 (1 + γT) ,

subject to (3.6a) - (3.6d).

(3.8)

3.3 Hybrid Fixed-Point Iteration and Particle Swarm Ap-

proach

First we exploit fixed-point method and PSO to solve PA and PB, respectively. An

iterative algorithm is then presented to jointly optimize user-BS associations, power

allocations and the 3D locations of UAVs by exploiting PA and PB. The proposed

algorithm converges to a near-optimal feasible set of solutions after a finite number

of iterations. The optimization variables are updated every update time instant the
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network reaches a predefined user-drop rate, or when the quality of service (QoS)

of a certain group of users decreases below a predetermined level.

3.3.1 Fixed-point Iteration Method

Let us first consider uniform random initialization for user-BS associations, where

w(0) ∼ U [1, D]. Similarly, the UAV 3D location matrix is initialized with uni-

formly distributed random locations between c
(min)
d and , c

(max)
d , where C(0) ∼

U
[
c

(min)
d , c

(max)
d

]
. The downlink access and backhaul power allocations are also ini-

tialized with equal allocations based on the number of associated users with each

BS, where ps,u := p
(max)
s /As and pb,d := p

(max)
b /Ab. Now, let ts,u be the required

power to receive unity SINR when uth user is associated with sth BS. In other words,

given (2.6) it can be calculated at tth tUE as:

tb,t =

∑
j∈D

∣∣hj,t∣∣2∑i∈Aj pj,i + σ2∣∣hb,tvb,t

∣∣2 . (3.9)

Hence, the matrix of required power allocations to have a unity SINR at all

users can be written as Tu ∈ RS×U , where ts,u denotes the value of element Tu[s, u].

In other words, Tu calculates the required power allocation at uth user to receive a

unity SINR when it is associated with sth BS ∀s ∈ S. The optimum power allocation

at each user is defined as the minimum power allocation among all BSs. Hence, the

user-power allocation vector of (i+ 1)th iteration can be updated as:

p(i+ 1)← min
s∈S

ts,u(i), u ∈ U, (3.10)

where p is a vector of column-minima of Tu. The corresponding user-BS association

can be given accordingly by:

v(i+ 1)← arg min
s∈S

ts,u(i), u ∈ U. (3.11)
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Similarly, the required backhaul power allocations to receive unity SINR at UAVs

is denoted by tBH(i+ 1) ∈ R1×D and is computed based on the association vector

v(i+ 1).

Now, for tth tUE to receive a minimum SINR of εu, the user power allocation

in (3.9) can be updated as tb,t ← εutb,t. In other words, if a power allocation of tb,t

gives an SINR = 1, then a power allocation of εutb,t gives an SINR = εu. Given

that p(i + 1) ∈ R1×U in (14) denotes the optimum user-power allocation vector of

(i+ 1)th iteration to reach a unity SINR at each user, it can be updated as follows:

p(i+ 1)← εup(i+ 1), (3.12)

in order to receive a minimum SINR of εu at all users. Similarly, given that

tBH(i+ 1) ∈ R1×D is the optimum backhaul power allocations of (i + 1)th iteration

to receive unity SINR at UAVs, the backhaul power allocation vector pBH ∈ R1×D

can updated as follows:

pBH(i+ 1)← εdtBH(i+ 1), (3.13)

in order to receive a minimum SINR of εd at all UAVs. For simple notations, we

omit references to index i throughout the rest of this chapter.

Next, we adjust the updated user and backhaul power allocations based on the

total power allocations of each BS to satisfy the inequality constraint in (3.2c).

First, the user power allocations in (3.13) are adjusted using the following fixed-

point equation:

p = min
{
εup, p

(lim)
S

}
, (3.14)

where p
(lim)
S is the vector of maximum allowed transmission power of BSs and is

given by p
(lim)
S = p

(max)
S �AS. AS contains the number of associated users to each

BS where AS = (As : s ∈ S) and � denotes the Hadamard division. Second, the

proposed fixed-point algorithm follows a two-stage procedure to adjust the backhaul
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power allocations in (3.13). Let us consider the maximum allowed backhaul power

allocation as:

ζ =

p
(max)
b −

∑
i∈Ab

pb,i

D
, (3.15)

where p
(max)
b and Ab are the transmission power constraint of IAB-donor and the

set of associated tUEs with IAB-donor, respectively. Hence, the backhaul power

allocations can be adjusted using following fixed-point equation:

pBH = min
{
εdpBH, ζ

}
, (3.16)

if pb,d ∀ d ∈ D exceeds ζ. Otherwise, the backhaul power allocations are adjusted

using the same procedure in (3.14).

The two-stage backhaul power allocation update procedure exploits the transmis-

sion power upper bound of the IAB-donor and assures that the inequality constraints

of backhaul transmissions in (3.2a) are satisfied, which is critical for UAV-assisted

IAB scenarios. It also assures a global convergence to optimum power allocations

and user-BS associations after finite number of iterations. Following the same ar-

gument in [70, Theorem 3], the proposed fixed-point method converges to a global

optimal solution at a geometric rate with
∥∥pc(i)− p∗c

∥∥
∞ < Cki, where ‖ . ‖∞ is the

`∞-norm, pc(i) is the combined user and backhaul power allocation vector generated

by Algorithm 1 at iteration i with pc(i) =
[
p(i),pBH(i)

]
, p∗c is the optimal power

allocations of PA, and C > 0 and 0 < k < 1 are constants that depend on the

problem settings (i.e., channel realizations, user locations and number of users and

BSs). The fixed-point algorithm is summarized in Algorithm 1.
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Algorithm 1 Defines power allocations and user-BS associations given fixed UAV
3D locations.

1: Inputs: user positions, C, U , D, p
(max)
S , maximum iterations Im, convergence

coefficient j = 1, iteration number i = 1
2: Initialization:

w(0) ∼ U [1, D], p(0)← ps,u := p
(max)
s /As, pBH(0)← pb,d := p

(max)
b /Ab, C(0) ∼

U
[
c

(min)
d , c

(max)
d

]
3: p(i) = p(0), pBH(i) = pBH(0), w(i) = w(0)
4: while j, i ≤ Im do
5: Compute Tu(i)
6: p(i+ 1)← min

s∈S
ts,u(i)

7: v(i+ 1)← arg min
s∈S

ts,u(i)

8: Compute tBH(i)
9: p(i+ 1)← εup(i+ 1), pBH(i+ 1)← εdtBH(i)

10: if m > p
(max)
S then

11: p(i+ 1) = min
{
εup(i+ 1),p

(lim)
S (i)

}
12: if pBH(i+ 1) > ζ(i) then
13: pBH(i+ 1) = min

{
εdpBH(i+ 1), ζ(i)

}
14: else
15: pBH(i+ 1) = min

{
εdpBH(i+ 1), p

(lim)
b

}
16: end if
17: end if
18: Convergence check:
19: if

∥∥p(i)− p(i+ 1)
∥∥
∞ ≤ ε1,∥∥pBH(i)− pBH(i+ 1)
∥∥
∞ ≤ ε2,∥∥w(i)−w(i+ 1)

∥∥
∞ ≤ ε3 and (3.2a) for some εi > 0 then

20: j = 0
21: end if
22: p(i)← p(i+ 1), pBH(i)← pBH(i+ 1), i← i+ 1
23: end while
24: return w(If ), p(If ), pBH(If ), and C(If ) = C(0)
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3.3.2 Particle Swarm Optimization

We inherit the power allocation and user-BS association results from Algorithm 1

and use them as initial settings for a PSO-based algorithm. Using PSO, we find 3D

hovering locations of UAVs and update power allocations accordingly given fixed

user-BS associations. PSO is a probabilistic optimization technique that uses the

movement characteristics of organisms in a fish school or bird flock to search for set of

solutions over a non-convex search space [71,72]. In PSO, each optimization variable

is represented by a group of particles, and the swarm is initialized with some values

to start searching for a feasible set of solutions. At each iteration, every particle

in the swarm moves along the multi-dimensional search space in a probabilistic

mechanism taking into account three parameters. First, is the movement velocity of

the current iteration. Second, is the distance between the current position and the

position of the particle’s best objective value, i.e., best local objective value. Third,

is the distance between the current position and the position of the swarm’s best

objective value, i.e., global best objective value, along previous iterations.

Now, let us consider the movement velocities of M particles that represent the nth

variable at ith iteration as v
(i)
n =

(
v

(i)
n,m : m ∈M

)
. Then the matrix of velocities of

M particles can be denoted by V(i) =
[
v

(i)
1 , . . . ,v

(i)
N

]>
, where V(i) ∈ R(N×M) and N

represents the numbers of optimization variables. Similarly, the matrices of current

positions and positions of best local objects can be given by X(i) =
[
x

(i)
1 , . . . ,x

(i)
N

]>
and X

(i)
l =

[
x

(i)
1,l, . . . ,x

(i)
N,l

]>
, respectively, where x

(i)
n =

(
x

(i)
n,m : m ∈M

)
and x

(i)
n,l =(

x
(i)
n,m,l : m ∈M

)
. Hence, the positions of best local objectives of M particles rep-

resenting the nth variable can be given by:

x
(i)
n,l = arg min

r≤i
Θ
(
x(r)
n

)
, (3.17)

where the particle’s best local objective is defined among previous r iterations.
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Next, let x
(i)
g =

(
x

(i)
n,g : n ∈ N

)
represent the positions of global objectives of N

variables where x
(i)
g ∈ RN×1 and they are given by:

x(i)
g = arg min

m∈M
Θ
(
x(i)
n,m

)
, (3.18)

where x
(i)
g is the row-minima of X(i) and Θ is the weighted fitness function as we will

see in (3.21). Hence, the movement velocity of (i+ 1)th iteration can be updated

as:

V(i+1) = αV(i) + η1R1 �
(
X

(i)
l −X(i)

)
+ η2R2 �

(
x(i)
g −X(i)

)
, (3.19)

where the inertia is characterized by α and used to adaptively control the explo-

ration of the optimization process. The cognitive and social learning coefficients are

represented by η1 and η2, respectively. It is worth noting that, the cognitive and

social components in (3.19) control the exploration and exploitation of the optimiza-

tion process. Specifically, exploitation is set to the highest level when η1 = 0 and

exploration is set to the highest level when η2 = 0. Finally, R1, R2 ∈ R(N×M) are

uniformly distributed numbers between [0, 1] and � denotes the Hadamard prod-

uct. Consequently, the position of each particle in (i+1)th iteration can be updated

based on its position in ith iteration and the movement velocity of (i+ 1)th iteration

as:

X(i+1) ← X(i) + V(i+1). (3.20)

At each iteration we calculate the difference between received and target SINR

as γu = γu − εu. Now, let us consider the set of users receiving SINR at access and

direct links lower than εu as ϑu =
{
γu : γu ∈ R−1

}
where |ϑu| denotes the cardinality

of ϑu. Similarly, the set of UAVs receiving SINR at backhaul links lower than εd is

considered as ϑBH =
{
γBH : γBH ∈ R−1

}
, where γBH = γBH− εd. Hence, a weighted

fitness function can be composed of the objective function and nonlinear inequality
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constraints in (3.1) and is given by:

Θ (C,p,pBH) = R−
(
e1|ϑu|+ e2|ϑBH|

)
, (3.21)

where e1 and e2 denote penalty parameters and are defined based on the target

received QoS at users and UAVs, respectively. Θ is then evaluated at the cur-

rent position of each particle and compared with the particle’s local best fitness

and global fitness of the swarm. The values of X
(i)
l and X

(i)
g are then updated

using (3.17) and (3.18), respectively. Although PSO is easy to implement, com-

pared with other evolutionary computation techniques (see, e.g. [73] and references

therein), the computational complexity of swarm optimization increases with the

number of optimization variables and constraints. The weighted fitness function

in (3.21) reduces the computational complexity of the proposed PSO algorithm and

solves the non-linear constrained program in (3.4) independently of the number of

optimization constraints in( 3.2a).

The time complexity of PSO can be calculated as follows. Tcomp = Tint + (Teva +

Tupd)×M where, Tint, Teva, Tupd, M are the computational costs of the initialization,

evaluation, velocity and position update of each particle, and the number of particles

respectively [74]. Given that the number of optimization variables (i.e., dimension-

ality of the search space) in Algorithm 2 is N , hence, Tcomp = N (1 + 3×M). Con-

sequently, we denote the complexity of Algorithm 2 as O (N ×M). The proposed

algorithm converges to a near-optimal solution when the relative change in the best

objective function value over the last Ic iterations is less than ε4. The proposed

PSO algorithm and time complexity of the proposed algorithms are summarized in

Algorithm 2 and Table 3.1, respectively.
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Algorithm 2 Defines 3D locations of UAVs and updates power allocations accord-
ingly given fixed user-BS associations.

1: Inputs: user positions, C(0), U , D, p
(max)
s , N , M , α, η1, η2, Im, j = 1, i = 1

2: Initialization:
w(i)← w(If ), p(i)← p(If ), pBH(i)← pBH(If ),

C(i)← C(If ), y =
[
vec(C(i)),p(i),pBH(i)

]>
,

X(i) ∼ U [ε1y, ε2y], X
(i)
l = arg min

r≤i
Θ
(
X(r)

)
,

x
(i)
g = arg min

m∈M
Θ
(
x(i)
n,m

)
,

3: while j, i ≤ Im do
4: Compute V(i), X(i), X

(i)
l , x

(i)
g , Θ(i) (C,p,pBH)

5: if Θ
(
X(i)

)
< Θ

(
X

(i)
l

)
then

6: X
(i)
l ← X(i)

7: for n ∈ N do
8: if Θ

(
x

(i)
n

)
< Θ

(
x

(i)
n,g

)
then

9: x
(i)
n,g ← x

(i)
n,m

10: end if
11: end for
12: end if
13: Update V(i+1) and X(i+1) using (3.19) and (3.20), respectively.
14: i← i+ 1
15: Convergence check:

16: if

∣∣∣Θ(i)(C,p,pBH)−Θ(i−Ic+1)(C,p,pBH)
∣∣∣∣∣∣Θ(i)(C,p,pBH)

∣∣∣ ≤ ε4, i > Ic then

17: j = 0
18: end if
19: end while
20: return C(IP ), p(IP ), pBH(IP ), and w(IP ) = w(If )
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Table 3.1: Time complexity of the proposed algorithms

Algorithm Time complexity

Fixed-point method geometric rate with
∥∥pc(i)− p∗c

∥∥
∞ < Cki

PSO O (N ×M)

3.3.3 General Solution

The design parameters of in-band UAV-assisted IAB networks are intertwined to-

gether due to the full reuse of wireless channel resources between backhaul and

access links, LOS capabilities of UAVs, small inter-site distance and spatial dynam-

ics of user distribution. Hence, we present an iterative algorithm in Algorithm 3

that combines Algorithm 1 and Algorithm 2 to solve problem (3.1). Let us consider

(i > 1) in Algorithm 3. Hence, the proposed algorithm updates user-BS association

vector w(i) based on the 3D locations matrix C(i − 1). Then, the set of different

user-BS associations between current and previous iteration is defined in step 5.

If
∥∥w(i)−w(i− 1)

∥∥ ≥ ε1 for some ε1 ≥ 0, then, a new set of 3D locations is ob-

tained in step 9. In other words, a new iteration of Algorithm 2 is required for

convergence. Similarly, the set of different 3D locations of UAVs and the sum rate

difference are obtained in steps 11 and 15, respectively to define whether new itera-

tion of Algorithm 1 is required for convergence. The proposed algorithm converges

to a near-optimal feasible set of solutions after a few iterations.

Our proposed solution for UAV-assisted IAB networks is significantly different

compared to the studies in [9, 14, 15, 69, 75]. In particular, we consider the mutual

dependence between backhaul, direct and access transmissions, inter-cell interference

and the mutual dependence between the spatial configurations of UAVs and the

spatial dynamics of ground user distribution, which are significantly challenging in

UAV-based cellular scenarios.
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Algorithm 3 General fixed-point iteration and PSO algorithm

1: Inputs Im, j = 1, i = 1
2: while j, i ≤ Im do
3: Compute w, p, pBH using Algorithm (1)
4: if i 6= 1 then
5: if

∥∥w(i)−w(i− 1)
∥∥ ≤ ε5 for some ε5 ≥ 0 then

6: break
7: end if
8: end if
9: Compute C and update p and pBH accordingly using Algorithm (2)
10: if i 6= 1 then
11: if

∥∥C(i)−C(i− 1)
∥∥ ≤ ε6 for some ε6 ≥ 0 then

12: break
13: end if
14: else
15: if

∣∣R(i)−R(i− 1)
∣∣ ≤ ε7 for some ε7 ≥ 0 then

16: break
17: end if
18: end if
19: i← i+ 1
20: end while
21: return C(IG), v(IG), p(IG) and pBH(IG)
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we numerically evaluate the performance gains of using UAVs

as IAB-nodes in in-band IAB networks. Specifically, we use Algorithm (3) and

Monte Carlo simulations to study the achievable gains in received downlink SINR

and overall network sum rate. In doing so, we define two use cases for the spa-

tial configurations of UAVs based on the spatial distribution of ground users and

compare their performance with the baseline scenario, in which, UAVs are not

used. In the baseline scenario, we define the downlink access power allocations

as p∗b,u =

(
1
λ
− N0

|hb,u|2
)+

, where p∗b,u is the waterfilling power allocation and λ satis-

fies 1
U

∑
u∈U

(
1
λ
− N0

|hb,u|2
)+

= p
(max)
b . Each UAV is equipped with a single transmit

antenna due to the limited volume, weight, and payload of drone IAB-nodes. The

channel realizations in (2.1) and (2.2), and the spatial distribution of ground users

are randomly updated every Monte Carlo simulation. The simulation parameters of

both scenarios are summarized in Table 4.1.

4.1 Dual Clusters Spatial Distribution of Cellular Users

In this scenario, we study the use case where users are concentrated in the center of

a single hotspot, e.g., music festivals and sports events as depicted in Fig. 4.1. In

such scenarios, it is better for aUEs to be associated with a single DAA rather than

being associated with distributed UAVs (see Chapter 4). Although IAB-donor allows

for multi-user MIMO transmissions at backhaul links, it adopts SISO downlink

transmissions to tUEs. Hence, we can fairly evaluate the performance of using

DAA with different spatial distributions of ground users (see Section 4.2). Fig. 4.2

shows that the average received SINR of ground users is enhanced by more than 30
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Table 4.1: Simulation parameters

Settings Distributed UAVs Single DAA

IAB-donor TM: direct links SISO SISO

IAB-donor: backhaul links MIMO MIMO

IAB-donor: TX antennas 64 64

Number of UAVs 4 4

UAV: TX antennas 1 1

DAA TM: access links − MIMO (4 layers)

UAV TM: access link SISO −
Number of users 25 25

fc, BW, p
(max)
b , p

(max)
d 2 GHz, 20 MHz, 46 dBm, 36 dBm

σ2, εu, εd −104 dBm, 3 dB, 3 dB

M, α, η1, η2 200, [0.1, 1.1], 1.49, 1.9

Figure 4.1: Dual clusters: spatial configurations of DAA.
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Figure 4.2: Dual clusters: received downlink SINR.

dB after using DAA. Further, it reveals that the received SINR of tUEs is slightly

decreased in order to increase the SINR of aUEs. Fig. 4.2 also shows how the spatial

configuration of UAVs is intertwined with the spatial distribution of ground users.

In that, the received SINR is significantly improved when UAVs are configured as

DAA compared with the spatial configuration of distributed UAVs. Finally, Fig. 4.2

shows that the received SINR at backhaul links is consistent with the inequality

constraints (3.2a) and (3.6a).

The enhancement in the received downlink throughput in Fig. 4.3 is consistent

with the results in Fig. 4.2. It is worth noting that the received throughput at

aUEs is higher than that of tUEs after using the DAA. This is because the use of

DAA allows for D-fold spatial multiplexing gain. Generally, the DAA exploits full

spectrum resources to transmit D independent spatial streams to D users per SDMA
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Figure 4.3: Dual clusters: received downlink user throughput.

Figure 4.4: The computational complexity of Algorithm 2 with respect to the
number of drones per DAA.
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group. Hence, the allocated spectrum resources to aUEs are now much higher than

those allocated to tUEs. Consequently, Fig. 4.3 reveals that UAVs can be used

as DAA in in-band IAB scenarios not only for coverage enhancement but also for

capacity boosting. Fig. 4.3 also shows that offloading aUEs from IAB-donor to DAA

helps to improve the downlink throughput of tUEs. Finally, it is worth noting that

the number of UAVs per DAA can be increased based on the capacity demands,

while ensuring the same computational complexity of (3.5).

Fig. 4.4 demonstrates the consistency of the computational complexity of the

proposed algorithm for a larger number of UAVs. The number of iterations is

slightly increased due to the increased dimensions of pBH in (3.8). It also shows how

the overall network performance is directly proportional to the number of UAVs

when they are spatially configured as DAA. Further, it reveals that the network

performance decreases at high number of UAVs due to the increased levels of mutual

interference between backhaul and access links.

4.2 Multiple Clusters Spatial Distribution of Cellular Users

In this scenario, users are normally distributed into multiple clusters in the desig-

nated coverage area as depicted in Fig. 4.5. Fig. 4.6 shows that the received SINR

is enhanced after deploying the DAA in an optimized 3D location between the user

clusters. Further, it is significantly enhanced by more than 20 dB when UAVs are

used as distributed hovering IAB-nodes. These results are consistent with the re-

sults in Fig. 4.2, in which, the received SINR at tUEs is slightly decreased in order

to increase the received SINR at aUEs. In addition, Fig. 4.6 shows that the re-

ceived SINR at backhaul links is consistent with the inequality constraints (3.2a)

and (3.6a).
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Figure 4.5: Multiple clusters: spatial configurations of UAVs.

Figure 4.6: Multiple clusters: received downlink SINR.
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Figure 4.7: Multiple clusters: received downlink user throughput.

Fig. 4.7 shows that the enhancement in the received downlink throughput is

consistent with the results in Fig. 4.6. It is worth noting that downlink throughput

performance of distributed UAVs outperforms that of DAA, although using DAA

allows for D-fold spatial multiplexing gain. This is because, the low received down-

link SINR at aUEs, i.e., users associated with DAA. In particular, the intermediate

3D deployment of DAA between the distributed clusters results in suboptimal di-

rectivity towards aUEs. In contrast, the DAA gains are maximized when it is fully

directed to serve aUEs concentrated in a single hotspot (as discussed in Section 4.1).

Fig. 4.8 presents the favorable spatial configuration of UAVs based on the spatial

distribution of ground users.
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Figure 4.8: Favorable spatial configurations of UAVs.

4.3 Convergence Analysis of the PSO Algorithm

As mentioned in Section 3.3.2, the proposed PSO solution in Algorithm 2 converges

to a near-optimal solution when the relative change in the best objective function

value over the last Ic iterations is less than ε4. In this section, we analyze the

convergence results of the proposed PSO algorithm at different spatial configurations

of UAVs. Fig. 4.9 shows that the fitness function Θ (C,p,pBH) of the proposed PSO

algorithm converges to a near-optimal solution after a few number of iterations when

UAVs are spatially configured as DAA. It also shows that the time complexity of

the proposed PSO algorithm can be significantly improved by increasing the value

of ε4 without decreasing the accuracy of the optimized set of solutions.

On the other hand, Fig. 4.10 shows that decreasing ε4 will impact the accuracy

of the optimized set of solutions when UAVs are spatially configured as distributed
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Figure 4.9: Dual clusters: PSO convergence.

UAVs (i.e., at a larger number of optimization variables). It is worth noting that

the convergence window size (i.e., Ic) is required to be increased as the number of

the optimization variables increases to assure the convergence to a near optimal

solution. Hence, we use Ic = 5 and Ic = 20 when UAVs are spatially configured as

DAA (Fig. 4.9) and as distributed UAVs (Fig. 4.10), respectively. Finally, Figs. 4.9

and 4.10 demonstrate that Algorithm 2 converges to a near-optimal solution in a

fewer number of iterations when UAVs are spatially configured as DAA. In other

words, the proposed PSO algorithm converges faster to a near-optimal solution when

the number of the optimization variables is smaller.
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Figure 4.10: Multiple clusters: PSO convergence.

4.4 Numerical Evaluation of Reversed Algorithm 3

In Section 3.3.3, we presented an iterative solution in Algorithm 3 that combines

Algorithms 1 and 2 to solve the master optimization problem (9). In this section,

we present the numerical results of the reversed version of Algorithm 3 (i.e., to

optimize the 3D locations of UAVs at first and the user-BS associations at second).

We carried out the optimization steps in a reversed order to find the optimized set

of solutions when the cellular users are spatially distributed into multiple clusters

(see Fig. 7). Our numerical results in Figs. 4.11 and 4.12 show that the reversed

and regular optimization orders converge to almost the same results. Essentially,

the optimized solution of (9) does not depend on the order of the optimization steps,

given that the proposed Algorithm 3 converges to a near-optimal set of solutions

after a few iterations. However, it is worth noting that the time complexity of the
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Figure 4.11: Reversed Algorithm 3: downlink SINR.

reversed optimization order is always higher than that of the regular order. This is

because the PSO algorithm (Algorithm 2) is more time-consuming than the fixed-

point method (Algorithm 1). Generally, the number of required PSO iterations in

the reversed optimization order is higher than that of the regular order.

4.5 Generic Spatial Distribution of Cellular Users

In this section, we numerically evaluate the performance of generic spatial distri-

bution of cellular users. Specifically, a fraction of users are uniformly distributed

within the coverage area (i.e., non-clustered users) and others are distributed into

multiple hotspots (i.e., clustered users) as depicted in Fig. 4.13. Fig. 4.14 shows

that the overall received downlink SINR is slightly decreased when cellular users
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Figure 4.12: Reversed Algorithm 3: downlink throughput.

are spatially distributed as clustered and non-clustered users compared with the

clustered distribution scenario. Essentially, the received downlink interference levels

at non-clustered users are higher than those received at clustered users due to their

intermediate locations between the hotspots. Thus, the overall SINR performance

is decreased by ≈ 2 dB as shown in Fig, 4.14. It is worth noting that backhaul

performance is almost the same in both scenarios. This is because the spatial distri-

butions of UAVs are almost the same (i.e., the 3D deployment of UAVs). Fig. 4.15

shows that the downlink throughput is also decreased when the cellular users are

spatially distributed into clustered and non-clustered users, which is consistent with

the SINR degradation in Fig. 4.14. Our numerical results in this section reveal that

the performance of the proposed algorithms is directly proportional to the hetero-

geneity of the spatial distribution of cellular users (i.e., performance gain increases

with more clustered users).
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Figure 4.13: Generic spatial distribution of cellular users.

.

Figure 4.14: Generic distribution: downlink SINR.
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.

Figure 4.15: Coupled distribution: downlink backhaul SINR.
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CHAPTER 5

CONCLUDING REMARKS

In this thesis, we propose an UAV-based interference management algorithm

to optimize the performance of in-band UAV-assisted IAB networks. In-band IAB

network architecture allows for tighter interworking between access and backhaul

links, making it a promising solution to meet the requirements of fast and easily

scalable deployment of next-generation cellular networks. The problem is cast as

network sum rate maximization problem. In which, we exploit fixed-point method

and PSO to jointly optimize user-BS associations, downlink power allocations and

the 3D spatial configurations of UAVs, taking into account the full reuse of wireless

channel resources between backhaul, direct and access links, inter-cell interference

and LOS capabilities of UAVs. Further, we investigate the mutual dependence

between the spatial configurations of UAVs in the sky and the spatial dynamics of

ground user distribution. In particular, we consider distributed UAVs and DAA as

different spatial configurations of UAVs.

Our numerical results show that the spatial configuration of distributed UAVs

outperforms that of the DAA by 21.6% in terms of the overall network sum rate

when the ground cellular users are normally distributed into multiple bad-coverage

areas. On the other hand, the spatial configuration of the DAA outperforms that

of distributed UAVs by 161.9% when the ground cellular users are concentrated in

a single bad-coverage area. Moreover, we show that the proposed algorithm is of

low complexity and independent of the number of UAVs when they are spatially

configured as DAA. We also analyze the convergence results of the proposed PSO

algorithm and show how PSO settings can be adjusted to converge to the same near-

optimal set of solutions in fewer number of iterations. We discuss the robustness of

the proposed iterative algorithm against the order of the optimization steps and show
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that it converges to same optimized set of solutions irrespective of the order of the

optimization steps. Furthermore, our numerical results reveal that the performance

of the proposed algorithms is directly proportional to the heterogeneity of the spatial

distribution of cellular users (i.e.,performance gain increases with more clustered

users).
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