19 research outputs found

    Comparative study of road and urban object classification based on mobile laser scanners

    Get PDF
    Recently, the rapid development of new laser technologies has led to the continuous evolution of mobile laser systems, resulting in even greater capabilities for transport infrastructure. However, the market offers numerous MLS systems with varying specifications for global navigation satellite systems (GNSS), inertial measurement units (IMU), and laser scanners, which can result in different accuracies, resolutions, and densities. In this regard, this paper aims to compare two different MLS system, integrated with different GNSS and IMU for mapping in road and urban environments. The study evaluates the performance of these sensors using different classifiers and neighborhood sizes to determine which sensor produces better results. Random forest was found to be the most suitable classifier with an overall accuracy of (91.81% for Optech and 94.38% for Riegl) in road environment and (86.39% for Optech and 84.21% for Riegl) in urban environment. In terms of MLS, Optech achieved the highest accuracy in the road environment, while Riegl obtained the highest accuracy in the urban environment. This study provides valuable insights into the most effective MLS systems and approaches for accurate mapping in road and urban infrastructure.Xunta de Galicia | Ref. ED481B-2019-061Agencia Estatal de Investigación | Ref. PID2019-108816RB-I0

    AIRBORNE LIDAR POWER LINE CLASSIFICATION BASED ON SPATIAL TOPOLOGICAL STRUCTURE CHARACTERISTICS

    Get PDF
    Automatic extraction of power lines has become a topic of great importance in airborne LiDAR data processing for transmission line management. In this paper, we present a new, fully automated and versatile framework that consists of four steps: (i) power line candidate point filtering, (ii) neighbourhood selection, (iii) feature extraction based on spatial topology, and (iv) SVM classification. In a detailed evaluation involving seven neighbourhood definitions, 26 geometric features and two datasets, we demonstrated that the use of multi-scale neighbourhoods for individual 3D points significantly improved the power line classification. Additionally, we showed that the spatial topological features may even further improve the results while reducing data processing time

    Realistic correction of sky-coloured points in Mobile Laser Scanning point clouds

    Get PDF
    The enrichment of the point clouds with colour images improves the visualisation of the data as well as the segmentation and recognition processes. Coloured point clouds are becoming increasingly common, however, the colour they display is not always as expected. Errors in the colouring of point clouds acquired with Mobile Laser Scanning are due to perspective in the camera image, different resolution or poor calibration between the LiDAR sensor and the image sensor. The consequences of these errors are noticeable in elements captured in images, but not in point clouds, such as the sky. This paper focuses on the correction of the sky-coloured points, without resorting to the images that were initially used to colour the whole point cloud. The proposed method consists of three stages. First the region of interest where the erroneously coloured points are accumulated, is selected. Second, the sky-coloured points are detected by calculating the colour distance in the Lab colour space to a sample of the sky-colour. And third, the colour of the sky-coloured detected points is restored from the colour of the nearby points. The method is tested in ten real case studies with their corresponding point clouds from urban and rural areas. In two case studies, sky-coloured points were assigned manually and the remaining eight case studies, the sky-coloured points are derived from the acquisition errors. The algorithm for sky-coloured points detection obtained an average F1-score of 94.7%. The results show a correct reassignment of colour, texture, and patterns, while improving the point cloud visualisation.Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGXunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431C 2020/01Agencia Estatal de Investigación | Ref. PID2019-105221RB-C43Agencia Estatal de Investigación | Ref. PID2019-108816RB-I0

    WEIGHTED ICP POINT CLOUDS REGISTRATION BY SEGMENTATION BASED ON EIGENFEATURES CLUSTERING

    Get PDF
    Abstract. Dense point clouds can be nowadays considered the main product of UAV (Unmanned Aerial Vehicle) photogrammetric processing and clouds registration is still a key aspect in case of blocks acquired apart. In the paper some overlapping datasets, acquired with a multispectral Parrot Sequoia camera above some rice fields, are analysed in a single block approach. Since the sensors is equipped with a navigation-grade sensor, the georeferencing information is affected by large errors and the so obtained dense point clouds are significantly far apart: to register them the Iterative Closes Point (ICP) technique is applied. ICP convergence is fundamentally based on the correct selection of the points to be coupled, and the paper proposes an innovative procedure in which a double density points subset is selected in relation to terrain characteristics. This approach reduces the complexity of the calculation and avoids that flat terrain parts, where most of the original points, are de-facto overweighed. Starting from the original dense cloud, eigenfeatures are extracted for each point and clustering is then performed to group them in two classes connected to terrain geometry, flat terrain or not; two metrics are adopted and compared for k-means clustering, Euclidean and City Block. Segmentation results are evaluated visually and by comparison with manually performed classification; ICP are then performed and the quality of registration is assessed too. The presented results show how the proposed procedure seem capable to register clouds even far apart with a good overall accuracy

    SEMANTIC3D.NET: A NEW LARGE-SCALE POINT CLOUD CLASSIFICATION BENCHMARK

    Get PDF
    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.Comment: Accepted to ISPRS Annals. The benchmark website is available at http://www.semantic3d.net/ . The baseline code is available at https://github.com/nsavinov/semantic3dne
    corecore