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ABSTRACT:

In urbanized Western Europe trees are considered an important component of the built-up environment. This also means that there is
an increasing demand for tree inventories. Laser mobile mapping systems provide an efficient and accurate way to sample the 3D road
surrounding including notable roadside trees. Indeed, at, say, 50 km/h such systems collect point clouds consisting of half a million
points per 100m. Method exists that extract tree parameters from relatively small patches of such data, but a remaining challenge
is to operationally extract roadside tree parameters at regional level. For this purpose a workflow is presented as follows: The input
point clouds are consecutively downsampled, retiled, classified, segmented into individual trees and upsampled to enable automated
extraction of tree location, tree height, canopy diameter and trunk diameter at breast height (DBH). The workflow is implemented to
work on a laser mobile mapping data set sampling 100 km of road in Sachsen, Germany and is tested on a stretch of road of 7km long.
Along this road, the method detected 315 trees that were considered well detected and 56 clusters of tree points were no individual
trees could be identified. Using voxels, the data volume could be reduced by about 97 % in a default scenario. Processing the results of
this scenario took ˜2500 seconds, corresponding to about 10 km/h, which is getting close to but is still below the acquisition rate which
is estimated at 50 km/h.

1. INTRODUCTION

Recent years saw a rapid development of sensor systems that ef-
ficiently sample our 3D environment at high detail, (Vosselman
and Maas, 2010). Mobile mapping systems implemented in heli-
copters and cars obtain point clouds consisting of millions to bil-
lions of points at a daily basis, (Haala et al., 2008, Puente et al.,
2013). In addition, methods from e.g. computer vision and com-
putational geometry became available over the last years that are
able to extract useful information from such 3D point clouds by
estimating locations and sizes of the different objects sampled by
the point clouds, (Puttonen et al., 2011, Rutzinger et al., 2010).
Such methods are typically demonstrated in the scientific com-
munity at case study scale however. Examples are given of the
extraction of geometric parameters from one facade, one or a few
trees or 300 m of road furniture, (Monnier et al., 2012). So far,
the number of publications that specifically addresses the difficul-
ties of processing large urban point clouds is limited, (Weinmann
et al., 2015).

Unfortunately it turns out far from trivial to efficiently exploit the
possibilities of combining large 3D point clouds and 3D geometry
extraction methods, (Krämer and Senner, 2015). Computers have
limited memory capacity, which means that input data needs to
be (re)divided into manageable chunks. At the same time an au-
tomated division strategy will often affect the objects of interest,
as data division will take place before object extraction. Another
problem is that the results of geometry extraction algorithms of-
ten depend on parameters. For an individual case study such pa-
rameters can easily be tuned. When automatically processing an
unseen, large data set with a variety of different realizations of the
same object type, parameter tuning should be either unnecessary
or automated. Another challenge is to make algorithms responsi-
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ble for the compatibility between consecutive steps: the output of
step(k − 1) is the input of stepk. Even powerful geometry ex-
traction methods may fail when sampling is locally hampered by
unfavorable acquisition conditions. Therefore it is important that
a human operator responsible for quality control is automatically
guided to such locations.

For the workflow presented in this paper the strategy to mitigate
the negative effects of large point clouds on computational fea-
sibility, is to process as much as possible at voxel level, rather
then at the individual point level. That is, the original point cloud
is subdivided into small cubic cells, the voxels, and consecutive
information extraction takes place by analyzing local voxel con-
figurations. Switching to voxels has some advantages. Data vol-
ume and therefore memory usage is reduced, as many points in
one voxel are simply replaced by one single voxel value (Either
voxel center, or center of gravity of the points in the voxel); The
effect of varying point densities in scan data is largely resolved
and irregular points are replaced by regular voxels cells, which
makes spatial indexing more efficient; Smaller gaps in data cov-
erage caused by occlusions in the scanning play a smaller role be-
cause of the lower resolution of the voxels. Voxels are the most
simple way to subdivide a 3D domain. More sophisticated and
more scalable is to organize a point cloud in a so-called kd-tree,
which allows to prune the point cloud to a certain level, (Triebel
et al., 2006), or in an octree.

Even when voxels are processed instead of the original points,
files consisting of these voxels can grow arbitrary large if sim-
ply merged without strategy. Therefore some additional tiling
and stitching strategy is needed that chops data in manageable
chunks, either for single node processing or for parallel execu-
tion, (Yang and Zhang, 2015). If one such chunk can be processed
in a reasonable time, the method would not change if you process
1km, 10km, or 10 000 km of data along urban streets, which is
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exactly what is required in practical applications. Here ‘reason-
able time‘ is often defined such that processing the data does not
take more time then acquiring the data. So, the only remaining
requirement is that it should be demonstrated that processing a
chunk doesn’t take more time then acquiring it.

The above mentioned advantages of using voxels, kd-trees and
octrees and octrees are reasons that several voxel based methods
have been designed for natural tree related processing of point
clouds. (Popescu and Zhao, 2008) divide their airborne point
clouds of trees in voxels to determine the transition between trunk
and canopy. (Bucksch et al., 2010) organize notably panoramic
scanner point clouds sampling trees in voxels to reconstruct the
branch structure of trees; (Wu et al., 2013) organize laser mobile
mapping data in voxels to divide tree points over individual trees.
(Cabo et al., 2014) detect pole like objects in mobile mapping
scan points using voxels, which allowed to work on 20-30 % of
the original data volume. (Lim and Suter, 2009) use initial in-
dividual point features to group points in so-called super voxels,
which are used in consecutively obtaining point cloud classifica-
tion results of a panoramic scanner point cloud.

This short literature review indicates that in principle methods ex-
ist that satisfy the needs of the workflow presented in this paper.
Still it was chosen to use methods that were implemented from
scratch for the following reasons. Available methods typically
solve a problem at hand in an approximate way, in the sense that
they may estimate related parameters, but not exactly the param-
eters required by a particular application. In addition, available
methods were often developed while solving a problem within the
particular context of a specific data set. Applying the method on
different data often gives incorrect results. Note that this prob-
lem is partly solved by data processing contests, e.g. (Vallet et
al., 2015), which compare methods in a more uniform way. An-
other issue is that within a workflow back-to-back processing is
required: the output of the previous module is the input of the
next module. A condition which is typically not fulfilled with-
out extra work when relying on available methods. Finally that
a method is published doesn’t mean that an implementation is
available, nor that input and output formats, programming lan-
guage and targeted operating system match. For the combination
of these reasons it was decided to implement the workflow from
scratch using relatively light but flexible methodology.

2. METHODOLOGY

In this work we will present a processing chain aiming at the ro-
bust and efficient large scale extraction of tree sizes and locations.

2.1 Data description

The processing chain is initially tested on 7 km of laser mobile
mapping data, sampling a test route in Saxony, Germany. The
laser mobile mapping system contains a clearance profile scanner
from Fraunhofer IPM, collecting up to 2 million points per sec-
ond. The relative precision of each single laser point is 4 mm.
The absolute geographic precision of the point cloud is about 15
cm, ensured by a 2 antenna GPS/GNSS positioning system sup-
ported by a 200 Hz IMU from APPLANIX and differential GPS
corrections applied in postprocessing.

The mobile mapping system originally records the laser scanner
data on the road in a binary format until 1 GByte is reached per
file (and then the next 1 GB container will be filled etc.). These
binary data containers were converted to xyzi-format and sepa-
rated into 10 meter chunks. These 10 meter chunks are the start-
ing point of the processing chain described in this work. The test

road is represented by 830 xyzi files (the 10 meter chunks) of in
total 17 GByte. In single cases, the car had to stop because of
traffic which lead to larger files. Together, these 830 files contain
427 186 054 points. The processing chain below doesn’t use the
intensity data, only the xyz information. In its final form the pro-
cessing chain will be used to extract tree locations and sizes for
100 km of laser mobile mapping data. For this area, ground truth
tree locations obtained by a human operator are available.

2.2 Processing chain

The processing chain consist of the steps listed below. Each step
corresponds to an algorithm which allows the user to specify up to
two parameters as indicated. Some more details are given below.

Downsampling and retiling, with two parameters: voxel size,
and maximum number of points per tile.

Tree point classification, with two parameters: grid size and min-
imum tree height:

Tree segmentation,with two parameters, minimum canopy di-
ameter and voxel size

Tree parameters, rough, no parameters

Upsampling per tree, no parameters

Tree parameters, fine, no parameters

What follows is a short description of the described methodology.

The input data is provided in chunks that in principal correspond
to 10m of road. It is assumed that these chunks are ordered ac-
cording to the order in which they were sampled A main step to
make the processing feasible is actually the first step, the down-
sampling and retiling step. In this step, input data chunks are read
and uniformly downsampled. This means that a fixed voxel size
is set by the user, e.g. 30 cm, which defines a 3D grid over the
scene sampled by the chunk. Consecutively all original points in
a given voxel cell are replaced by the center of gravity of those
points. Downsampled points are collected in order until a preset
number of points is reached. These, for example 200 000 points
are written to a file. Therefore this step will result in files con-
taining at most 200 000 points at a resolution of 30 cm.

These retiled files are the input for the classification step, (Sir-
macek and Lindenbergh, 2015). The aim of this step is to divide
the 3D points in two classes, tree and non-tree points. In this
step a 2D grid is defined over the data of a given grid size, e.g.
20 cm. For each grid cell, the number of 3D points are counted
whose xy location belong to the grid cell. Local maxima in the
resulting counts are assumed to correspond to tree locations. 3D
points above the ground and close to these tree locations will be
assigned to the tree class, the other points to the non-tree class.
To distinguish trees from shrubs, a minimal tree height can be de-
fined by the user, for example 2 m. A disadvantage of the current
algorithm is that it sometimes generates false positives at street
poles. This step is also illustrated in Figure 1. In the left im-
age, points colored gray are non-tree points, while the dark green
points are classified as trees.

The classified points proceed to the tree segmentation step. Goal
of this step is to segment the tree points into individual trees. To
do so, tree points are again distributed over a 3D voxel struc-
ture. First local maxima are detected. If a local maximum is
sufficiently prominent, according to the minimum canopy width

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: M. Brédif, G. Patanè, and T. Dokken 
doi:10.5194/isprsarchives-XL-3-W3-589-2015 

 
590



Figure 1:Left Points classified as trees (green points) and other (gray points).Right Identified individual trees (solid colors) in their
bounding box.

Figure 2: Restoring of the original tree points for one individual tree.Left. Voxelized points belonging to a tree (in dark green) and
not belonging to this tree (in gray).Right. Using the bounding box in the left image, the original points are restored in the right image.
These original points are used to determine final tree parameters like Diameter at Breast Height (DBH).

parameter, it is selected as a seed point for growing a tree by
traversing the layers of the adjacent octree cells from top to bot-
tom. Voxel cells at a certain layer in between two seed points, are
assigned to one of the two seed points according to a proximity
criterion. The success of this tree segmentation step is indicated
by a quality flag which can be used to guide a human operator to
situations were automated processing was not successful.

As a result of the tree segmentation step, tree voxels are assigned
to individual trees. By determining the bounding box of all voxels
belonging to one tree, a first estimation of the canopy width, tree
height and tree location is obtained. Indeed, the canopy width and
tree height are simply the width and height of the bounding box,
while an estimation for the tree location is the intersection of the
horizontal diagonals of the bounding box. This step is illustrated
on the right in Figure 1. Different trees have different colors, and
around each tree a bounding box is visible.

Note that all of the tree extraction steps above were performed on
the uniform downsampled point cloud of, say, 30 cm resolution.
As by now individual trees have been identified, it is possible
and also computationally feasible to go back to the full resolution
original point cloud, as the correspondences between downsam-
pled points and original points were maintained.

The final step is therefore performed per individual tree on the
original points, compare Figure 2. In the left image, the down-
sampled points are shown, in the right image, the original points
are restored. The number of down-sampled tree points in this
example is 1702, while the original number of points inside the
bounding box is 22 283. Using a histogram analysis of the ver-
tical distribution of the tree points, compare also (Popescu and
Zhao, 2008), the trunk is separated from the canopy. The direc-
tion of the trunk is estimated by Principal Component Analysis
(PCA) and the diameter at breast height (DBH), which is the di-
ameter of a tree at 1m30, (Bucksch et al., 2014), is estimated
by determining the diameter of a circle through tree points, after
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Figure 3: Large figure: Identified trees. Green circles correspond to tree locations marked by the method as correct, red circles
correspond to tree points where the algorithm was not able to identify individual trees.Small figure: some tree classification and
segmentation results. Green points were identified as tree points. The red markers indicate single trees (top of the road) or a cluster of
trees that couldn’t be segmented (bottom of the road).

Figure 4: An estimation of the Diameter at Breast Height (DBH)
is obtained by fitting a circle to projected trunk points of an ap-
propriate portion of the trunk.

removing outliers using RANSAC, (Fischler and Bolles, 1981),
compare also Figure 4. The figure shows only a partially sampled
circle, which corresponds to the mobile mapping system seeing
only the part of the trunk that is facing the road. The PCA step
in combination with restoring the original point cloud can also
be used to improve the estimation of the location of the tree by
determining the intersection of the principal axis with the terrain.

2.3 Sensitivity analysis

There is an apparent tradeoff between the different parameters.
Downsampling with a smaller voxel size in the first step will re-
sult in a higher resolution downsampled file, which contains more
details, from which consecutive steps could profit. At the same
time, if the maximum number of points per tile is kept fixed, the
spatial extent of the tile will shrink. This implies that more trees
will be cut in two at tile boundaries, which will negatively affect

the results.

Increasing the number of points per tile will in turn have a neg-
ative effect on the computational performance of the processing
chain. In addition, the first three steps, downsampling, classifica-
tion and tree segmentation, all us a 2D or 3D grid. How the sizes
of these grids interact should be further investigated.

Note that in the current workflow the first three steps all use vox-
els or pixels. In the current implementation the different voxel
and pixel sizes are not yet aligned. Therefore it is for example
possible that when using a voxel size of 30 cm in the first step,
as stated as an example above, and having a grid size of 20 cm
in the second step, some grid cells are in fact empty. It would be
preferably if these sizes were aligned, as it would further simplify
the tuning of the remaining parameters and the interpretation of
unexpected results.

3. RESULTS

All above mentioned steps have been implemented, but the final
tree parameter estimation step could not yet been tested within
the workflow.

As ‘default‘ settings, the values as shown in Table are used. The
large image in Figure 3 shows results for part of the 7km of road
considered as case study. Green disks indicate trees identified
by the processing chain. The diameter of each disk corresponds
to the estimated width of the tree canopy. Red disks correspond
to tree points where the segmentation method was not able to
identify single trees. The algorithm indicates this by a quality
flag, which guides an operator to these cases. Again, the diameter
of the red disks correspond to the width of the bounding box, in
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Step Parameter Value
Downsampling Voxel size 0.3 m

Max points per tile 20 000
Classification Grid size 0.2 m

Min. tree height 2 m
Segmentation Voxel size 1 m

Min. canopy diameter 6 m

Table 1: Default settings workflow

this case of the cluster of tree points that couldn’t be segmented.
As such cluster in reality typically corresponds to a number of
trees, the diameters of the red disks are in general larger than
those of the green disks. In total 315 trees were identified using
default settings. For an additional 58 tree point clusters the tree
segmentation step didn’t succeed in identifying individual trees.
Note however, that the locations of the identified trees currently
have not yet been validated using the ground truth data.

The small image in Figure 3 illustrates some of the intermedi-
ate steps. The results of the classification are indicated in green
(tree points) and grey (non tree points). Locations of success-
fully identified trees at the top of the road are indicated by a red
marker. Note that a small tree marked ‘X‘ was not identified,
probably because it was to small and therefore removed. The tree
segmentation method failed on the large cluster of tree points at
the bottom of the road. In this case, the location of the cluster is
still reported, but with a quality flag indicating the lack of suc-
cess. In this case also a human operator would probably have
difficulties to separate this cluster into individual trees.

The effect of using voxels on the data volume is shown by the
following example. Retiling the first 50 tiles using a voxel size of
30 cm reduced the number of points from 23 282 574 to 518 365
points, which corresponds to a reduction in data volume of 97.8
%.

Increasing the tile size could affect memory usage in a negative
way but should decrease tiling effects. The effect of changing
the voxel size in the first step is less obvious, as also consecutive
steps use voxels. Full evaluation of results of different scenarios,
including validation against ground truth, will take place after the
voxel sizes have been harmonized throughout the workflow

The tests in Table 1 were run on a desktop PC with Intel Xeon
3.6GHz processor and 16GB of RAM. All algorithms where im-
plemented in C++ and compiled and run on the Ubuntu 14.04
64-bit operating system. Running the scenario with the default
settings, corresponding to the first row in Table 1 took 2573 sec-
onds in total, which means that 1 km of data takes about 2573:7
km = 368 seconds. This processing speed corresponds to roughly
10 km an hour. This means that the initial goal of processing at
the same rate as the acquisition is close but not yet met, as this
probably would mean that the processing rate should be improved
by a factor five. Probably this improvement could be reached by
a further optimization of the current code.

The total computation time of the presented scenario’s is divided
over the different steps as follows: Retiling takes approximately
65 %, classification takes 32 % and tree separation 2 %. Change
of scenario has no large effect on this division, that is effects are
not more then a few per cent. It makes sense that computational
efforts drop throughout the workflow. Retiling still considers the
full input point clouds and file reading and writing is required.
Classification only operates on voxels. Finally, tree separation
works on tree voxels only. The final tree parameter estimation
step, where the full point clouds within the bounding boxes are
restored, were not available for testing yet.

CONCLUSIONS

In paper a processing chain aiming at the extraction of tree loca-
tions and tree sizes from laser mobile mapping data is presented.
All-though further validation is needed, initial results indicate
that the workflow is able to extract individual trees at sufficient
quality and at a rate that is approximating the data acquisition
rate: processing takes place at a rate of about 10 km/h. For ef-
ficient processing, the input is downsampled using voxels to a
volume that is below 3 % of the original data volume. Besides
validation, still harmonization between the parameters in the dif-
ferent steps is required. Such steps, in combination with code
optimization are expected to be sufficient to reach the final goal
of automatized estimation of features sampled by mobile map-
ping at a rate that matches the acquisition speed and at a quality
that matches the result of a human operator.
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